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Abstract: The purpose of this paper is to design a Fault Detection and Isolation (FDI) system based on
LPV observers with application to a real wind turbine. The LPV observer is used to generate an adaptive
threshold to enhance the robustness of the fault detection test. Real field data and system identification
techniques are used to identify the nominal model as well as its uncertainty. Since wind turbines are
highly non-linear systems when operating in their whole range of operation, a Linear Parameter Varying
(LPV) model is used. Finally, fault isolation is based on an algorithm that uses the residual fault
sensitivity. Several fault scenarios are used to show the performance of the proposed approach.
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1. INTRODUCTION

The future of wind energy passes through the installation of
offshore wind farms. In such locations a non-planned mainte-
nance is very costly. Therefore, a fault-tolerant control system
that is able to maintain the wind turbine connected after the
occurrence of certain faults can avoid major economic losses
(Sloth et al., 2010). A first step towards the implementation of
a fault-tolerant system is to implement a Fault Detection and
Isolation (FDI) that is able to detect, isolate, and if possible
to estimate the fault (Isermann, 2006). The problem of model-
based fault diagnosis in wind turbines has just been recently
addressed mainly motivated because of importance of this tech-
nology for generating electricity is gained in many countries.
So far, revising the literature, methods raging from Kalman
filters (Wei et al., 2009), observers (Odgaard et al., 2009b)
or parity equations (Dobrila and Stefansen, 2007) have been
already suggested as possible model-based techniques for fault
diagnosis of wind turbines

To use any model-based technique it is necessary to obtain a
model of the wind turbine. Since most of the techniques avail-
able in the literature utilize linear models, the more straight-
forward approach is to model the wind turbine in this way.
However, a linear model will only be able to represent the non-
linear wind turbine behaviour around a given operating point.
To build a model that is valid along the whole operating range a
Linear Parameter Varying (LPV) model will be used. Because
the effectiveness of the FDI algorithm relies in its concordance
with the reality, the plant model will be constructed using real
faultless wind turbine data using system identification methods.
Usually, the field data is presented in time series of 10 or 20
minutes. The low recording time causes that it is not possible to
get the entire wind speed range (from 3m/s to 25m/s) in a single
time series. Therefore, the form of the field data only allows
the identification of the system in one wind speed operating

point (the mean wind speed for each time series). Thus, several
models have to be identified around single points along the full
operation range as shown in Fig. 1.

Fig. 1. Power curve range with three possible operating points
separated 5m/s between them.

The innovation of this paper is to present the application of a
new fault detection and isolation method for nonlinear systems
that can be described as LPV models to a wind turbine. The
fault detection methodology is based on comparing on-line
the real system behavior of the monitored system obtained by
means of sensors with the estimated behavior using an LPV
interval observer. In the case of a significant discrepancy (resid-
ual) is detected between the LPV model and the measurements
obtained by the sensors, the existence of a fault is assumed. Due
to the effect of the uncertain parameters, the outputs of LPV
models are bounded by an interval to avoid false alarms in the
detection module. Analyzing in real-time how the faults affect
to the residuals using the residual fault sensitivity, it is possible,
to isolate the fault, and even in some cases it is also possible to
determine its magnitude.

In this paper, the proposed model-based FDI approach for wind
turbines is applied to a commercial variable-speed, variable-
pitch 3MW wind turbine of Alstom Wind S.L.U., named
ECO100 (see Figure 2). This machine follows the standard
of Danish concept: horizontal axis using a three bladed rotor
design with an active yaw system keeping the rotor always
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Fig. 2. Alstom ECO100 wind turbine.

oriented upwind. The ECO100 is II-A class IEC/EN-61400-1
with an ideal mean annual wind speed of 8.5m/s and the wind
speeds cut-in and cut-off are respectively 3m/s and 25m/s (see
Figure 1). The rotor velocity can vary between 7.94 - 14.3 r.p.m.
and it has a swept area of 7980m2. The tower is an hybrid
90m of height with the first 10m of concrete and the rest of
steel. Alstom Wind S.L.U. has provided a non-linear simulation
model and real field data of ECO100 wind turbine that will be
used in the stages of modelling and result validation. These data
come from a big set of sensors installed along the wind turbine
to collect time-domain measurements from the most important
components.

