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Abstract: In the studies on the localization of wireless sensor networks (WSN), it has been
shown that a network is in principle uniquely localizable if its underlying graph is globally rigid
and there are at least d+ 1 non-collinear anchors (in d-space). The high possibility of the loss
of nodes or links in a typical WSN, specially mobile WSNs where the localization often needs
to be repeated, enforces to not only have localizable network structures but also structures
which remain localizable after the loss of multiple nodes/links. The problem of characterizing
robustness against the loss of multiple nodes, which is more challenging than the problem of
multiple link loss, is being studied here for the first time, though there have been some results on
single node loss. We provide some sufficient properties for a network to be robustly localizable.
This enables us to answer the problem of how to make a given network robustly localizable. We
also derive a lower bound on the number of the links such a network should have. Elaborating
it to the case of robustness against the loss of up to 2 nodes, we propose the optimal network
structure, in terms of the required number of distance measurements.
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1. INTRODUCTION

Knowing the location of the nodes in a wireless sensor
network is critical, as in many applications, the interpreta-
tion of the data and decision making is impossible without
knowing the position of the detected event. The mobility or
unplanned deployment of the nodes in a WSN necessitates
a localization technique which can be frequently executed.
A variety of techniques are proposed in the literature.
Among them, there are schemes in which only a small
number of special nodes (called anchors) have their po-
sitions known a priori (Aspnes et al., 2006), sometimes
because they are GPS-equipped. Then by obtaining a set of
distance measurements between enough pairs of ordinary
nodes, an algorithm determines the node positions, using
the distances and anchor location data; the process is
called network localization.

There is a fundamental question in network localization
that need to be answered prior to the localization pro-
cess: what structure should a network have, in order to
be localizable? It is important to see beforehand if the
network is localizable, as it is a waste of effort to seek
to localize a network which is actually not localizable.
This question is answered in (Aspnes et al., 2006) with
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the help of recent results from graph theory including
the concept of Global Rigidity. It is proved there that a
network is uniquely localizable if and only if its underlying
graph is globally rigid and there are at least d+ 1 non-
collinear anchors in d-space (d ∈ {2, 3}). The underlying
graph G(V,E) of a network is the one in which there is a
vertex corresponding to each network node in the vertex
set V and two vertices are connected via an edge in the
edge set E if the distance between the corresponding nodes
is known (Note that in modeling a network, the graph
itself does not contain the length data). A realization
of a graph with associated length data is an assignment
of the vertices of the graphs to points in R

d such that the
distance between points corresponding to adjacent vertices
in the graph equals the distance associated with the corre-
sponding edge of the graph. A graph is called globally rigid
if all of its realizations in the d-space are congruent, i.e.
can be obtained from another realization of the graph only
by a combination of reflections, rotations and translations
of the whole graph. It is a nontrivial result of the theory
that global rigidity is a property determinable from the
graph alone (i.e. without the distance set) provided that
the distances correspond to generic node positions (e.g.
collinearities are likely to be excluded).

One of the most challenging issues in sensor networks is
the high possibility of failures either in communication
links or sensor nodes themselves, due to different causes,
e.g. signal jamming, obstacle, power depletion, mechanical
failure, etc. This may result in changes to the structure
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of the network (and also in the underlying graph). In
other words, such failures may cause a previously uniquely
localizable network to become non-localizable; in a mobile
network where re-localization must occur due to the mo-
tion, this is especially serious. It is obvious that coping
with a single node loss is more demanding than a single
link loss as removal of any node also results in the removal
of all of its incident links. The solution to the problem of
securing tolerance against node loss is to introduce some
sort of redundancy in the distance measurements (links),
i.e. having network structures which are robust against the
loss of some nodes and/or communication links. Despite
the importance of this robustness property, only those
structures which are robust against the loss of a single
node appear to have been studied up to now (Summers
et al., 2008). In (Yu and Anderson, 2008) some general
properties of rigid (a simpler property than global rigidity)
which remain rigid after the loss of nodes/links are studied.
This work is extended further in (Yu et al., 2010) for
sensor network localization, concerning both node loss and
link loss tolerance. The authors generalized the notion of
redundant rigidity to (p, q)-rigidity: the ability to retain
(global) rigidity given the loss of any p− 1 nodes (in-
cluding their incident links) and also any further q − 1
links. However, they only established properties associated
with redundancy (robustness) under the loss of any q − 1
links ((1, q)-rigidity). As is argued in (Yu et al., 2010),
characterizing (p, 1)-rigidity (redundancy under loss of any
p− 1 vertices) and (p, q)-rigidity are still open problems.

