
Dynamic Lyapunov Functions

M. Sassano
∗ and A. Astolfi

∗,∗∗

∗ Department of Electrical and Electronic Engineering,
Imperial College London, London SW7 2AZ, UK

∗∗ Dipartimento di Informatica, Sistemi e Produzione,
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Abstract: Lyapunov functions are a fundamental tool to investigate the stability properties
of equilibrium points in linear or nonlinear systems. Unfortunately, even if the existence of
Lyapunov functions for asymptotically stable equilibrium points is guaranteed by converse
Lyapunov theorems, the actual computation of the analytic expression of the function may be
difficult or impossible. Herein we propose an approach to avoid the issue of finding an explicit
solution of the Lyapunov partial differential inequality, providing a family of Lyapunov functions
for linear and nonlinear systems.
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1. INTRODUCTION

Stability analysis of equilibrium points, usually charac-
terized in the sense of Lyapunov, see Lyapunov (1992),
is a fundamental issue in systems and control theory.
Lyapunov’s theory provides a tool to assess (asymptotic)
stability of equilibrium points of linear and nonlinear sys-
tems. In particular, it is well-known, see e.g. Bacciotti
(1992) and Khalil (2001), that the existence of a scalar
positive definite function, the time derivative of which
along the trajectories of the system is negative definite,
is a sufficient condition to guarantee asymptotic stability
of an equilibrium point. Moreover, several theorems, the
so-called converse Lyapunov theorems, implying at least
conceptually the existence of a strict Lyapunov function
defined in a neighborhood of an asymptotically stable
equilibrium point, have been established, see e.g. La Salle
(1976), Khalil (2001) and Lin et al. (1996).

In recent years the development of control techniques
requiring the explicit knowledge of a Lyapunov function,
such as backstepping and control Lyapunov functions, see
e.g. Isidori (1995) and Sontag (1989) respectively, have
conferred a crucial role to the issue of computation of Lya-
punov functions. Finally, Lyapunov functions are useful
to characterize and to estimate the region of attraction of
equilibrium points, see for instance Chiang et al. (1988)
and Vannelli and Vidyasagar (1985), where the notion of
Maximal Lyapunov function is introduced. However, even
if the existence of strict Lyapunov functions for asymptot-
ically stable equilibrium points is guaranteed by converse
Lyapunov theorems, the actual computation of the analytic
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expression of the function may be difficult or impossible.
From a practical point of view this is the main drawback
of Lyapunov methods Bacciotti and Rosier (2005). An
alternative approach consists in determining, if it exists, a
weak Lyapunov function, i.e. the time derivative of which
is only negative semi-definite along the trajectories of the
system, and then prove asymptotic stability by means of
Invariance Principle arguments.

Exploiting the approach developed in Sassano and As-
tolfi (2010a) and Sassano and Astolfi (2010b), the main
contribution of this article consists in the definition of a
methodology to construct families of Lyapunov functions
for linear and nonlinear systems by means of a dynamic
extension to the state of the system. To begin with a
Lyapunov function is defined for the augmented system
and then an invariant submanifold in the extended state-
space is determined such that the restriction of the flow
of the augmented system to the manifold is a copy of
the flow of the original nonlinear system. Finally, it is
shown that the explicit solution of the partial differential
equation that guarantees invariance of the submanifold
can be avoided and an approximate solution is sufficient
to determine the family of Lyapunov functions.

The rest of the article is organized as follows. In Section 2
the proposed methodology to construct Lyapunov func-
tions via dynamic extension is introduced for linear time-
invariant systems. The extension to nonlinear systems is
the topic of Section 3. In the same section, it is shown that
the explicit solution of the partial differential equation
arising in the invariance condition can be avoided. The
paper is concluded with a numerical example and some
comments in Sections 4 and 5, respectively.
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2. LINEAR SYSTEMS

Consider a linear, time-invariant, autonomous system de-
scribed by equations of the form

ẋ = Ax , (1)

with x(t) ∈ R
n and A ∈ R

n×n. Suppose that there exists
a row-vector defined as xTP , with P = PT > 0 such that

1

2
xTPAx+

1

2
xTATPx = −xTQx , (2)

for some given Q = QT > 0 and for all x ∈ R
n.