The structure of the paper is the following: In Section 2, the
set of faults that will be considered are presented, as well as an
overview of the FDI approach that is going to be used. Section 3
presents the proposed robust fault detection methodology based
on interval observers. Section 4 introduces the fault isolation
algorithm based on the residual fault sensitivities. Then, Section
5 presents the wind turbine case study and the application of
the proposed FDI methods. Finally, section 6 gives the main
conclusions.

2. WIND TURBINE FAULTS

As in any FDI system, the set of faults to be detected and
isolated should be pre-established. With this aim, the set of
wind turbine faults that cause the major economic losses (in
statistical terms) should be the ones that the FDI system should
be designed for. One relevant information available about wind
turbine fault statistics is the technical report published by Up-
Wind in 2009 (Faulstich and Hahn, 2009) that analyses the
faults in the main wind turbine components and related with
the different machine typologies. This report indicates that the
electrical subsystems fail more often than the mechanical ones,
while mechanical subassemblies experience longer downtimes
after the failure. But, it is interesting to note that, by examining
this failure database, the components of the electrical and con-
trol systems fails more often than 2 years and half. In opposite,
for example, a failure in the gearbox occurs only every 19
years (see Fig. 3). Similar results were obtained in the study of
Ribrant and Bertling (2006) where a statistical analysis about
wind turbine failures was done with data of Sweden, Finland
and Germany wind companies.

Fig. 3. Reliability statistics for main wind turbine systems.

Analysing these reports, it is clear that the control system is
one of those responsible for the greatest number of failures
in wind turbines. The sensors are one of the most important
parts of the control system since the control actions are directly
related to input reference sensors. Thus, it is very reasonable
designing a FDI system that takes into account the faults in the
sensors to prevent the control malfunctions. Besides the two
control actuators governing the Generator torque and the Blade
pitch angle are also susceptible to faults. The faults in actuators
can be easily mitigated by fault-tolerant control techniques.
Therefore, it is reasonable to include these components in the
list of considered faults (Table 1). In (Odgaard et al., 2009a),
a benchmark for FDI of wind turbines have been already
proposed that also mainly focus in the type of faults addressed
in this paper.

Fault Signal name Signal type

f1 Electrical power sensor

f2 Generator speed sensor

f3 Generator torque actuator

f4 Blade pitch angle actuator

f5 Wind speed sensor

Table 1. List of considered faults

3. FAULT DETECTION USING LPV INTERVAL
OBSERVERS

3.1 LPV representation

Let us consider that the nonlinear system (in our case the wind
turbine) to be monitored can be described by the following LPV
representation:

x(k + 1) = A(ϑ̃k)x(k) +B(ϑ̃k)u0(k) + Fa(ϑ̃k)fa(k)

y(k) = C(ϑ̃k)x(k) +D(ϑ̃k)u0(k) + Fy(ϑ̃k)fy(k)
(1)

where u0(t)∈ℜnu is the real system input, y(t)∈ℜny is the
system output, x(t)∈ℜnx is the state-space vector, fa(t)∈ℜ

nu

and fy(t)∈ℜny represents faults in the actuators and system

output sensors, respectively. ϑ̃k :=ϑ(k) is the system vector of
time-varying parameters of dimension nϑ that change with the
operating point scheduled by some measured system variables
pk (pk := p(k)) that can be estimated using some known
function: ϑk=f(pk). However, there is still some uncertainty
in the estimated values that can be bounded by:

Θk = {ϑk ∈ ℜnϑ | ϑk ≤ ϑk ≤ ϑk}, ϑk = f(pk) (2)

This set represents the uncertainty about the exact knowledge

of real system parameters ϑ̃k.
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The system (1) describes a model parametrized by a scheduling
variable denoted by pk. In this paper, the kind of LPV sys-
tem considered are those whose parameters vary affinely in a
polytope (Apkarian et al., 1995). In particular, the state-space
matrices range in a polytope of matrices defined as the convex
hull of a finite number of matrices N . That is,(

A(ϑ̃k) B(ϑ̃k)

C(ϑ̃k) D(ϑ̃k)

)
∈ Co

{(
Aj(ϑ

j) Bj(ϑ
j)

Cj(ϑ
j) Dj(ϑ

j)

)}

:=

N∑

j=1

αj(pk)

(
Aj(ϑ

j) Bj(ϑ
j)

Cj(ϑ
j) Dj(ϑ

j)

)
, (3)

with αj(pk) ≥ 0,
∑N

j=1 αj(pk) = 1 and ϑj = f(pj) is the

vector of uncertain parameters of jth model where each jth

model is called a vertex system and it is assumed according

property (2) that: ϑj ∈ [ϑj , ϑj ].

