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Abstract: This paper addresses the problem of controlling a continuous-time linear system
that may switch among different modes taken from a finite set. The current mode of the system
is supposed to be unknown. Moreover, unknown but bounded disturbances are assumed to
affect the dynamics as well as the measurements. The proposed methodology is based on a
minimum-distance mode estimator which orchestrates controller switching according to a dwell-
time switching logic. Provided that a certain mode observability condition holds and the plant
switching signal is slow on the average, the resulting control system turns out to be exponentially
input-to-state stable.
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1. INTRODUCTION

Over the last decade, a lot of attention has been devoted to
switching systems from both research and industrial areas,
as they allow one to represent and investigate the proper-
ties of a large class of plants in numerous applications re-
sulting from the interactions of continuous dynamics, dis-
crete dynamics, and logic decisions (see D.Liberzon, 2003).
In a switching system, the system dynamics as well as the
measurement equations may switch, at each time instant,
among different configurations (system modes) taken from
a finite set. Under the assumption that an exact knowledge
of the current system configuration is available on line
without delay, the stabilization of a switching system is
now a well understood problem. In fact, necessary and suf-
ficient conditions for the existence of a switching controller
that stabilizes the plant under arbitrary swtiching have
been derived both in the continuous-time (Blanchini et al.,
2009) and in the discrete-time case (Lee and Dullerud,
2006). Similar methodologies can also be exploited in order
to address the case of delayed information on the plant
configuration (Xie and Wu, 2009).

On the other hand, the case in which the knowledge of the
plant configuration is not available, neither in real time nor
with delay, still poses many challenges. In this framework,
most of the approaches proposed in the literature are based
on the idea of estimating the current plant mode on the
grounds of the plant state (Cheng et al., 2005; Caravani
and De Santis, 2009) or output (Li et al., 2003). However,
to the best of our knowledge, the problem of orchestrating
the controller switching so as to ensure exponential sta-
bility for arbitrary initial conditions and arbitrary noise
amplitudes is still an open issue. Further, even if in re-
cent years extensive theoretical studies have been carried
out on mode observability and mode estimation (see, for
instance, Vidal et al., 2003; Babaali and Pappas, 2005;
Alessandri et al., 2005; Baglietto et al., 2007; Alessandri

et al., 2007; Di Benedetto et al., 2009; Baglietto et al.,
2009, and the references therein), such results have yet to
be fully exploited in the context of adaptive stabilization
of switching linear systems (with the notable exception of
(Caravani and De Santis, 2009)).

Motivated by this, a method is proposed to estimate the
plant mode that naturally arises from mode observability
considerations. Such a technique is based on the idea of
evaluating the distance of the plant input/output data
collected over a moving horizon from the subspaces as-
sociated to each possible mode. The minimum-distance
mode estimator is then embedded in a supervisory unit
that orchestrates the switching between the candidate con-
trollers according to a dwell-time switching logic (DTSL)
(Morse, 1995). Provided that all the candidate controllers
are designed so as to satisfy a certain closed-loop mode
observability condition, it is shown that the proposed
minimum-distance criterion provides a reliable estimation
of the current plant mode even in the presence of distur-
bances. Moreover, the exponential input-to-state of the re-
sulting control system can be proved under the additional
assumption that the plant switching signal is sufficiently
slow on the average. The proofs are omitted due to space
constraints.

Before concluding this section, let us introduce some no-
tations and basic definitions. Given a vector v ∈ R

n,
|v| denotes its Euclidean norm. Given a symmetric, pos-
itive semi-definite matrix P , we denote by λmin(P ) and
λmax(P ) the minimum and maximum eigenvalues of P ,
respectively. Given a matrix M , M⊤ is its transpose and

‖M‖ =
[

λmax(M
⊤M)

]1/2
its norm. Given a measurable

time function v : R+ ∈ R
n and a time interval I ⊆ R

+,
we denote the L2 and L∞ norms of v(·) on I as ‖v‖2,I =
√

∫

I
|v(t)|2dt and ‖v‖∞,I = ess supt∈I |v(t)| respectively.