To present the main ideas of the proposed approach
suppose that, instead of integrating the mapping xTP
obtaining the quadratic function

V (x) =
1

2
xTPx =

∫ x

0

ζTPdζ , (3)

we exploit the mapping P (x) = xTP to construct an
extended function, namely considering the immersion of
the system (1) into an augmented linear system defined
on an extended state-space. To be more precise, let

V (x, ξ) =

∫ ξ

0

xTPdξ +
1

2
‖x− ξ‖2R , (4)

where ξ(t) ∈ R
n and R = RT > 0. Note that ‖v‖2R denotes

the Euclidean norm of the vector v weighed by the matrix
R, i.e. ‖v‖2R = vTRv. A Schur complement argument
shows that the function V (x, ξ) is globally positive definite
for all the matrices R ≥ R̄ = 1

2
P . Consider now the

augmented linear system described by

ẋ = Ax ,

ξ̇ = Fξ +Gx ,
(5)

with F and G to be determined, and the problem of
studying the stability property of the origin using the
function V (x, ξ), defined in (4), as a candidate Lyapunov
function. To begin with note that the partial derivatives
of the function V are given by

Vx = xTP + (x− ξ)T (R− P ) ,

Vξ = xTP − (x− ξ)TR .
(6)

Therefore, the time derivative of the function V along the
trajectories of the augmented system (5) is V̇ = VxAx +
Vξ(Fξ +Gx). Setting

F = −kR , (7)

G = k(R− P ) , (8)

k > 0, yields ξ̇ = −kV T
ξ . Consequently,

V̇ (x, ξ) = xTPAx+ xTAT (R− P )(x− ξ)

− k(xTP − (x− ξ)TR)(Px−R(x− ξ))

= −xTQx+ xTAT (R− P )(x− ξ)

− k(xTP − (x− ξ)TR)(Px−R(x− ξ))

= −xTQx+ xTAT (R− P )(x− ξ)

− k[xT (x− ξ)T ]CTC[xT (x− ξ)T ]T ,

(9)

with C = [P −R], where the second equality is obtained
using the condition (2). Note that the time derivative (9)
can be rewritten as a quadratic form in x and (x− ξ), i.e.

V̇ (x, ξ) = −[xT (x− ξ)T ][M + kCTC][xT (x− ξ)T ]T ,

where the matrix M is defined as

M =







Q −
1

2
AT (R− P )

−
1

2
(R− P )A 0n






.

Before stating the main result of this section – providing
conditions on the choice of the matrix R such that the
function V defined in (4) is indeed a Lyapunov function
for the system (5) – we recall the following preliminary
lemma.

Lemma 1. Anstreicher and Wright (2000) Let M be an
n × n symmetric matrix and C an m × n matrix of rank
m, where m < n. Let Z denote a basis for the null space
of C.

(i) If ZTMZ is positive semidefinite and singular, then
there exists a finite k̄ ≥ 0 such that M + kCTC
is positive semidefinite for all k ≥ k̄, if and only if
Ker(ZTMZ) = Ker(MZ). In this case, M + kCTC
is singular for all k.

(ii) ZTMZ is positive definite if and only if there exists a
finite k̄ ≥ 0 such that M + kCTC is positive definite
for all k ≥ k̄.

Proposition 1. There exists a k̄ such that the function
V (x, ξ), defined in (4), is positive definite and its time
derivative along the trajectories of the system (5) is
negative definite for all k ≥ k̄ if

σ(R) >
1

2
σ̄(P )

[

σ̄(PA)

σ(Q)

]

, (10)

where σ(B) (σ̄(B), resp.) denotes the minimum (maxi-
mum, resp.) singular value of the matrix B.