Consequently, the LPV system (1) can be expressed as follows:

x(k + 1) =
∑N

j=1 α
j(pk)

[
Aj(ϑ

j)x(k) +Bj(ϑ
j)u0(k)

]

y(k) =
∑N

j=1 α
j(pk)

[
Cj(ϑ

j)x(k) +Dj(ϑ
j)u0(k)

]

(4)
Here Aj , Bj , Cj and Dj are the state space matrices defined

for jth model. Notice that, the state space matrices of system
(1) are equivalent to the interpolation between LTI models, for

example: A(ϑ̃k) =
∑N

j=1 α
j(pk)Aj(ϑ

j).

The polytopic system is scheduled through functions αj(pk),
∀ j ∈ [1, . . . , N ] that lie in a convex set

Ψ =
{
αj(pk) ∈ R

N , α(pk) =
[
α1(pk), . . . , α

N (pk)
]T

,

αj(pk) ≥ 0, ∀j,

N∑

j=1

αj(pk) = 1
}
. (5)

3.2 LPV Interval Observer

The system described by (1) is monitored using a LPV interval
observer with Luenberger structure considering parameter un-

certainty given by ϑj ∈ [ϑj , ϑj ]. In the following, we consider
only strictly proper systems such that D = 0. Consequently,
the LPV interval observer can be written by extending the
representation of Meseguer et al. (2006) for LTI models as:

x̂(k + 1) =

N∑

j=1

αj(pk)
[
A0,j(ϑ

j)x̂(k) +Bj(ϑ
j)u(k) + Ljy(k)

]

ŷ(k) =

N∑

j=1

αj(pk)
[
Cj(ϑ

j)x̂(k)
]

(6)

where A0,j(ϑ
j) = Aj(ϑ

j) − LjCj(ϑ
j), u(k) is the measured

system input vector, x̂(k) is the estimated system state vector,
ŷ(k) is the estimated system output vector and Lj is the
observer gain that has to be designed in order to stabilize the

observer given by (6) for all ϑj ∈ [ϑj , ϑ
j
]. Each observer gain

matrix Lj ∈ ℜnx×ny is designed to stabilize each vertex jth

and to guarantee a desired performance (A0,j) regarding fault

detection for ϑj ∈ [ϑj , ϑj ] (Chilali and Gahinet, 1996).

3.3 Observer input/output form

The system in (1) can be expressed in input-output form using
the shift operator q−1 and assuming zero initial conditions as
follows:

y(k) = y0(k)+Gfa (q
−1, ϑ̃k)fa(k)+Gfy (q

−1, ϑ̃k)fy(k) (7)

where:
y0(k) = Gu(q

−1, ϑ̃k)u0(k) (8)

Gu(q
−1, ϑ̃k) = C(ϑ̃k)(qI−A(ϑ̃k))

−1B(ϑ̃k) +D(ϑ̃k) (9)

Gfa(q
−1, ϑ̃k) = C(ϑ̃k)(qI−A(ϑ̃k))

−1Fa(ϑ̃k) (10)

Gfy (q
−1, ϑ̃k) = Fy(ϑ̃k) (11)

Alternatively, the observer described by Eq. (6) can be ex-
pressed in input-output form by 1 :

ŷ(k) =

N∑

j=1

αj(pk)
[
Gj(q−1, ϑj)u(k) +Hj(q−1, ϑj)y(k)

]

(12)
where:

Gj(q−1, ϑj) = Cj(ϑ
j)(qI−A0,j(ϑ

j))−1Bj(ϑ
j) (13)

Hj(q−1, ϑj) = Cj(ϑ
j)(qI−A0,j(ϑ

j))−1Lj (14)

The effect of the uncertain parameters ϑk on the observer
temporal response ŷ(k, ϑk) can be bounded using an interval
satisfying 2 :

ŷ(k) ∈
[
ŷ(k), ŷ(k)