In this paper, the problem of robust localizability against
the loss of multiple nodes in 2D is being studied for
the first time, through proposing structures for underlying
graph which remain globally rigid after the loss of p
vertices. We also argue briefly in Section 3.1 that for
networks defined by random geometric graphs (a common
assumption for large scale sensor networks), formulae
are available indicating a minimal transmission radius
ensuring the robust localizability property. To elaborate
on how the obtained results can be used, we study the
case where p = 2 and suggest a class of graphs which are
robust under the loss of up to 2 vertices. Such graphs are,
as we show in the paper, optimal in terms of the number
of distance measurements they requires. This is a starting
point for further studies of such structures for general p.

In this work, we always assume the ambient space to be
2D, unless explicitly noticed. We also assume that there
are p+ 3 anchors in the network so that after removing
any p nodes there are still 3 anchors in the network.
The structure of the paper is as follows. In Section 2,
the required background is reviewed. Section 3 contains
the main contribution of the paper. Finally, concluding
remarks are made in Section 4.

2. BACKGROUND

In this section we recall some definitions and properties of
(minimal) rigidity, redundant rigidity and global rigidity
and followed by the general notion of redundant rigidity.
For a formal definition and detailed introduction to rigidity
and global rigidity please refer to (Graver et al., 1993;
Connelly, 2005).

a b c

Fig. 1. (originally from (Yu and Anderson, 2009)) Realiza-
tion of a graph in 2D that is (a) non-rigid, (b) min-
imally rigid and (c) redundantly rigid (also globally
rigid).

2.1 Rigidity, Minimal Rigidity and Redundant Rigidity

Assume in a realization of an underlying graph in an
ambient space (2D or 3D), each point is a revolute joint
and each edge is a solid bar with an specified length. This
framework (a term commonly used in rigidity theory), and
therefore the underlying graph, is called rigid, if under any
motion of the framework in the space, the distance between
each pair of points remains constant over time, no matter
whether there is or is not an explicit edge connecting them
(see (Graver et al., 1993) for a more precise definition).
The extension of the term rigid to refer to the graph is
valid since it can be shown that if a realization of a graph
is rigid for one set of length, a realization for almost any
length set will also be rigid. A graph is minimally rigid if
it is rigid and removing any one of the edges results in a
nonrigid graph (Figure 1b). In (Laman, 1970), it is proved
that every rigid graph contains a minimally rigid subgraph
with the same vertex set. A graph is termed redundantly
rigid, if it is rigid and after removal of any edge, it still
remains rigid (Figure 1c).

2.2 Global Rigidity

A graph is termed globally rigid, if any two of its real-
izations in the space are congruent , i.e. each realization
can be obtained from any other realization only by a
combination of reflections, translations and/or rotations
of the whole graph (Figure 1c). The following theorem
from (Jackson and Jordan, 2005) gives a characterization
of globally rigid graphs in 2D.

Theorem 1. The graph G = (V,E) with |V | ≥ 4 is globally
rigid, if and only if it is 3-connected and redundantly rigid.

A graph is said to be k-connected if it is connected and
after removal of any set of up to k − 1 vertices, it still
remains connected, see (Nagamochi and Ibaraki, 2008).

2.3 Generalizing Redundant (Global) Rigidity

The notion of redundant rigidity can be generalized to the
loss of k edges and/or k vertices (Yu and Anderson, 2009).
A graph is termed k-edge rigid if after deletion of any set
of up to k − 1 edges, a rigid graph always results. With
the same notion a graph is k-vertex rigid if after deletion
of any set of up to k − 1 vertices, the resulting graph is
still rigid. Similarly, a graph is called k-edge (k-vertex)
globally rigid if after deletion of any set of up to k − 1
edges (vertices), a globally rigid graph always results (Yu
et al., 2010). The focus of this work is on k-vertex global
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rigidity. In this paper, to avoid near trivialities and because
the case is actually special in terms of the probable results,
we assume that G = (V,E) is not a complete graph (there
is an edge between every vertex pair) as it is obvious that
the complete graph Kl is (l − 2)-vertex globally rigid and
measuring the distances between all pairs of the vertices in
the graph (which resulted in a complete underlying graph)
is inefficient in practice.