⋄

In other words, the positive definite scalar function V (x, ξ)
is indeed a Lyapunov function for the system (5), with F
and G as in (7) and (8) respectively, i.e.

ẋ = Ax ,

ξ̇ = −kRξ + k(R− P )x ,
(11)

provided k ≥ k̄, proving asymptotic stability of the origin
in the extended state-space.

2.1 Invariant Subspace

The result in Proposition 1 can be exploited to construct
a Lyapunov function for the linear system (1). Suppose
that there exists a linear subspace L parameterized in x,
i.e. L = {(x, ξ) ∈ R

2n : ξ = Y x} where Y ∈ R
n×n is a

non-singular matrix, which is invariant with respect to the
dynamics of the augmented system (5) and such that the
flow of the system (5) restricted to L is a copy of the flow
of the system (1). The previous conditions hold if and only
if there exists a matrix Y ∈ R

n×n such that
[

A 0n
k(R− P ) −kR

] [

In
Y

]

=

[

In
Y

]

A ,

or equivalently such that

k(R− P )− kRY = Y A , (12)

for some k ≥ k̄.
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Remark 1. The condition σ(A) ∩ σ(−kR) = ∅ guarantees
existence and unicity of the matrix Y and therefore the ex-
istence of the invariant subspace L. N

Proposition 2. Suppose that the condition (10) is satisfied
and let k ≥ k̄ and Y be the solution of (12). Then the
restriction of the function V (x, ξ) to the invariant subspace
L, defined as

VL(x) = V (x, Y x) =
1

2
xT [Y TP+PY+(I−Y )TR(I−Y )]x ,

(13)
depends only on the variable x, it is positive definite
and its time derivative is negative definite along the
trajectories of the system (1), hence VL(x) is a Lyapunov
function for the system (1).

⋄

Remark 2. VL(x) describes a family of Lyapunov functions
for the system parameterized by the matrix R ≥ R̄ and
k ≥ k̄. N

Proposition 3. VL(x) coincides with the function (3) if Ŷ
is a simultaneous solution of the Sylvester equation (12)
and of the algebraic Riccati equation

Y TD +DY + Y TRY −D = 0 , (14)

where D = P − R, D < 0 with R > P . Then,
V (x, Ŷ x) = 1/2xTPx and the original quadratic Lya-
punov function (3) is recovered.

⋄

It is reasonable to expect the additional condition (14),
since the Lyapunov function V (x) defined as in (3) does
not necessarily belong to the family parameterized by VL.

To have a better insight about this comment it is worth
recalling that the matrix P is defined together with the
matrix Q, i.e. the pair (P,Q) is such that V (x) in (3) is

a quadratic positive definite function and V̇ = −xTQx
along the trajectories of the linear system (1). Therefore
the function V (x) belongs to the family of Lyapunov
functions VL if and only if it is possible to obtain at the
same time V̇ (x, Y x) = −xTQx with a proper choice of
the matrices R and Y and the parameter k. To be more
precise, it can be easily noticed from (9) that, provided
(10) is satisfied, larger values of the constant k yield a

more negative V̇ (x, ξ). Thus, if we let k be such that

V̇ (x, Y x) < −xTQx for all x ∈ R
n then it is obvious that

the quadratic function V (x) defined in (3) can not belong
to the family VL. On the contrary, if the parameter k is
selected such that the solution Y of the Sylvester equation
is in the set of solutions of the additional algebraic Riccati
equation (14), then we can guarantee that the function (3)
belongs to the family of Lyapunov functions.