]
(15)

in a non-faulty case. Such interval is computed independently
for each output (neglecting couplings between outputs):

ŷ(k) = min
ϑk∈Θ

{
N∑

j=1

αj(pk)
[
Gj(q−1, ϑj)u(k) +Hj(q−1, ϑj)y(k)

]
}

ŷ(k) = max
ϑk∈Θ

{
N∑

j=1

αj(pk)
[
Gj(q−1, ϑj)u(k) +Hj(q−1, ϑj)y(k)

]
}

subject to the observer equations given by (6). Such interval can
be computed using the algorithm based on numerical optimiza-
tion presented in Puig et al. (2005).

3.4 Adaptive thresholding

Fault detection is based on generating a nominal residual com-
paring the measurements of physical variables y(k) of the
process with their estimation ŷ(k) provided by the associated
system model:

r(k) = y(k)− ŷ(k) (16)

where r(k) ∈ ℜny is the residual set and ŷ(k) is the prediction
obtained using the nominal LPV model. According to Gertler
(1998), the computational form of the residual generator, ob-
tained using (12), is:

r(k) =

N∑

j=1

αj(pk)
[
−Gj(q−1, ϑj)u(k) +

(
I −Hj(q−1, ϑj)

)
y(k)

]

(17)

Alternatively, the residual given by (17) can be also expressed
in terms of the effects caused by faults using its internal or
unknown-input-effect form (Gertler, 1998). This form, obtained
combining (7), (12) and (16), is expressed as:

r(k) = r0(k) +

N∑

j=1

αj(pk)
[(

I −Hj(q−1, ϑj)
) (

G
j

fy
(q−1, ϑj)fy(k)

+G
j

fa
(q−1, ϑj)fa(k)

)]
(18)

where
1 In the following, for simplicity and with abuse of notation, transfer functions

are used for LPV systems, although computations are performed entirely using

the state space representation: G(j) ,

[
A

(j)
0 (ϑj) B(j)(ϑj)

C(j)(ϑj) 0

]

2 In the remainder of the paper, interval bounds for vector variables should be

considered component wise.
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N∑

j=1

αj(pk)G
j

fy
(q−1, ϑj) = Gfy(q

−1, ϑ̃k)

N∑

j=1

αj(pk)G
j

fa
(q−1, ϑj) = Gfa(q

−1, ϑ̃k)

r0(k) =

N∑

j=1

αj(pk)
[
−Gj(q−1, ϑj)u(k) +

(
I −Hj(q−1, ϑj)

)
y0(k)

]

(19)

Notice that, the expression (19) represents the non-faulty resid-
ual. Comparing (17) and (19), it should be noticed that both
r0(k) and r(k) are affected in the same way by the observation
gain L.

When considering model uncertainty, the residual generated by
(16) will not be zero, even in a non-faulty scenario. To cope
with the parameter uncertainty effect a passive robust approach
based on adaptive thresholding can be used (Horak, 1988).
Thus, using this passive approach, the effect of parameter
uncertainty in the residual r(k) (associated to each system
output y(k)) is bounded by the interval:

r(k) ∈ [r(k), r(k)] (20)

where:

r(k) = ŷ(k)− ŷ(k) and r(k) = ŷ(k)− ŷ(k) (21)

being ŷ(k) the nominal predicted output, ŷ(k) and ŷ(k) the

bounds of the predicted output (15) using observer (6). The
residual generated by (21) can be expressed in input-output
form using (12) as:

r(k) = min
θ∈Θ

{
N∑

j=1

αj(pk)
[
∆Gj(q−1, ϑj)u(k) + ∆Hj(q−1, ϑj)y(k)

]
}

(22)

r(k) = max
θ∈Θ

{
N∑

j=1

αj(pk)
[
∆Gj(q−1, ϑj)u(k) + ∆Hj(q−1, ϑj)y(k)

]
}

(23)

where:

∆Gj(q−1, ϑj) = Gj(q−1, ϑj)−Gj(q−1, ϑ
j
0)

∆Hj(q−1, ϑj) = Hj(q−1, ϑj)−Hj(q−1, ϑ
j
0)

being ϑj
0 the nominal parameters.

Then, a fault is indicated if the residuals do not satisfy the
relation given by (20), or alternatively, if the measurement is
not inside the interval of predicted outputs given by (16)-(16).