Let us record a few properties of k-vertex globally rigid
graphs. Lemma 2 is similar to Corollary 2 in (Yu and
Anderson, 2009), but considers k-vertex global rigidity
instead of k-vertex rigidity.

Lemma 2. If G = (V,E) is k-vertex globally rigid, then it
is (k + 2)-connected. Also, each vertex v ∈ V has degree
at least k+2 (δG(v) ≥ k+2, where δG(v) is the degree of
vertex v) and the number of vertices satisfies the inequality
|V | ≥ k + 3.

Proof. To prove (k+ 2)-connectivity by obtaining a con-
tradiction, suppose G is not (k+2)-connected. Then there
exists a cut set, say S, where |S| ≤ k + 1. It is obvious
(from the definition) that if |V | < k− 1 then G cannot be
k-vertex globally rigid. Now let U ⊂ S be any arbitrary set
of vertices with the condition that |U | = k− 1. According
to the definition of k-vertex global rigidity, G\U is still
globally rigid. However, T = S\U is a cut-set in G\U and
has T = |S\U | ≤ 2 vertices. This means that G\U is not
3-connected and therefore G\U is not globally rigid. This
contradiction implies that G is (k + 2)-connected.

The (k + 2)-connectivity implies δG(v) ≥ k + 2 for any
v ∈ V . Otherwise, there is a set U of up to k + 1
vertices (the neighbors of a vertex v with δG(v) ≤ k + 1)
whose removal makes the graph disconnected. It follows
that|V | ≥ k + 3 holds as there should be at least k + 3
vertices in V so that every vertex has a degree of at least
k + 2. �

A graph is called minimally k-vertex globally rigid, if it
is k-vertex globally rigid but after removing any one of
the edges the resulting graph is no longer k-vertex globally
rigid. It is not hard to argue that (a) k-vertex globally rigid
graphs exists for any positive k (we present a particular
construction in section 3.2 below) and (b) given any k-
vertex globally rigid graph, a subgraph can be obtained
by edge removal which is minimally k-vertex globally rigid.
Thus the concept is not an empty one.

In (Jordan and Szabadka, 2009) it is shown that there is
an operation, called 1-extension (or edge-splitting), which
can grow any globally rigid graph by 1 vertex in 2D. In this
operation, an edge (u, v) ∈ E is removed from E and a new
vertex z, is connected to both u and v and an arbitrary
third vertex w ∈ V, w /∈ {u, v}.

Based on Theorem 1.2 in (Jordan and Szabadka, 2009),
the number of edges in a minimally globally rigid graph
(the graph G = (V,E) which is globally rigid and ∀e ∈ E
G′ = (V,E − e) is not globally rigid) is:

Lemma 3. If G = (V,E) is a minimally globally rigid
graph on |V | ≥ 4 vertices, then |E| = 2 |V | − 2 always
holds.

In the case of standard global rigidity, the definition of
minimal global rigidity is proved (Theorem 1.2 (Jordan

(a) (b)

Fig. 2. (originally from (Servatius, 1989)) Examples of the
2 possible partition of edge set for strongly minimal
2-vertex rigid graphs: (a) the degree 3 vertices are
adjacent, (b) the degree 3 vertices are non-adjacent

and Szabadka, 2009)) to be equivalent to an alternative
statement: a rigid graph is called minimally globally rigid if
it has theminimum number of possible edges (|E| = 2 |V |−
2) among all globally rigid graphs with the same number
of vertices. For k-vertex global rigidity, these two notions
are no longer equivalent; there are some graphs which are
minimally 2-vertex globally rigid but the number of edges
is not the minimum possible among such graphs with the
same vertex count. This property leads us to two different
notions: strongly minimal and weakly minimal k-vertex
global rigidity (this notion is adapted from the notion
of strongly/weakly minimal 2-vertex rigidity in (Summers
et al., 2008)).