When I = R+, we simply write ‖v‖2 and ‖v‖∞. Further,
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L2(I) and L∞(I) denote the sets of square integrable and,
respectively, (essentialy) bounded time functions on I.

2. MODE-OBSERVABILITY OF FEEDBACK LINEAR
SWITCHING SYSTEMS

Consider a plant Pσ(t) described by a continuous-time
switching linear system of the form

Pσ(t) :

{

ẋ(t) = Aσ(t) x(t) +Bσ(t) u(t)
y(t) = Cσ(t) x(t)

(1)

where t ∈ R+ is the time instant, x(t) ∈ R
nx is the plant

state vector, σ(t) ∈ N △
= {1, 2, . . . , N} is the plant mode,

u(t) ∈ R
nu is the control input, y(t) ∈ R

ny is the vector of
the measurements. Ai, Bi, and Ci, i ∈ N , are constant
matrices of appropriate dimensions. It is supposed that
the unknown and unobserved switching signal σ : R+ → N
belongs to the class Σ of all the functions that are piecewise
constant, right continuous, and admit no Zeno behavior
(i.e., the number of switching instants is finite on every
finite interval).

For the plant Pσ(t), we consider a linear switching con-
troller Cσ̂(t) of the form

Cσ̂(t) :
{

q̇(t) = Fσ̂(t) q(t) +Gσ̂(t) y(t)
u(t) = Hσ̂(t) q(t) +Kσ̂(t) y(t)

(2)

where q(t) ∈ R
nq is the controller state vector and

σ̂(t) ∈ N is the controller mode. Fi, Gi, Hi, and Ki, i ∈
N , are constant matrices of appropriate dimensions. The
switching signal σ̂ : R+ → N is supposed to be known and
belonging to Σ. Hereafter, for the sake of simplicity, both
the plant Pi and the controller Cj will be understood to
be controllable and observable for any fixed indices i and
j, respectively.

In this section, attention will be devoted to the problem
of inferring the plant mode σ(t) from observation of the
plant input/output data. To this end, it is convenient to
consider the following state space realization for the closed
loop system (Pσ(t)/Cσ̂(t)) resulting from the feedback in-
terconnection of (1) with (2)

(Pσ(t)/Cσ̂(t)) :
{

ẇ(t) = Acl
σ(t)/σ̂(t) w(t)

z(t) = Ccl
σ(t)/σ̂(t) w(t)

(3)

where

w(t)
△
=

[

x(t)
q(t)

]

, z(t)
△
=

[

u(t)
y(t)

]

,

Acl
i/j

△
=

[

Ai +BiKj Ci BiHj

Gj Ci Fj

]

, i, j ∈ N

Ccl
i/j

△
=

[

Kj Ci Hj

Ci 0

]

, i, j ∈ N .

Further, let us denote by

zi/j(t, t0, w0)
△
= Ccl

i/je
Acl

i/j(t−t0)w0

the output of (3) at time t > t0 when the initial state at
time t0 is w0, the controller switching signal is σ̂(τ) = j for
any τ ∈ [t0, t], and the plant switching signal is σ(τ) = i
for any τ ∈ [t0, t]. The following notion of distinguishability
between two plant modes can now be introduced.

Definition 1. For system (3), two plant modes i, i′ ∈ N
with i 6= i′ are said to be distinguishable if

zi/j(·, t0, w0) 6= zi′/j(·, t0, w′
0) a.e. on [t0, t]

for any t0, t with t > t0, j ∈ N , and w0, w
′
0 ∈ R

nx+nq with
w0 6= 0 or w′

0 6= 0.

In words, two plant modes are distinguishable when,
over every finite interval, they always lead to different
input/output data z provided that the initial state is
different from zero.

Definition 2. The feedback system (3) is said to be mode-
observable if any two different plant modes i, i′ ∈ N are
distinguishable.

Mode observability corresponds to the invertibility of the
mapping from plant input/output data z(·) to the plant
switching signal σ(·). In fact, it is an easy matter to see
that, under mode observability, it is possible, at least in
principles, to reconstruct the unknown switching signal
σ(·) from observation of z(·), provided that the initial state
w(0) is not null. In what follows, necessary and sufficient
conditions for mode observability of (3) will be derived.