Remark 3. With respect to the previous comment, the
case L = Ker(C) must be dealt with separately, since

V̇ (x, Y x) is not affected by the choice of the parameter k.
To begin with, write Ker(C) as the set of (x, ξ) such that

[

P −R
]

[

x
x− ξ

]

= 0

that is the set {(x, ξ) : ξ = −R−1(P −R)x}. Obviously, if
Ker(C) coincides with L, then the matrix

K = −R−1(P −R)

must satisfy the Sylvester equation that defines L. By
substitution, it can be easily seen that Ker(C) = L if
and only if R = P and in this case not only the family
of Lyapunov functions automatically contains the original
Lyapunov function but actually the family reduces to the
function V (x) defined in (3). In fact, since the solution of
the Sylvester equation is Y = 0, the invariant subspace is
defined by ξ = 0 hence, with R = P , V (x, 0) = 1/2xTPx

and moreover the time derivative V̇ (x, ξ) in (9) is equal to
−xTQx for any value of the parameter k. N

3. NONLINEAR SYSTEMS

Consider a nonlinear, autonomous, system described by
equations of the form

ẋ = f(x) , (15)

with x(t) ∈ R
n, f : Rn → R

n continuously differentiable
and suppose that the origin of the state-space is an
equilibrium point for the system (15), i.e. f(0) = 0. Hence,
there exists a continuous mapping F : Rn → R

n×n such
that f(x) = F (x)x.

Assumption 1. The equilibrium point x = 0 of the sys-
tem (15) is locally exponentially stable, hence there exists
a matrix P̄ = P̄T > 0 such that

1

2
P̄A+

1

2
AT P̄ = −Q , (16)

for some given Q = QT > 0, with A =
∂f

∂x

∣

∣

∣

x=0

.

In this section - mimicking the results presented in Sec-
tion 2 for linear systems - it is shown how to exploit
the knowledge of a Lyapunov function for the linearized
system ẋ = Ax, namely

Vl(x) =
1

2
xT P̄ x , (17)

to construct a Lyapunov function for the nonlinear sys-
tem (15). To begin with, consider the following notion of
solution of the Lyapunov partial differential inequality

Vxf(x) < 0 , (18)

for all x ∈ R
n \ {0} .

Definition 1. Consider the system (15). An algebraic P̄
solution of the inequality (18) is a C1 mapping P (x) :
R

n → R
1×n, P (0) = 0, such that

P (x)f(x) ≤ −xTΓ(x)x , −α(x) , (19)

for all x ∈ R
n, with Γ = ΓT > 0 for all x ∈ R

n \ {0}.
Moreover P (x) is tangent at the origin to P̄ , namely

∂P

∂x

∣

∣

∣

x=0

= P̄ .

Note that P (x) may not be a gradient vector of any scalar
(positive definite) function. Define now similarly to (4) the
function

V (x, ξ) = P (ξ)x+
1

2
‖x− ξ‖2R , (20)

with ξ(t) ∈ R
n and R = RT ∈ R

n×n positive definite.
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Remark 4. Consider V as in (20) and note that there exist
a non-empty compact set Ω1 ⊆ R

2n containing the origin
and a positive definite matrix R̄ such that for all R ≥ R̄
the function V (x, ξ) in (20) is positive definite for all
(x, ξ) ∈ Ω1 ⊆ R

2n. In fact, since P (x) is tangent at
x = 0 to the solution of the Lyapunov equation (16), the
function P (x)x : R

n → R is, locally around the origin,
quadratic and moreover has a local minimum for x = 0.
Hence the function P (ξ)x is (locally) quadratic in (x, ξ)
and, restricted to the manifold E = {ξ ∈ R

n : ξ = x}, is
positive definite in Ω1. N

The partial derivatives of the function V defined as in (20)
are given by

Vx = P (x) + (x− ξ)T (R− Φ(x, ξ))T ,

Vξ = xTΨ(ξ)− (x− ξ)TR ,
(21)

where Φ(x, ξ) is a smooth mapping such that

P (x)− P (ξ) = (x− ξ)TΦ(x, ξ)T

and Ψ(ξ) denotes the Jacobian matrix of the mapping
P (ξ). As in the linear setting, define an augmented non-
linear system described by equations of the form

ẋ = f(x) ,

ξ̇ = −k(Ψ(ξ)−R)Tx− kRξ , g(ξ)x− kRξ ,
(22)

and let the function (20) be a candidate Lyapunov function
to investigate the stability properties of the equilibrium
point (x, ξ) = (0, 0) of the system (22). Finally, to stream-
line the presentation of the following result - providing
conditions on the choice of the parameter k such that the
function V in (20) is indeed a Lyapunov function for the
augmented system (22) - let

∆(x, ξ) = (R− Φ(x, ξ))Λ(ξ)T , (23)

with Λ(ξ) = Ψ(ξ)R−1.