• A k-vertex globally rigid graph is said to be strongly
minimal if it has the minimum possible number
of edges (over all k-vertex minimally globally rigid
graphs) on a given number of vertices.

• A k-vertex globally rigid graph is said to be weakly
minimal if it has more than the minimum possible
number of edges on a given number of vertices, but
has the property that removing any edge destroys k-
vertex global rigidity.

The following results of (Servatius, 1989) characterized
the structure of strongly minimal 2-vertex rigid graphs
for the first time. Due to their relevance and later use,
we restate them here. Figure 2, illustrates examples of
strongly minimal 2-vertex rigid graphs with each of the
two possible types.

Lemma 4. (Lemma 1 of (Summers et al., 2008)) If G =
(V,E) is a 2-vertex rigid graph on 5 or more vertices, then
|E| ≥ 2 |V | − 1.

Theorem 5. (Proposition 1 of (Servatius, 1989)) Let G =
(V,E) be a strongly minimal 2-vertex rigid graph on 5 or
more vertices. Then G has exactly 3 vertices with degree
3 and the remaining vertices have degree 4, which implies
|E| = 2 |V | − 1.

Theorem 6. (Theorem 3.1 of (Servatius, 1989)) A graph
G = (V,E) with |V | ≥ 5 is strongly minimal 2-vertex rigid
if and only if G has exactly two vertices of degree 3 and
there is a partition of the edge set E

E = E1 ∪ E2 ∪ ... ∪ Ek

such that the graph induced by E\Ei is minimally re-
dundantly rigid (i.e. the removal of any edge destroys
redundant rigidity) for all i, and either

• E1 and E2 are the edges incident to the two non-
adjacent vertices of degree 3, respectively, and Ei is
a single edge for 3 ≤ i ≤ k , or

• E1 is the union of the edges incident to the two
adjacent vertices of degree 3, and Ei is a single edge
for 2 ≤ i ≤ k.
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Fig. 3. A Strongly Minimal 2-Vertex Globally Rigid graph
of size 10 (C2

10).

The following theorem from (Summers et al., 2008) char-
acterizes strongly minimal 2-vertex globally rigid graphs
(Figure 3).

Theorem 7. (Theorem 10 in (Summers et al., 2008)) The
graph G = (V,E) of 5 or more vertices is strongly
minimal 2-vertex globally rigid if and only if the following
conditions hold:

• |E| = 2 |V |
• G is 4-connected
• G is redundantly strongly minimal 2-vertex rigid

A redundantly strongly minimal 2-vertex rigid graph is one
in which after removal of any edge, the result is strongly
minimal 2-vertex rigid. Such a graph is obtained and can
only be attained by joining the vertices of degree 3 in a
strongly minimal 2-vertex rigid graph whose vertices of
degree 3 are not adjacent. Figure 2 depicts examples of 2
possible configurations for strongly minimal 2-vertex rigid
graphs. If in Figure 2(b), we connect the vertices of degree
3 (which are not adjacent), the result is a redundantly
strongly minimal 2-vertex rigid graph.

3. RESULTS

In this section we start by studying some sufficient con-
ditions for k-vertex global rigidity (Section 3.1). This will
enable us to propose localizable structures which are ro-
bust against the loss of up to k − 1 vertices. Then, from
a different perspective, the structure of k-vertex globally
rigid graphs is studied and some necessary conditions are
obtained (Section 3.2). To elaborate this result, the case
of 3-vertex global rigidity is considered in more detail and
a general class of structures which are strongly minimal 3-
vertex globally rigid are introduced (Section 3.3). We con-
clude this section by comparing these results on strongly
minimal 3-vertex global rigidity and the result that can be
obtained by the sufficient condition in Section 3.1.

3.1 Sufficient Condition for k-Vertex Global Rigidity

The notion of k-connectivity has been well studied in the
literature and there are efficient algorithms to check this
property on a given graph (Nagamochi and Ibaraki, 2008).
The idea here is to identify a (k+j)-connectivity condition
which is sufficient to ensures k-vertex global rigidity. It
is proved in (Lovasz and Yemini, 1982) that in 2D, 6-
connectivity implies rigidity and 6 is the least possible
number for this condition (k-connectivity with k < 6 is
not sufficient for rigidity). Recent extension to this work
(Jackson and Jordán, 2009) showed the sufficiency of this
condition for global rigidity as well.