Fig. 4 summarizes the robust fault detection scheme proposed.
The main signals that appear in the picture are the following: the
controller actions (u), the measured outputs (y), the estimated
outputs (ŷ), the residual (r), the observer correction (c) and the
fault (f ). By examining the residual generation block, one can
see that, in addition to the nominal model, includes an observer
scheme. The nominal model is used to estimate the outputs that
more closely fits the current wind turbine outputs. The observer
is placed in order to avoid drifting between the estimated and
measured outputs that would cause erroneous fault detection.
On the other hand, residual evaluation part is responsible
for generating the threshold taking into account the model
uncertainty. These limits take into account the uncertainty in
the modelling stage (by using a model of the error) and make
the FDI system robust.

Fig. 4. Complete model-based FDI scheme designed in this
research.

4. FAULT ISOLATION USING LPV FAULT
SENSITIVITIES

4.1 Fault signature matrix

Fault isolation consists in identifying the faults affecting the
system. It is carried out on the basis of fault signatures, (gen-
erated by the detection module) and its relation with all the
considered faults, f(k)={fa(k), fy(k)}. Robust residual evalu-
ation presented in Section 3.4 allows obtaining a set of fault sig-
natures φ(k) = [φ1(k), φ2(k), . . . , φny(k)], where each fault
indicator is given by:

φi(k) =

{
0 if r(k) /∈ [r(k), r(k)]
1 if r(k) ∈ [r(k), r(k)]

(24)

The standard FDI fault isolation method is based on exploiting
the relation defined on the Cartesian product of the sets of
considered faults:

FSM ⊂ φ×f, (25)

where FSM is the theoretical fault signature matrix (Gertler,
1998). One element of such matrix FSMiℓ will be equal to
one, if the fault fℓ(k) is affected by the residual ri(k). In this
case, the value of the fault indicator φi(k) must be equal to one
when the fault appears in the monitored system. Otherwise, the
element FSMiℓ will be zero.

In this work, it is proposed to use of information provided by the
fault residual sensitivity in the design of the diagnosis system
in order to increase fault isolability.

4.2 LPV Fault residual sensitivity

In general, the occurrence of a fault signal can be caused
by different faults. Therefore what allows distinguishing one
fault from the others are the fault signal dynamic properties
that should be different for each different fault. According
to (Gertler, 1998), these theoretical dynamic properties are
described by the residual fault sensitivity that can be expressed
as follows:

Sf =
∂r

∂f
(26)

which is a transfer function that describes the effect on the
residual, r, of a given fault f . The expression of residual
sensitivity is obtained using the residual internal form given
by (18). Thus, the sensitivity changes with the operating point
parametrized by scheduling variable pk as the LPV system (1).
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The residual (18) can be re-written as follows:

r(k) = r0(k) + Sfy (q
−1, ϑ̃k)fy(k) + Sfa(q

−1, ϑ̃k)fa(k)
(27)

where Sfy is the sensitivity of the output sensor fault and Sfa

is the sensitivity of the actuator fault.

LPV Residual sensitivity of an output sensor fault

Analyzing the residual internal form given by (27), and consid-
ering the fault residual sensitivity definition given by (26), the
residual sensitivity for the case of a output sensor fault fy is
given by a matrix Sfy of dimension ny×ny whose expression
is:

Sfy (q
−1, ϑ̃k) =

N∑

j=1

αj(pk)
[(
I −Hj(q−1, ϑj)

)
Gj

fy(q
−1, ϑj)

]

=




Sfy1,1
(q−1, ϑ̃k) · · · Sfy1,ny

(q−1, ϑ̃k)
...

. . .
...

Sfyny,1
(q−1, ϑ̃k) · · · Sfyny,ny

(q−1, ϑ̃k)


(28)

where the element of this matrix located at the ith-row and in
the ℓth-column. Sfyi,ℓ

describes the sensitivity of the residual

ri(k) regarding the fault fyℓ
(k) affecting the output sensor.