Proposition 4. There exist a set Ω ⊂ R
2n and k̄ > 0 such

that V (x, ξ), defined in (20), is positive definite in Ω and
its time derivative along the trajectories of the system (22)
is negative definite for all k ≥ k̄ if and only if

1

2
F (x)T∆(x, ξ) +

1

2
∆(x, ξ)TF (x) < Γ(x) , (24)

for all (x, ξ) ∈ Ω ⊂ R
2n \ {0}. Therefore, V (x, ξ) is a

Lyapunov function for the augmented system (22) that
guarantees asymptotic stability of the equilibrium point
(x, ξ) = (0, 0).

⋄

Remark 5. If P (x) = xT P̄ is an algebraic P̄ solution, then
the choice R = P̄ guarantees that g(ξ) ≡ 0 and that
the condition (24) is satisfied for all (x, ξ) ∈ R

2n \ {0}.
Moreover, the gain k in (22) might be defined as a function
of x, i.e. k(x).

N

Remark 6. The function V (x, ξ) in (20) is a Lyapunov
function for the extended system (22), hence there exists
a KL-class function β such that

‖[x(t), ξ(t)]‖ ≤ β(t, ‖[x(0), ξ(0)]‖) ,

for all t ≥ 0 and for any x(0), ξ(0). Therefore

‖x(t)‖ ≤ β(t, ‖[x(0), 0]‖) , β̄(t, ‖x(0)‖) ,

proving asymptotic stability of the origin for the sys-
tem (15).

N

3.1 Invariant Submanifold

As in the linear case the proposed approach consists
in exploiting the Lyapunov function for the augmented
system (22) to construct a Lyapunov function for the
system (15).

Proposition 5. Suppose that there exists a smooth map-
ping h ∈ R

n×1 such that the manifold

M = {(x, ξ) ∈ R
2n : ξ = h(x)}

is an invariant submanifold with respect to the dynamics
of the augmented system (22), i.e. such that

g(h(x))x− kRh(x) =
∂h

∂x
f(x) . (25)

Then, the restriction of the function V (x, ξ) as in (20) to
the manifold M, namely

VM(x) = P (h(x))x+
1

2
‖x− h(x)‖2R , (26)

yields a family of Lyapunov functions for the nonlinear
system (15) parameterized by R and k ≥ k̄. ⋄

Note that, by (25), M is invariant under the flow of the
system (22) and moreover the restriction of the flow of the
augmented system (22) to the manifold M is a copy of the
flow of the nonlinear system (15).

Remark 7. The equation (25) is a partial differential equa-
tion without constraints on the sign of the solution, i.e. the
mapping h(x) is not required to be positive definite. N

3.2 Approximate Solution of the Invariance pde

An explicit solution of the partial differential equation (25)
may still be difficult to determine even without the sign
constraint. Therefore, consider the following algebraic con-
dition which allows to uniformly approximate, with an
arbitrary degree of accuracy, the closed-form solution of
the partial differential equation (25), which may be hard
or impossible to find. Suppose that there exists a matrix
H ∈ R

n×n such that

H(x)f(x) + kRH(x)x− g(H(x)x)x = 0 . (27)

Note that the solution of the condition (27) is parame-

terized by k, namely Hk(x). Let now ĥ(x) = Hk(x)x and

consider the submanifold Mη , {(x, ξ) ∈ R
2n : ξ = ĥ(x)}.