Theorem 8. (restatement of Theorem 1.2 in (Jackson and
Jordán, 2009)) Suppose G = (V,E) is a 6-connected graph

in 2D. Then it is 2-edge globally rigid (removing any edge
results in a globally rigid graph).

We can extend this result to the case of k-vertex global
rigidity, as the following theorem shows:

Theorem 9. Assume that G = (V,E) is a (k+5)-connected
graph. Then G is k-vertex globally rigid.

Proof. Let U ⊂ V be any set of vertices with |U | = k−1.
Since G is (k+5)-connected, it is obvious that G′ = G\U is
6-connected (k+5− (k−1) = 6). Therefore, G′ is globally
rigid. Since U was chosen arbitrarily, we conclude that G
is k-vertex globally rigid. �

This result is very important as it reduces the more
complicated and unfamiliar property of k-vertex global
rigidity to a well-known and easier to study property of
(k + 5)-connectivity. Specifically for large-scale random
wireless networks (where the nodes are assumed to be
Poisson distributed with a certain density, and they have
common transmission range), it is shown in (Wan and Yi,
2004) that asymptotically, i.e. as the node count tends to
infinity, there is a relation between the transmission range
and a k-connectivity property (for any k) of a wireless
sensor network, i.e. by increasing the transmission power of
the nodes in a random network above an specific threshold,
the network becomes k-connected (The threshold is NOT
of the same order as the diameter of the network, a
situation which trivially would ensure k-connectivity).
This idea tied to Theorem 9 answers the question of ”given
a wireless sensor network, how can we make it robustly
localizable?”:

Theorem 10. Assume a network of wireless sensor nodes.
As the node count tends to infinity, there exists a critical
transmission radius (NOT of the order of the network
diameter), say r, such that by increasing the transmission
range of every node above it, the network becomes k-vertex
globally rigid (robustly localizable against the loss of up
to k − 1 vertices).

Finding the value of r for various k is beyond the scope of
this paper.

3.2 Necessary Condition for k-Vertex Global Rigidity

In this subsection a necessary condition on k-vertex glob-
ally rigid graphs is provided which is a lower bound on
the number of edges these graphs have. A prerequisite of
the main theorem is to show that for fixed k, there always
exists a k-vertex globally rigid graph of arbitrary size in
which the number of edges depends linearly on the number
of vertices.

Theorem 11. For ambient space dimension of d = 2 and 3,
there exists a k-vertex globally rigid graph G = (V,E)
with |V | ≥ k + 3 and otherwise arbitrary, for which
|E| = a |V | + b holds, for some a and b dependent on k
and d but independent of |V |.

Proof. The proof is by constructing a k-vertex globally
rigid graph which satisfies the conditions of the theorem.
First, observe that a complete graph Kk+d+1 is k-vertex
globally rigid. The number of edges in Kk+d+1 is m =

|V (Kk+d+1)| =
(k+d)(k+d+1)

2 . Suppose G1 = (V1, E1) and
G2 = (V2, E2) are two Kk+d+1 graphs. It is easy to show
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that by adding a set L of k+ d+ 1 edges between G1 and
G2, such that every vertex in G1 is connected to exactly 1
vertex in G2 and conversely, G = (V1 ∪ V2, E1 ∪E2 ∪L) is
also k-vertex globally rigid.

More generally, to construct a k-vertex globally rigid graph
G = (V,E) on n = |V | vertices imagine a series of Kk+d+1

graphs {Gi = (Vi, Ei)}i=1..(p−1) in which Gi is connected

to Gi+1 by k + d + 1 edges, say Li. Here, p =
⌊

n
m

⌋

+ 1
and |V (Gp)| = n − pm ≤ m. For Gp, which may have
fewer than k + d + 1 vertices, connect every vertex to all
vertices of Gp−1 (by k+d+1 edges), which constitute the
set Lp−1 of edges between Gp−1 and Gp. It is easy to show
that G = (V,E) = (V1∪...∪Vp, E1∪...∪Ep∪L1∪...∪Lp−1)
is k-vertex globally rigid. Hence, the inequality |E| ≤ (p−
1)m+(p−1)(k+d+1)+(k+d+1)m holds. With k fixed,
O(|E|) = O(pm) = O(n) holds, i.e. the number of edges is
linear with respect to the number of vertices. �

Theorem 12. In a strongly minimal k-vertex globally rigid
graph the edge count is under-bounded by the formula
|E| ≥

⌈

k+2
2 |V |

⌉

+ c(k), where c(k) is an integer (c is
independent of |V | but depends on k) and if the equality
holds (i.e.|E| =

⌈

k+2
2 |V |

⌉

+ c(k)), then c(k) ≥ 0.