To this end, some preliminary definitions are needed. Let

O
(k)
i/j be the observability matrix of order k of the feedback

system (Pi/Cj)

O
(k)
i/j

△
=















Ccl
i/j

Ccl
i/j A

cl
i/j

...

Ccl
i/j

(

Acl
i/j

)k−1















.

Further, let

Φcl
i/j(t) = Ccl

i/je
Acl

i/jt

be the state-to-ouput transition matrix of the feedback
system (Pi/Cj) and

Wi/j(t)
△
=

∫ t

0

(

Φcl
i/j(ξ)

)⊤

Φcl
i/j(ξ) dξ

its observability Gramian. It is worth pointing out that,
since the pairs (Ai, Ci) and (Fj , Hj) are observable by hy-
pothesis, then also (Acl

i/j , C
cl
i/j) turns out to be observable,

i.e., the observability Gramian Wi/j(t) is positive definite

for any t > 0 and the observability matrix O
(k)
i/j is full-rank

for any k ≥ nx + nq.

The next lemma unveils that the joint observability matrix
[

O
(2nx+2nq)

i/j O
(2nx+2nq)

i′/j

]

plays a key role in determining the distinguishability of
two plant modes i and i′.

Lemma 1. Two plant modes i, i′ ∈ N with i 6= i′

are distinguishable if and only if their joint observability
matrix is full-rank, i.e.,

rank
[

O
(2nx+2nq)

i/j O
(2nx+2nq)

i′/j

]

= 2nx + 2nq , ∀j ∈ N .

(4)

As a consequence, the feedback system (3) is mode ob-
servable if and only if condition (4) holds for any pair of
different plant modes i, i′ ∈ N .
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The proof of Lemma 1 is omitted since it is just an
adaptation of well-known results about observability of
switching linear systems (Vidal et al., 2003; Babaali and
Pappas, 2005).

While the previous Lemma 1 provides an answer on the
binary question of whether or not the feedback system
(3) is mode observable, a measure of the degree of mode
observability of (3) can be obtained by analyzing the joint
observability Gramian

Wi,i′/j(t)
△
=

∫ t

0







(

Φcl
i/j(ξ)

)⊤

(

Φcl
i′/j(ξ)

)⊤







×
[

Φcl
i/j(ξ) Φcl

i′/j(ξ)
]

dξ . (5)

In fact, since

‖zi/j(·, t0, w0)− zi′/j(·, t0, w′
0)‖22,[t0,t]

=
[

w⊤
0 −w′

0
⊤
]

Wi,i′/j(t− t0)

[

w0

−w′
0

]

≥ λmin{Wi,i′/j(t− t0)}
(

|w0|2 + |w′
0|2

)

,

it can be seen that the greater is λmin{Wi,i′/j(t − t0)}
the more distinguishable are the two plant modes i and i′

under controller Cj . Then, a measure of the degree of mode
observability of (3) over an interval of length τ = t− t0 is
provided by

ωmin(τ) = min
i,i′,j∈N ; i6=i′

λmin{Wi,i′/j(τ)} . (6)

As will be clear in Section 4, such a mode-observability
index plays a crucial role in the presence of disturbances.

Consider now a left polynomial matrix fraction descrip-
tions (LPMFD) of the plant

Pσ(t) : y(t) = P−1
σ(t)(s)Qσ(t)(s)u(t) (7)

where, for each i ∈ N , Pi(s) and Qi(s) are left coprime
polynomial matrices of appropriate dimensions with

detPi(s) = det (sI −Ai) .

Here, equation (7) is intended as a shorthand notation to
mean that over each interval of time where σ(t) = i is
constant, y(t) is the output of a LTI system with transfer
matrix P−1

i (s)Qi(s) with the state at the beginning of this
interval being initialized according to (1).

Consider also a LPMFD of the controller

Cσ̂(t) : u(t) = R−1
σ̂(t)(s)Sσ̂(t)(s)y(t) (8)

where, for each j ∈ N , Rj(s) and Sj(s) are left coprime
polynomial matrices of appropriate dimensions with

detRj(s) = det (sI − Fj) .