Proposition 6. Suppose that the condition (27) is satisfied
and that there exists a function φ : R+ → R+ such that

‖Hk(x)‖ < φ(‖x‖) , (28)

uniformly in k. Then there exist a matrix R ≥ R̄ and k ∈
(k̄,∞) such that the submanifold Mη, on which the flow
of the system (22) is a copy of the nonlinear system (15), is
almost-invariant. 1 ⋄
1 A submanifold F is said to be almost-invariant with respect to the

system (15) if, given ε > 0, x0 ∈ F yields dist(x(t),F) ≤ ε for all

t ≥ 0, where dist(x(t),F) denotes the distance of x(t), solution of

the system (15) with x(0) = x0, from the submanifold F .
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Proposition 7. Suppose that the conditions (27) and (28)
are satisfied. Then there exist a matrix R ≥ R̄ and
k ∈ (k̄,∞) such that the functions, parameterized by R
and k

VMη
(x) = P (Hk(x)x)x+

1

2
‖x−Hk(x)x‖

2
R , (29)

yield a family of Lyapunov functions for the nonlinear
system (15). ⋄

4. NUMERICAL EXAMPLE

Consider the nonlinear system described by equations of
the form

ẋ1 = −x1 ,

ẋ2 = x2
1 − x2 ,

(30)

with x(t) = (x1(t), x2(t)) ∈ R
2. Note that the zero

equilibrium of the system (30) is globally asymptotically
stable and locally exponentially stable. A natural choice of
a Lyapunov function for the linearization around the origin
of the system (30) is provided by Vl =

1

2
(x2

1+x2
2), i.e. with

P̄ = I which is a solution of the equation (16) associated
to the choice of the matrix Q = I. The quadratic function
Vl is then employed to estimate the region of attraction,
R0, of the zero equilibrium of the nonlinear system (30).
Specifically, the estimate is given by the largest connected
component, containing the origin of the state-space, of
the level set of the considered Lyapunov function entirely
contained in the set N , {x ∈ R

2 : V̇ < 0}. Figure 1

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x
2

Fig. 1. Estimate of the basin of attraction of the zero
equilibrium of system (30) given by the quadratic
function Vl, dashed line.

displays the zero level line of the time derivative of Vl

along the trajectories of system (30), solid line, together
with the largest level set of Vl entirely contained in the set
N . Note that N ⊂ R

2 and consequently R0 ⊂ R
2. It can

be shown that a quadratic function Vq = 1

2
xT P̄ x, with

P̄ =

[

p1 p2
p2 p3

]

,

p2 6= 0, does not allow to obtain N = R
2. In fact, the time

derivative of Vq along the trajectories of the system (30)
yields

V̇q = −p1x
2
1 − 2p2x1x2 − p3x

2
2 + p2x

3
1 + p3x2x

2
1 ,

which is equal to

V̇q

∣

∣

∣

x2=0

= −x2
1(p1 − p2x1) ,

if evaluated along x2 = 0. Therefore, V̇q > 0 for x1 > p1

p2

.

Suppose now that the mapping P (x) : R1×2 defined as the
gradient vector of the quadratic function Vl is actually
an algebraic P̄ solution for the nonlinear system (30),
as detailed in the Definition 1. The proposed approach
consists in constructing the family of Lyapunov functions
defined in Proposition 5, exploiting the knowledge of the
local strict Lyapunov function Vl, such that the robustness
property is preserved and such that the region in which
the time derivative is negative definite can be enlarged.
To begin with note that the choice R = P̄ guarantees
that g(ξ) is identically equal to zero for all ξ(t) ∈ R

2

and that the condition (24) is trivially satisfied for all
(x, ξ) ∈ R

4 \ {0}. To construct the Lyapunov function
Vd defined in Proposition 5 it is required to determine
h1 : R2 → R and h2 : R2 → R such that the manifold

{(x1, x2, ξ1, ξ2) ∈ R
4 : ξ1 = h1(x1, x2), ξ2 = h2(x1, x2)}

is invariant for the dynamics of the augmented sys-
tem (22). Note that the system of partial differential
equations (25) reduces to two identical (decoupled) partial
differential equations given by