Proof. Assume that G = (V,E) is a strongly minimal k-
vertex globally rigid graph of |V | ≥ k + 3 vertices, whose
number of vertices is |E| = a |V |+ c(k) (according to The-
orem 11 such a graph exists), where c(k) is independent of
|V |. According to Lemma 2, δi ≥ k + 2 holds. Therefore,
the average degree in G is δavg ≥ k + 2. On the other

hand, δavg = 2|E|
|V | = 2a + 2c(k)

|V | . Hence, 2a + 2c(k)
|V | ≥ k +

2 ⇒ k ≤ 2(a− 1) + 2c(k)
|V | .

Since the property must hold for graphs of arbitrary size
and in particular arbitrarily large |V |, assuming |V | >
2(c(k), we will have k ≤ 2(a− 1) or a ≥ k

2 + 1. Therefore,

|E| ≥
⌈

(k2 + 1) |V |
⌉

+ c(k) holds for |V | > 2c(k).

Now suppose that for some |V | the equality holds (i.e.
|E| =

⌈

k+2
2 |V |

⌉

+ c(k)). We prove that for such a strongly
minimal k-vertex globally rigid graph c(k) ≥ 0 always
holds.

First suppose k is even. Then, we will have δavg = k+2+
2c(k)
|V | ≥ k + 2, which implies c(k) ≥ 0.

If k is odd, then |E| = k+1
2 |V |+

⌈

|V |
2

⌉

+ c(k) which gives

|E| < k+1
2 |V |+ c(k) + |V |

2 + 1. Therefore, δavg < k + 1 +
2c(k)
|V | +1+ 2

|V | holds. This implies k+2 < k+2+ 2c(k)
|V | + 2

|V |

which gives −1 < c(k) and so c(k) ≥ 0 holds. �

Note that the underbound of Theorem 12 is achieved for
k = 2, see Theorem 7. Below, we show it is also achievable
for k = 3.

3.3 Strongly Minimal 3-vertex Global Rigidity in 2D

In this section we provide a class of graphs that are
strongly minimal 3-vertex globally rigid. According to
the important result of Theorem 12, for the case of 3-
vertex global rigidity, the number of edges must satisfy
the inequality |E| ≥

⌈

5
2 |V |

⌉

+ c. In order to characterize
a strongly minimal 3-vertex globally rigid graphs, we

v

s
1

s
2

s
4

s
3

s
n+1

a b

Fig. 4. (a) A Strongly Minimal 3-Vertex Globally Rigid
graph of size 10 (R10). (b) A Strongly Minimal 3-
vertex globally rigid graph of size 11 (R11).

conjecture that the number of edges has the form |E| =
⌈

5
2 |V |

⌉

+ c and then try to find a suitable value for c. We
also assume that the number of vertices is at least 6. Since
we are seeking graphs with a minimum number of edges,
it is reasonable to keep c at its minimum (0) and try to
find a graph which has the desired property.

If |V | is even, i.e. |V | = 2n, the equation implies |E| =
5
2 |V | and δavg = 5. According to Lemma 2, δ(v) ≥ 5.
Therefore, the graph we are seeking, is 5-regular, i.e. every
vertex has degree 5. Fortunately, there is a class of graphs
with these conditions that are 3-vertex globally rigid. An
example of such a graph with |V | = 10 is shown in Figure
4a, and the structure carries over in an obvious way to
graphs with 2n vertices for n ≥ 3. The structure of such a
graph, call it R2n, is as follows:

The graph is formed from a C2n cycle [s1, s2, ....s2n], to
which are added the edges s1s3, s2s4, s3s5, .....s2n−1s1, s2ns2
(forming 2 cycles of size n denoted by C

(1)
n and C

(2)
n , re-

spectively) and the edge set D of edges sisi+n, i = 1..n

(called diagonals). Note that the cycles C
(1)
n and C

(2)
n are

disjoint.