Then, the following lemma can be stated that provides an
alternative condition for studying mode observability of
the feedback system (3).

Lemma 2. Two plant modes i, i′ ∈ N with i 6= i′ are
distinguishable if and only if, for any j ∈ N ,

rank

[

Pi (s) −Qi (s)
Pi′ (s) −Qi′ (s)

−Sj (s) Rj(s)

]

= nu + ny , ∀s ∈ C . (9)

Recalling that the characteristic polynomial ϕi/j(s) of the
the feedback system (Pi/Cj) is

ϕi/j(s) = det(sI −Acl
i/j) = det

[

Pi (s) −Qi (s)
−Sj (s) Rj(s)

]

the following result can be readily established.

Proposition 1. Consider two plant modes i, i′ ∈ N with
i 6= i′ . If, for any j ∈ N , the closed loop characteristic
polynomials ϕi/j(s) and ϕi′/j(s) are coprime, then i, i′ are
distinguishable.

In general, Proposition 1 provides only a sufficient condi-
tion for distinguishability, however in the case of a single-
input single-output (SISO) also necessity holds.

Proposition 2. Let the plant be SISO, i.e., nu = ny = 1.
Then, two plant modes i, i′ ∈ N with i 6= i′ are
distinguishable if and only if, for any j ∈ N , the closed
loop characteristic polynomials ϕi/j(s) and ϕi′/j(s) are
coprime.

Propositions 1 and 2 suggest that mode-observability of
the feedback system (3) can be guaranteed by designing
each controller Cj so that, for any pair i, i′ ∈ N with
i 6= i′, the closed loop polynomials ϕi/j(s) and ϕi′/j(s)
have no common roots.

3. CONSTRUCTING A STABILIZING CONTROLLER

In this section, it will be shown that stability of the
feedback system (3) can be achieved by means of a suitable
choice of the controller switching signal σ̂(t) . To this end,
it is supposed that the controllers Ci, i ∈ N are designed
so as to satisfy the following basic assumptions.

A1. For each index i ∈ N , the i-th tuned loop (Pi/Ci) is
asymptotically stable.

A2. The feedback system (3) is mode-observable.

The choice of the control action to use, among all the
available candidate controllers Ci, i ∈ N , is carried out in
real-time by a a data-driven high-level unit called mode
estimator. At each time t ∈ R+, the mode estimator
generates an estimate σ̂(t, z(·)) ∈ N of the current plant
mode on the basis of the plant input/output data z(·) up
to the current time t. Such an estimate is then used as the
controller switching signal, i.e.,

σ̂(t) = σ̂(t, z(·)) .
As to the generation of the estimates, it is supposed that
the mode estimator updates its estimate σ̂(t, z(·)) of the
plant mode σ(t) at discrete-time instants of the type kT
where k ∈ Z+ and T , a positive real, is the so called dwell
time. This amounts to assuming the controller switching

signal σ̂(t) to be constant over each interval Ik △
= [kT, (k+

1)T ), i.e.,
σ̂(t) = σ̂k , ∀t ∈ Ik .

In other words, the switching between controllers is or-
chestrated according to a DTSL.

3.1 A minimum-distance mode estimator

Thanks to the adoption of the DTSL, a simple criterion for
the determination of the estimate σ̂k can be devised. To
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this end, notice first that, whenever also the plant mode
takes on a constant value, say i, over Ik, the evolution of
the plant input/output data on Ik can be written as

z(t) = zi/σ̂k
(t, kT, w(kT )) , t ∈ Ik .

Thus the set Si/σ̂k
(Ik) of all the possible plant in-

put/output data over Ik associated with a plant mode
i and a controller mode σ̂k corresponds to the linear
subspace

Si/σ̂k
(Ik) △

=

{

ẑ ∈ L2(Ik) : ẑ(·) = zi/σ̂k
(·, kT, ŵ) on Ik ,

for some ŵ ∈ R
nx+nq

}

.