−
∂hi

∂x1

(x1, x2)x1+
∂hi

∂x2

(x1, x2)(x
2
1−x2)+ khi(x1, x2) = 0 ,

(31)
for i = 1, 2. The solutions h1(x1, x2) and h2(x1, x2) are
defined as

h1(x) = h2(x) = L

(

x2 + x2
1

x1

)

xk
1 ,

k ≥ 1, where L(a) can be any function of a. In what
follows let L(a) = a and construct the family of Lyapunov
functions

Vd(x) = h(x)Tx+
1

2
‖x− h(x)‖2

=
1

2
(x2

1 + x2
2) + (x2 + x2

1)
2
(

xk−1

1

)2
,

(32)

with h(x) = [h1(x), h2(x)]
T . For instance, letting k = 1,

we obtain the function

V 1
d =

1

2
(x2

1 + x2
2) + (x2 + x2

1)
2

the time derivative of which along the trajectories of the
system (30), namely

V̇ 1
d = −x2

1 − 3x2
2 − 3x2x

2
1 − 2x4

1 ,

is negative definite for all (x1, x2) ∈ R
2, hence N = R

2

and the estimate of the basin of attraction coincides with
the entire plane. Finally, note that V̇ k

d is negative definite
for all (x1, x2) ∈ R

2 and for all k ≥ 1. Interestingly,
the pde (32) has a structure similar to the equation (18)
but the solution obtained for (32) is clearly not positive
definite.
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Fig. 2. Phase portraits of the trajectories of the sys-
tem (30) together with the level lines of the lyapunov
function Vd.

Even if the partial differential equation (31) admits a
closed-form solution, suppose that we are interested in
determining the approximate solution proposed in Propo-
sition 7. Letting

H(x) =

[

h̄1(x) h̄2(x)
h̄3(x) h̄4(x)

]

,

and considering the condition (27), note that it reduces to
two identical conditions on h̄1, h̄2 and h̄3, h̄4, namely

−x1h̄1 + h̄2(x
2
1 − x2) + kh̄1x1 + kh̄2x2 = 0 , (33)

and the same condition obtained substituting h̄1 and h̄2

with h̄3 and h̄4, respectively. A possible solution of (33) is
given by h̄1(x) = −x2 − x2

1(k − 1)−1 and h̄2(x) = x1 and
consequently, since the condition (28) holds, the manifold
{(x, ξ) ∈ R

4 : ξ1 = ξ2 = −x3
1(k− 1)−1} is almost invariant

for k ∈ (1,∞). Moreover, it is interesting to note that

the solution δ(x) , [h̄1(x), h̄2(x)] is not the gradient of
any scalar function since the Jacobian ∇δ(x) is not a
symmetric matrix. Letting k = 2, the Lyapunov function
presented in Proposition 7 is then defined as

Vda
=

1

2
(x2

1 + x2
2) + x6

1 ,

and the corresponding time derivative along the trajecto-
ries of the system (30) is V̇da

= x2x
2
1−x2

1−x2
2−6x6

1 which
is negative definite for all (x1, x2) ∈ R

2.

5. CONCLUSIONS

A family of Lyapunov functions for linear and nonlinear
systems can be obtained by means of a dynamic extension,
i.e. considering the immersion of the system into an aug-
mented system. A Lyapunov function, proving asymptotic
stability of the origin of the extended state-space, can be
constructed. In particular, techniques initially introduced
for linear systems are then extended to the nonlinear case.
Specifically, the family of Lyapunov functions is obtained
considering the restriction of the extended Lyapunov func-
tion to an invariant submanifold - parameterized by the

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

Fig. 3. Phase portraits of the trajectories of the sys-
tem (30) together with the level lines of the lyapunov
function Vda

.

state variable x - on which the flow of the augmented
system is a copy of the original system.
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