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Abstract: In this paper it is proposed a novel Lyapunov based design of a generalized Super-
Twisting Observer for a class of 2-dimensional nonlinear system. The observer can deal with
systems whose states are composed of bounded nonlineaer functions.This is the main difference
with the classical Super-Twisting observer, in which the second state is only the derivative of
the first state. Working with a Strong Lyapunov Function it can be shown suffi cient conditions
to properly choose the observer gains to ensure finite time convergence to the real states. The
obsrver is tested in a mathematical model regarding to the reduced Glucose-Insulin process. The
numerical results have shown a better performance of the observer with lineal compensators in
comparison to the classical Super-Twisting Observer. The gains for the observer are designed
in order to compensate a more general class of perturbations that appear in the suggested
glucose-insuline nonlinear model.
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1. INTRODUCTION

Sliding modes are well-known for their robustness against
perturbations and uncertainties in the mathematical de-
scription of several phisycal systems. In most cases, sliding
modes are obtained by mean of the injection of a non-
linear discontinuous term. In general this discontinuous
term is depending on the output error. This framework
may be used to construct robust controlling or observing
algorithms. Discontinuous injection must be designed in
such a way that system trajectories are enforced to remain
in a submanifold contained in the estimation error space
(the so-called sliding surface). For both, the control and
the observation problem, the resulting motion is referred
to as the sliding mode (Utkin (1992)). One additional pos-
sitve characteristic using this discontinuous term regards
to the rejection of external matched disturbances (Tan and
Edwards (2001)).

Classical Sliding-Mode Observers (Utkin (1992), Walcott
and Zak (1987)) estimate robustly the state when the per-
turbations/measurement map when the sliding surface has
relative degree (RD) one with respect to the system input.
However, the disturbance cannot be reconstructed exactly.
The observer and controller design based on the second-
order sliding modes (SOSM) approach has been consid-
ered as an interesting topic by many researchers within
the last decade (see Sthessel et al. (2003), Sira-Ramirez
(2004), Punta (2006) and the references therein). Some
attractive features of SOSM compared to the classical first-
order sliding modes are widely recognized: higher accuracy
motions, chattering reduction, finite-time convergence for

systems with relative degree two (Levant (2005), Boiko
et al. (2007), etc.).

In order to perform this disturbance reconstruction task, a
Second Order Sliding Mode algorithm, the so-called Super-
Twisting Algorithm (STA), has been proposed recently
(Davila et al. (2005)) for second-order (mechanical) non-
linear systems. The STA robustly reconstructs, in finite-
time, the states, if the perturbation is of relative degree
two (RD=2), or reconstructs the perturbation itself, when
it is of relative degree one (RD=1).

Besides, the sliding mode observers are widely used due
to the finite-time convergence, robustness with respect to
uncertainties and the possibility of uncertainty estimation
(see, for example, the bibliography in the recent tutori-
als Barbot et al. (2002), Edwards and Spurgeon (1998),
and Poznyak (2001)). In particular, asymptotic observers
(Shtessel and Shkolnikov (2003)) and the asymptotic ob-
server for systems with Coulomb friction (Alvarez et al.
(2000) and Orlov et al. (2003)) were designed based on
the second-order sliding-mode. These observers requires
the assumption on the so-called separation principle due
to the asymptotic convergence of the estimated values to
the real ones.

In general, the convergence of all these algorithms (high
order sliding modes) was proved using very complex geo-
metrical conditions Levant (2005). Just a couple of years
ago, the Lyapunov methodology was succesfully applied
to show how and why these algorithms converge in finite
time.
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In (Moreno and Osorio (2008)) a strong Lyapunov function
is proposed to ensure finite time convergence for the STA.
The Lyapunov analysis define how the gains should be
selected in order to obtain an acceptable performance
produced by the observer (finite time convergence with
a predefined convergence time). Additionally, in the same
paper,it has been introduced a non classical STA including
a linear term proportional to the error trayectories. This
observer has terms related to the second order sliding mode
theory and another one like the Luenberger observer. This
new observer was called Second Order Sliding Mode plus
linear observer (SOSML).

This class of observers has been applied to solve the prob-
lem of exact differentiation. In this way the main contri-
bution provided in this paper is the convergence analysis
for the observer based on the super-twisting algorithm.
This algorithm deals with the class of perturbations that
are able to grow up with the states. In the same way, the
nonlinear model is composed by nonlinear functions in the
first and second states.