It needs to be proved that the proposed graph is 3-vertex
globally rigid. The proof has two steps: first, showing the
graph is 5-connected, and second, after removal of any 2
vertices, showing the result is redundantly rigid. Proofs
are omitted due to space limitation.

Theorem 13. The graph R2n on 6 or more vertices, de-
picted in Figure 4a, is 5-connected.

Theorem 14. The graph R2n on 6 or more vertices, is 3-
vertex globally rigid.

To obtain a class of strongly minimal 3-vertex globally
rigid with an odd number of vertices, i.e. |V | = 2n+1, we
define an operation, termed 2-extension, over R2n graphs
to increase |V | by 1. We show that this operation preserves
3-vertex global rigidity. The sketch of 2-extension is as
follows:

Assume vertices si, i = 1..4 to be 4 consecutive vertices
in the C2n cycle as depicted in Figure 4b. The diagonal
neighbor of s1 is called sn+1. The operation consists of
adding a new vertex, say v, connecting it to si, i =
1..4, (n+ 1) and removing (s1, s4) and (s2, s3).

Let R2n+1 be the graph obtained from R2n by ap-
plying the 2-extension operation (Figure 4b). Evidently,
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|E(R2n+1)| = |E(R2n)| + 3 = 5
2 (2n) + 3 = 5

2 (2n + 1) + 1
2

holds which is consistent with the edge count condition
(|E(R2n+1)| =

⌈

5
2 |V (R2n+1)|

⌉

= 5
2 (|V (R2n+1)| − 1) + 1

2 ).
Hence, R2n+1 has the minimum number of edges and by
proving that R2n+1 is 3-vertex globally rigid, it follows
that it is strongly minimal 3-vertex globally rigid.

Theorem 15. The 2-extension operation applied to R2n

preserves 3-vertex global rigidity.

Proof. The proof is similar to the proof of Theorem
14. The method is to consider all possible choices of U ,
U ∈ V (R2n+1) and |U | = 2, and show that R2n+1\U
is globally rigid. We omit the proof due to the space
limitation. �

3.4 Comparison of Results

Table 1 shows the result of comparing the structures
suggested for 3-vertex globally rigid graphs in Section 3.1
(8-connected) and Section 3.2 (strongly minimal). It is
easy to see that the strongly minimal 3-vertex globally
rigid structure is at least 8n−5n

8n = 3
8 = 37.5% more

efficient to localize the network (in terms of the minimum
number of required distance measurements to achieve
the specified tolerance to vertex loss), than the structure
suggested based on connectivity. Of course, there will be
other redundancies in the larger network which are not
present in the strongly minimal network.

Table 1. Comparison of the minimum number
of required distance measurements for the sug-

gested structures with n vertices

Structure Min # of Dist. Measurements

8-Connectivity 8n
S.M. 3-V-G Rigid 5n

4. CONCLUSION

In this paper we studied the structure of localizable sensor
networks which are tolerant against the loss of multiple
nodes (the network remains localizable after the loss of
multiple nodes). This is done by introducing the notion
of k-vertex globally rigid graphs in which after removal
of any set of up to k − 1 vertices, the resulting network
still remains globally rigid (localizable). For 2D networks,
we showed that a graph is k-vertex globally rigid if it is
(k + 5)-connected. For networks modeled by a random
geometric graph, this reduction may enable us propose a
critical transmission radius r for the nodes, above which
the network becomes k-vertex globally rigid. Furthermore,
By providing a lower bound on the edge count of k-vertex
globally rigid graph in terms of the vertex count, we also
proposed a class of 3-vertex globally rigid graphs with
minimum edge count. Comparisons showed a considerable
improvement achieved by this class over the 8-connectivity
condition, in terms of the required number of distance
measurements. This suggests that, there is certainly a
benefit in studying the structure of strongly minimal
networks for a given k (and for k > 3 this remains to
be done). Indeed, the full characterization of (strongly
minimal) k-vertex globally rigid graphs in addition to
efficient algorithms to test this property on a given graph
are still open problems that constitute our future work.
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