It is an easy matter to see that under mode observability
the following result holds.

Proposition 3. Under assumption A2, for any two different
plant modes i, i′ ∈ N and any controller mode σ̂k ∈ N ,
one has Si/σ̂k

(Ik) ∩ Si′/σ̂k
(Ik) = {0} .

In view of the above considerations, one can see that a
particularly convenient approach for estimating the plant
mode σ(·) on Ik consists in choosing the index i for which
the distance between the observed plant input/output data
z(·) on Ik and the linear subspace Si/σ̂k

(Ik) is minimal.
Then, at the generic time (k + 1)T the estimate σ̂k+1 can
be obtained according to the minimum-distance criterion

σ̂k+1 ∈ argmin
i∈N

δi/σ̂k
(z(·), Ik) (10)

where

δi/j(z(·), Ik)
△
= min

ŵ∈R
nx+nq

∥

∥z(·)− zi/j(·, kT, ŵ)
∥

∥

2,Ik
(11)

Notice that, being the pair (Acl
i/j , C

cl
i/j) completely observ-

able by hypothesis, the minimization in (11) yields

δi/j(z(·), Ik) =
(
∫

Ik

∣

∣

∣

∣

z(t)− Φcl
i/j(t− kT )

(

Wi/j(kT )
)−1

×
∫

Ik

(

Φcl
i/j(ξ − kT )

)⊤

z(ξ) dξ

∣

∣

∣

∣

2

dt

)1/2

.

The next lemma points out an important property of the
minimum-distance criterion (10).

Lemma 3. Suppose that assumption A2 holds, that
w(kT ) 6= 0 and the plant mode is constant on Ik, i.e.,

σ(t) = σk , ∀t ∈ Ik .
Then, if the minimum distance criterion (10) is used, one
has σ̂k+1 = σk.

Lemma 3 indicates that, under the stated assumptions, the
proposed minimum distance criterion always leads to the
exact reconstruction of the plant mode provided that no
switch occurs in the observation interval. In other words,
this implies that an identification error can be incurred
only in those intervals characterized by at least one plant
mode variation. As will be clarified in the next section,
such a property ensures stability of the overall control
scheme whenever the plant switching signal is sufficiently
slow (on the average).

3.2 Stability under an average dwell-time

Thanks to Lemma 3, it is possible to show that the
proposed control system with mode estimator yields an
exponentially stable closed-loop system provided that the
plant switching signal σ(t) is slow on the average, i.e., the
number of switches in any finite interval grows linearly
with the length of the interval, with sufficiently small
growth rate. In this respect, let Nσ(t, t0) be the number
of discontinuities of σ in the interval (t0, t), then the
following assumption is needed (Hespanha and Morse,
1999; Hespanha, 2004).

A3. There exist a positive real τD, called average dwell-
time, and a positive integer N0, called chatter bound,
such that

Nσ(t, t0) ≤ N0 +
t− t0
τD

for any t, t0 ∈ R+ with t > t0.

Note now that assumption A1 amounts to the existence of
two positive reals µ and λ such that

‖eAcl
i/it‖ ≤ µe−λt , ∀t ∈ R+ , ∀i ∈ N (12)

where ‖ · ‖ denotes the matrix norm induced by the
Euclidean vector norm | · |. Further, since the set N is
finite, one has

‖eAcl
i/jt‖ ≤ θeρt , ∀t ∈ R+ , ∀i, j ∈ N (13)

for some positive reals θ and ρ. The main stability result
of this section can now be stated.

Theorem 1. Suppose that assumptions A1-A3 holds, that
w(0) 6= 0 and let the minimum distance criterion (10)
be used. Then, the state transition matrix Φ(t, t0) of the
closed-loop system (Pσ(t)/Cσ̂(t)) can be upper bounded as

‖Φ(t, t0)‖ ≤ β e−α (t−t0) (14)

where

α= λ− [log µ+ 2 log θ + 2(λ+ ρ)T ] /τD

β =
(

µθ2e2(λ+ρ)T
)N0+1

.

The following corollary follows at once.