This scheme was tested on a biological nonlineal system (a
Minimal Model for Glucose - Insulin Kinetics). The system
is affected by external perturbation in the output and in
the dynamics description. Using the results developed by
(Moreno and Osorio (2008)), a strong Lyapunov function
is proposed to prove practical stability and to obtain the
boundary layer where the estimation error converges. In
the following section, it is presented the classical Super-
Twisting observer and the class of perturbations that the
observer can deal with it. In section III the General-
ized Super-Twisting observer (GSTO) is presented and
the class of bounded perturbations are introduced. The
problem statement and the main result are discussed in
section IV. In Section V, a numerical example regarding
to a glucose-insulin model is given. Finally in section VI
the conclusions are given.

2. CONVENTIONAL SUPER-TWISTING OBSERVER

The super-twisting algorithm has been used for second
order systems, especially those that accept the mechanical-
like form. The class of nonlinear perturbed second order
system considered to apply this so-called conventional
super-twisting observer is governed by the two following
differential equations:

ẋ1,t = x2,t

ẋ2,t = f (xt, ut) + ξt
yt = x1,t

(1)

Here, xt = [x1,t, x2,t]
ᵀ ∈ <2 is the state vector and

ut ∈ <m is the control action applied to the system. The
signal ξt represents internal disturbances in the nonlinear
structure of the system. The second equation can include
discontinuous parts as dry-friction. Therefore, the solution
of the unperturbed differential equation for the nonlinear
system is understood in Filippov sense (Filippov (1998)).
It means, that the second equation in (5) (where f (xt, ut)
appears) is replaced by the equivalent differential inclusion
ẋ2,t ∈ F̄ (xt, ut) + ξt. In view of the continuity almost
everywhere of f, the set-valued F̄ (x0, u0) =

[
F̄i (·)

]
is

the convex closure of f . This is the set of all limits of
F (xt, ut) as [xa,t, ua,t]→ [x0,t, u0,t] where [x0,t, u0,t] is the
set of all continuity points of f for any xa,t ∈ X ⊂ <2n

and ua,t ∈ Uadm. This is, in fact, a direct consequence of
the belonging of xα,t ∈ X ∀t. The set of all admissible
nonlinear controllers Uadm is defined by

Uadm :=
{
u : ‖ut‖2 ≤ v0 + v1 ‖xt‖2Λu <∞

}
(2)

In previous papers, it was supposed that the following
assumption was fulfilled: The disturbance is weighted
(with weight Λξ) quadratically bounded, that is

‖ξt‖
2
Λξ
≤ Υ, Λξ = Λ>ξ > 0 (3)

This is a very important restriction regarding the class of
second order nonlinear systems that may be analyzed. The
super-twsting algorithm used for this class of systems has
the following structure:

d

dt
x̂1,t = x̂2 − k1 |x̃1,t|1/2 sign (x̃1,t)

d

dt
x̂2,t := f (xt, ut)− k2sign (x̃1,t)

x̃1,t := x1,t − x̂1,t

In this structure, the gains ki i = 1, 2 must be selected in
such a way to ensure finite time convergence. Recently,
this observer was modified to include a larger class of
perturbations. This new observer which has been called
the linear super-twisting algorithm. This observer includes
two additional linear terms:

d

dt
x̂1,t = x̂2 − k1 |x̃1,t|1/2 sign (x̄1,t) + k3x̃1,t

d

dt
x̂2,t := f (xt, ut)− k3sign (x̃1,t) + k4x̃1,t

(4)

The class of perturbations considered in this situation may
be not absolutely bounded. Nevertheless, such perturba-
tions must disappear when the surface is reached. This
is an unnatural assumption even for mechanical systems.
This paper generalizes (for a bigger class of perturbations).
the observer structure considering the option where more
general perturbations appears.

3. GENERALIZED SUPER-TWISTING OBSERVER

3.1 Class of Nonlinear System

The class of nonlinear perturbed second order system con-
sidered throughout this paper is governed by the following
two differential equations:

ẋ1,t = g (xt, t) + ξ1,t

ẋ2,t = f (xt, ut) + η (xt, t) + ξ2,t

yt = x1,t

(5)

Here, xt = [x1,t, x2,t]
ᵀ ∈ <2 is the state vector and

ut ∈ <m is the control action applied to the system.
The signals ξ1,t and ξ2,t represent internal disturbances
in the nonlinear structure of the system. g (·, ·) : <2 → <
and f (·, ·) : <2 → < are nonlinear bounded functions.
This class of systems is more general compared to those
described above. Indeed, the class of uncertainties is also
larger and characterizes many systems.