LPV Residual sensitivity of an actuator fault

Applying the analysis procedure used in the output sensor case,
the residual sensitivity of an actuator fault fa is given by a
matrix Sfa of dimension ny×nu:

Sfa(q
−1, ϑ̃k) =

N∑

j=1

αj(pk)
[(
I −Hj(q−1, ϑj)

)
Gj

fa(q
−1, ϑj)

]

=




Sfa1,1
(q−1, ϑ̃k) · · · Sfa1,nu

(q−1, ϑ̃k)
...

. . .
...

Sfany,1
(q−1, ϑ̃k) · · · Sfany,nu

(q−1, ϑ̃k)


(29)

where each row of this matrix is related to one component of the
residual vector r(k) = {ri(k) : i = 1, 2, . . . , ny} while each
column is related to one component of the actuator fault vector
fa = {fa,ℓ : ℓ = 1, 2, . . . , nu}.

4.3 Fault isolation algorithm

Figure 5 shows the scheme of the fault diagnosis algorithm
proposed in this paper. The detection module has been alredy
explained in Section 3. The result of this module applied to the
residual r(k) produces an observed fault signature φ(k). The
observed fault signature is then supplied to the fault isolation
module that will try to isolate the fault so that a fault diagnosis
can be produced.

In this paper, a new fault isolation approach is proposed that
makes use of the fault estimation provided the residual fault

sensitivity (26). More precisely, assuming that
(

Sf (q
−1, ϑ̃k)

)
−1

exists 3 , the expression of the fault estimation is given by:

f̺̂,ℓ(k) =
(

Sf̺,ℓ(q
−1, ϑ̃k)

)
−1

ri(k) (30)

where i ∈ [1, . . . , ny] and being f̺̂,ℓ =
{
f̂y,ℓ, f̂a,ℓ

}
, ∀ ℓ ∈

[1, . . . , ny, 1, . . . , nu]. This relation considers the influence of

3 If
(

Sf (q
−1, ϑ̃k)

)
−1

is non-square and can be tackled using the
left pseudo-inverse

Fig. 5. Block diagram of the fault diagnosis system.

each fault f(k) on the each residual r(k). Notice that, the
sensitivity expression changes with the operating point and
consequently the fault estimation is parametrized by scheduling
variable pk.

Using the fault estimation (30), a new FSM matrix (called fault
signature matrix FSMest) can be defined as shown in Table 2.
This fault signature matrix is evaluated at every time instant.

f̺̂,ℓ fy,1 · · · fy,ny fa,1 · · · fa,nu

r1(k) f̂r1fy,1
· · · f̂r1fy,ny

f̂r1fa,1
· · · f̂r1fa,nu

r2(k) f̂r2fy,1
· · · f̂r2fy,ny

f̂r2fa,1
· · · f̂r2fa,nu

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

rny (k) f̂rny fy,1
· · · f̂rny fy,ny

f̂rny fa,1
· · · f̂rnyfa,nu

Table 2. Fault signature matrix based on the fault estimation

(FSMest) with respect to ri(k)

Each fault hypothesis corresponds to each ℓth-column of
FSMest matrix of Table 2. The fault hypothesis corresponding
to ℓth-column is accepted if all the fault estimation values are
equal. More precisely, assuming that the system is just affected
by one fault f(k) at a time t0, the isolation process is done by
finding the fault that presents a fault estimation with a mini-
mum distance with respect to the average of fault estimation
hypothesis being postulated as a diagnosed fault:

min
{
dfy,1 , . . . , dy,ny

, dfa,1
, . . . , da,nu

}
(31)

where the distance is calculated using the Euclidean distance
between vectors:

df̺,ℓ =

√(
f̂r1f̺,ℓ(k)− f̂ m

f̺,ℓ
(k)

)2

+ · · ·+

(
f̂rnyf̺,ℓ

(k)− f̂ m
f̺,ℓ

(k)

)2

(32)

where:

f̂ m
f̺,ℓ

(k) =

∑ny

i=1 f̂rif̺,ℓ(k)

ny

for f̺,ℓ = {fy,ℓ, fa,ℓ}, ∀ ℓ ∈ [1, . . . , ny, 1, . . . , nu].