Corollary 1. Suppose that assumptions A1-A3 holds and
let the minimum distance criterion (10) be used. If the
average dwell-time τD is such that

τD > [log µ+ 2 log θ + 2(λ+ ρ)T ] /λ , (15)

then the closed-loop system (Pσ(t)/Cσ̂(t)) is exponentially
stable for any plant switching signal σ(·).

Clearly, the right-hand side of (15) represents the mini-
mum plant average-dwell time compatible with the sta-
bility of the closed-loop system. As it can be seen from
(15), such a lower bound can be reduced by decreasing
the switching logic dwell-time T or by making the tuned
loops (Pi/Ci), i ∈ N “more stable” by increasing the
convergence rate λ.
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Fig. 1. Time behavior of |w(t)|.
3.3 An example

In order to illustrate the effectiveness of the proposed
approach for adaptive stabilization of switching plants, let
us consider the two-tank system of (Blanchini et al., 2009)
which can be modelled as in (1) with N = 2 and

A1 = A2 =

[

−1 1
1 −1

]

, B1 =

[

1
0

]

, B2 =

[

0
−1

]

,

C1 = [0 1] , C2 = [1 0] .

It is supposed that for each plant mode a stabilizing
controller is available with transfer function C1(s) = (s +
0.1)/s and C2(s) = −C1(s), respectively. The resulting
closed-loop characteristic polynomials are

ϕ1/1(s) = ϕ2/2(s) = s3 + 2 s2 + s+ 0.1

ϕ1/2(s) = ϕ2/1(s) = s3 + 2 s2 − s− 0.1 .

Since ϕ1/1(s) and ϕ1/2(s) are coprime, mode-observability
of the feedback system holds (see Proposition 2). Thus,
provided that the plant variations are sufficiently slow-
on-the-average, Corollary 1 ensures exponential stability
when the controller switching is orchestrated according
to the minimum distance criterion (10). This was also
confirmed by means of numerical simulations. With this
respect, Figure 1 shows the time behavior of the norm
of the feedback system state w(t) when the plant mode
switches between 2 and 1 every 10 seconds (the dwell-
time was set equal to 0.1 seconds; the controller and plant
states were initialized to q(0) = 0 and x(0) = [100 0]⊤,
respectively).

4. STABILITY UNDER PERSISTENT
DISTURBANCES

In this section, the effects of persistent disturbances on the
stability of the proposed control scheme are analyzed. To
this end, suppose that the plant state and measurement
equations be affected by additive disturbances d(·) and
n(·), respectively, i.e.,

Pσ(t) :

{

ẋ(t) = Aσ(t) x(t) +Bσ(t) u(t) + d(t)
y(t) = Cσ(t) x(t) + n(t)

(16)

with d(t) ∈ R
nx and n(t) ∈ R

ny . Then, it is an easy matter
to verify that a state space representation of the closed-
loop system takes the form

(Pσ(t)/Cσ̂(t)) :
{

ẇ(t) = Acl
σ(t)/σ̂(t) w(t) +Bcl

σ(t)/σ̂(t) v(t)

z(t) = Ccl
σ(t)/σ̂(t) w(t) +Dcl

σ(t)/σ̂(t) v(t)

(17)

where v(t)
△
= [d(t)⊤ n(t)⊤]⊤ and

Bcl
i/j

△
=

[

I BiKj

0 Gj

]

, Dcl
i/j

△
=

[

0 Kj

0 I

]

, i, j ∈ N .

The main complication arising in this case concerns the
effects of the disturbances on the quality of the estimate
computed via the minimum distance criterion (10). In fact,
even supposing that the plant mode σ(t) takes a constant
value, say σk, on a certain interval Ik, the presence of
the disturbance v(t) prevents one from applying Lemma 3
given that neither the plant input/output data z(·) need to
belong to Sσk/σ̂k

(Ik) nor the distance δi/σ̂k
(z(·), Ik) needs

to take its minimum value for i = σk.