Finally, in order to prevent false alarms when the fault signals
appears in different time instants, Puig et al. (2005) proposes a
solution that consists in not allowing an isolation decision until
a prefixed waiting time (Tw) has elapsed from the first fault
signal appearance. This time Tw can be calculated from the
largest transient time response from non-faulty situation to any
faulty situation. The value Tw must be evaluated once the first
residual is activated. This interval of time is maximum when
the fault is the minimum isolable fault. Such a fault will be
determined in the next section.
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5. APPLICATION TO A REAL WIND TURBINE

5.1 Wind turbine model for FDI

For FDI purposes the measured variables used for the control
of the wind turbine were considered. Fig. 6 illustrates the basic
control scheme of the wind turbine Alstom ECO100. The inputs
of the plant are the wind speed υ, which can be divided in mean
wind speed υ and the turbulent part υ̃, the generator torque
reference τref and pitch angle reference βref . On the other
hand, the outputs of the plant are the angular generator speed
ω and the electrical power P .

Fig. 6. Control scheme for the ECO100 wind turbine.

The GH Bladed model 4 of the ECO100 wind turbine was
delivered by Alstom. This is an encrypted model that does
not allow to use the model equations explicitly. However, this
model can be used to extract information about the structure of
the model to be used when identifying a LPV model for fault
detection. GH Bladed allows users to linearize its internal non-
linear model at any wind turbine operating point.

The linear model obtained with GH Bladed around a given
operating point contains all the dynamics and can be a higher
order model (upper than 40 states). Therefore, it is useless to
be used for designing a FDI system. These techniques usually
require relatively low order models but high accuracy. With this
aim, a set of lower models relating each output signal with the
considered input signals are obtained using the Hankel model
reduction technique (see Figure 7). The order of each model is
presented in Table 3.

Fig. 7. Bank of models for FDI

Once the structure of the models have been determined, the
parameters of the nominal models has been estimated around
each considered operating using real data coming from a real
ECO100 wind turbine and the MATLAB identification toolbox.
Figure 8 shows the result of model prediction for the electrical

4 GH Bladed is a program for wind turbine modelling highly validated which

provides very accurate non-linear simulation models

Model Output Order

1 Electrical power 4

2 Generator speed 4

3 Generator torque 2

4 Blade pitch angle 3

Table 3. Order of the FDI models

power output after parameters have been calibrated at different
operating points. Once the parameters around each operating

point have obtained, the scheduling functions ϑ̃k = f(pk) for
the LPV parameters are approximated by polynomials whose
coefficients are estimated following the procedure described
in Bamieh and Giarre (2002) using data taken at different
operating points pk ∈ [p, p].

Fig. 8. Electrical power model prediction

5.2 Model error modelling

The uncertainty model around each operating point is obtained
by Model Error Modelling (MEM) techniques proposed by
Reinelt et al. (2001). The basic idea of MEM is to use the
nominal model identified in the previous section (denoted G0),
and a collection of measured field data (y, u) to identify an error
model as follows:

(1) Compute the residual ǫ = y −G0u.
(2) Consider the ”error system”, with input u and output ǫ,

and identify a model Ge for this system. This is an esti-
mation of the error due to undermodeling, the so-called
MEM.

Identification of the MEM from residual data can be seen as a
separation between noise and unmodeled dynamics. In fact, Ge

is an estimation of the dynamic system ∆G, such that:

ǫ(k) = ∆Gu(k) + e(k) (33)

If not knowledge about the structure of this model exists and
in the absence of specific suspected non-linearities, it is rea-
sonable to test non-linear neural networks black boxes (Ljung
(1999)) to identify the error model. It means that the Eq. (33)
can be rewritten as:

ǫ(k) = f̃(u(k)) + e(k) (34)

where f̃ is a non-linear function that can be modeled f.e. using
a neural network NNFIR model.
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Figure 9 shows the prediction provided by nominal and error
models once have been calibrated using real data for the elec-
trical power output (Model 1 in Table 3).

Fig. 9. Prediction provided by nominal and error models

5.3 FDI system design

The methods presented in the previous sections allow the FDI
system to detect faults but not to isolate them. There are some
faults that can cause the activation of more than one residual
as for example in the case of the wind sensor. Since the wind
speed is an input of all models in the FDI scheme, a fault in
this sensor can cause an activation of all residual signals. There
is no way to determine if a fault in such signal will induce a
massive residual activation because it depends on the type and
magnitude of the fault. The results described in Mesenguer et al.
(2010) enables FDI system to identify the source of fault by
analysing the residual sensitivities. The Table 4 indicates to the
FDI system which is the transfer function that determines the
time evolution should have the residual signal for each fault.
Then, for example, if there is a fault in the wind speed sensor,
the residual of model 1 (with electrical power output) must have
the same shape than the indicated by the sensitivity Sfu(q).

Fault Signal name Signal type Sensitivity

f1 Electrical power output sensor Sfy(q)

f2 Generator speed output sensor Sfy(q)

f3 Generator torque actuator Sfa(q)

f4 Blade pitch angle actuator Sfa(q)

f5 Wind speed input sensor Sfu(q)

Table 4. Sensitivity analysis of each fault according its type.

5.4 Results

Let us consider, for example, an abrupt fault scenario in wind
speed input sensor. In such case, the fault was only detected
by the residual corresponding to generator speed output sensor
(see Figure 10). Without the use of the residual sensitivity
analysis, the FDI system would have assigned the fault to
generator speed sensor and the reconfiguration action taken by
the fault-tolerant control would be wrong. Note that two faults
could have affected to the generator speed residual: fault f2
(generator speed sensor fault) and f5 (wind speed sensor fault).

Therefore, the corresponding two residual sensitivity functions
have to be analysed and shown in Figure 11. In this figure,
the time evolution of the residual sensitivity for model 2 with
generator speed output is illustrated. The left graph is the fault

Fig. 10. Fault detection results using model 2 in case of fault f2
(two upper plots) and f5 (two lower plots), respectively.

Fig. 11. Time evolution of the residual sensitivity for generator
speed.

sensitivity to an output sensor fault, i.e. a fault in the generator
speed sensor. The right graph is the fault sensitivity to an input
sensor fault, i.e. a fault in the wind speed sensor. Both curves
are different, thus the faults are isolable using residual fault
sensitivities.

Let us consider now the two possible fault scenarios described
in the list above with an abrupt fault (fixed value to 0) in
both cases. Figure 10 illustrates the FDI internal signals for
the corresponding model when these faults occur. The figure
shows the generator speed output sensor fault (abrupt fault)
in the top plot, and the wind speed input sensor fault (abrupt
fault) in the bottom plot. It is obvious that both scenarios cause
different behaviours in the estimated output: when an abrupt
fault is done in generator speed output sensor, the estimated
output is not able to fit the real faulty measurement. Thus the
fault indicator is always active after the fault. When an abrupt
fault is given in wind speed input sensor, not only the input of
the model is affected because the LPV model uses this signal for
the parameter variation. Therefore, after the transient is difficult
to determine what happens with the estimated output. However,
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the signal time evolution in the transient zone can be analysed
in order to find out the fault origin. By examining Figure 11 and
Figure 10 it is easy to see that the faults are clearly isolable since
the estimated output follows the shape of the corresponding
residual sensitivity in the transient. For the case of wind speed
input sensor fault, the transient has less amplitude than in the
generator speed output sensor fault. This effect is also visible
in Figure 11 where the residual sensitivities have different
amplitude scale being much lower the one corresponding to
wind speed input sensor.

6. CONCLUSIONS

In this paper, a FDI system has been developed for wind tur-
bines. The study is based on a ECO100 model (a variable-
speed, variable pitch 3MW real wind turbine) using real data
provided by the company Alstom Wind S.L.U. The wind tur-
bine faults considered are chosen based on published statistical
studies of wind turbine faults and are related to elements used
for the control system that include sensor and actuator faults.
Models for FDI have been constructed using system identifica-
tion methods using real wind turbine field data to achieve the
maximum matching with the reality. Additionally, the uncer-
tainty is taken into account to be robust against modelling errors
and signal noise. This goal is achieved by using techniques
of model error modelling that allow finding a model for the
uncertainty. The fault detection has been addressed through
LPV interval observers. The fault isolation task has been im-
plemented using the concept of residual fault sensitivities. This
concept has been exploited to provide additional information
to the relationship between residuals and faults. Moreover, it
allows obtaining the possible fault estimation for each residual
signal. Additionally the minimum detectable and isolable fault
has been presented. This information is important to evaluate
the limits of fault diagnosis method. For faults smaller than
minimum detectable/isolatable fault, this methodology can not
detect or isolate the fault, respectively. Satisfactory results have
been obtained in several fault scenarios in the considered wind
turbine.
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