However, the mode observability property ensures that
an estimate σ̂k+1 computed as in (10) becomes reliable
provided that the input/output data z(·) contains a suffi-
cient level of excitement. To see this, let us introduce the
following definitions

κA
△
= max

i,j∈N
‖Acl

i/j‖ , κB
△
= max

i,j∈N
‖Bcl

i/j‖ ,

κC
△
= max

i,j∈N
‖Ccl

i/j‖ , κD
△
= max

i,j∈N
‖Dcl

i/j‖ .

Then, Lemma 3 can be replaced by the following.

Lemma 4. Suppose that assumption A2 holds and that
the plant mode is constant on Ik, i.e.,

σ(t) = σk , ∀t ∈ Ik . (18)

Then, if the minimum distance criterion (10) is applied to
the noisy feedback system (17), one has

σ̂k+1 = σk
provided that

|w(kT )| ≥ 2ψ(T ) ‖v(·)‖∞,Ik
√

ωmin(T )
(19)

where ωmin(T ) is the mode-observability index (6) and

ψ(T )
△
=

√
T

(

κB κC θ
eρ T − 1

ρ
+ κD

)

. (20)

Thus, under the stated assumptions and provided that the
initial state at the beginning of the observation interval
Ik is “far enough” from the origin, the minimum-distance
criterion (10) leads to the exact identification of the plant
mode even in the presence of disturbances. Further, it
can be seen that condition (19) becomes less stringent the
smaller are the disturbances and the greater is the mode-
observability index. This state of affairs can be understood
by recalling that under assumption (18), for any t ∈ Ik,
the input-output data z(t) can be decomposed as z(t) =
z(n)(t) + z(f)(t) where z(n)(t) is the natural response

z(n)(t) = Φcl
σk/σ̂k

(t−KT )w(kT )

and z(f)(t) is the forced response

z(f)(t) =

∫ t

kT

Φcl
σk/σ̂k

(t− τ)Bcl
σk/σ̂k

v(τ) dτ +Dcl
σk/σ̂k

v(t) .
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As pointed out in the previous sections, when mode
observability holds the plant mode can be reconstructed
by observing the natural response (in fact, when there
are no disturbances, z(t) = z(n)(t)). Then the main idea
behind Lemma 4 is that, when the forced response due
to the disturbances becomes “negligible” with respect to
the natural response (in the sense of condition (19)),
everything goes as in the noise-free case and the plant
mode can be uniquely determined. A formal proof of
Lemma 4 is given in the Appendix.

An important consequence of Lemma 4 is that, when the
disturbances are bounded in the L∞ sense, their effect on
the mode estimator disappears as soon as the system state
exceeds a certain threshold. In view of this result, it is
possible to show that the feedback control system (17) is
exponentially input-to-state stable. More specifically, the
following theorem can be stated.

Theorem 2. Suppose that assumptions A1-A3 holds and
let the minimum distance criterion (10) be used. If the
average dwell-time τD satisfies inequality (15), then the
noisy closed-loop system (17) is exponentially input-to-
state stable in that, for any t0, t ∈ R

+ with t ≥ t0 and for
any plant switching signal σ(·),

|w(t)| ≤ β e−α (t−t0) |w(t0)|+ γ ‖v(·)‖∞,[t0,t] (21)

with α and β the same as in Theorem 1 and

γ =
β

α

[

κB +
4 θ2 ψ(T )κA
√

ωmin(T )
e2 ρ T +

2 θ2 κA κB
ρ

(e2 ρ T − 1)

]

.

It is worth pointing out that Theorem 2 provides a
quite strong stability result in that inequality (21) holds
regardless of the magnitude of the disturbances v(·) and
of the initial state w(t0).

5. CONCLUSIONS

The problem of stabilizing a switching linear plant has
been addressed under the assumption that the plant
switching signal is not available, nor in real-time neither
with delay. The proposed methodology is based on a
supervisory unit that periodically switches the controller
operating mode. The controller switching signal is gen-
erated by resorting to a minimum distance criterion, for
the estimation of the plant mode, that naturally arises
from mode observability considerations. It has been shown
that, even in the presence of persistent disturbances, the
proposed control scheme yields a stable feedback system
provided that the plant switching signal is sufficiently slow
on the average.
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