3.2 Generalized Super-Twisting Observer

The observation scheme is based on the classical Super-
Twisting Observer. The scheme is composed by the plant’s
reproduction (5) and a set of corrective terms (mixing
continuous and discontinuous elements) using the available
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information for the uncertain system. The state estimator
uses the approach developed in (Davila et al. (2006)) with
a new linear correcting term in the structure (Moreno and
Osorio (2008)). The generalized Super-Twisting Observer
(GSTO) has the following structure

d

dt
x̂t =


ĝ (x1,t, x̂2,t, t)

+β1λ (x̃1,t) sign (x̃1,t) + β3x̃1,t

f̂ (x1,t, x̂2,t, ut) + η (x1,t, x̂2,t, t)
+β2sign (x̃1,t) + β4x̃1,t


λ (z) := |z|1/2

(6)

The estimation error defined as x̃t is build up by the
component x̃1,t := x1,t − x̂1,t. The change of x̃1,t along
the time is represented by the next differential equation

d

dt
x̃1,t = g (x, t)− ĝ (x1, x̂2, t)−
β1λ (x̃1,t) sign (x̃1,t)− β3x̃1,t

d

dt
x̃2,t = f (xt, ut)− f (x̂t, ut) + η (xt, t)− η (x̂t, t)

+ξ2,t − β2sign (x̃1,t)− β4x̃1,t

(7)

In this paper, it is supposed that following assumptions
are fulfilled:

A1. The set of all admissible nonlinear controllers Uadm is
defined by
Uadm := {|u| : |u| ≤ u0+u1 ‖x̂‖≤ u0+u1 (‖x̃t‖+ ‖x‖)}

(8)

A2. The nonlinear functions that describe the nonlinear
dynamics for the first and second state are bounded

|f (x, u)− f (x̂, u)| ≤ f0 + f1 ‖x̃t‖
|g (x, t)− ĝ (x̄1, x̂2, t)| ≤ g0 + g1 ‖x̃t‖

|η (x, t)| ≤ η0 + η1 ‖x‖
(9)

A3.The disturbances are absolutelly bounded∣∣ξi,t∣∣ ≤ ξ+
i i = 1 : 2 (10)

A4. Lets consider a class of systems with bounded dynam-
ics:

sup
t
‖x (t)‖ = d+ (11)

4. PROBLEM STATEMENT AND MAIN RESULT

The main problem to deal with in this paper regards
to design the high-order variable structure observer for
uncertain 2-dimensional nonlinear system based on the
Lyapunov second method. The observer was proposed
using the structure developed in (Davila et al. (2005))
and (Moreno and Osorio (2008)). This novel observer
is developed under the assumption of the presence of
nonlinear functions in the first and second states describing
the nonlinear system’s dynamics. Therefore, it must be
proved the robustness of the observer suggested in this
paper.

The problem considered here can be formulated as follows:

To select an adequate combination of gains β1, β2, β3
and β4 in such a way, under the assumptions considered
in this paper for the nonlinear second order system (5),
for any admissible control injection ut ∈ Uadm, and
the assumptions presented in (8), (9), (10) and (11) the

trajectories of the state estimator given in (6) converge
exponentially to a small ball Bδ := {x̃t : ‖xt − x̂t‖ ≤ δ}
surrounding the real trajectories of the system under
analysis.

The main result developed in this paper is presented in
the following theorem

Theorem. Consider the nonlinear second order system
described in (5). Now, lets use the state modified Super-
Twisting observer defined in (6). If the observer gains are
selected in such a way the following matrices Q0 and Q1

are positive definite and negative definite respectively

Q0:= [qi,j ] , i, j =
_____

1 : 3

q11= −ε−1
0 p2

11+p11β1+p13β2

q22= p12

(
g1sign (∆1,t)−β3−p12ε

−1
2

)
q33= p31

(
−p31ε

−1
1 +g1sign (∆2,t)

)
q21= q12=

1

2
(−p11g1sign (∆1) +p11β3−p12β1+p23β2)

q32= q23=
1

2
(p12g1sign (∆2,t)−p31β3+p31g1sign (∆1,t))

q13= q31=
1

2
(−p11g1sign (∆2,t)−p31β1)

(12)
and

Q1:= [ai,j ] , i, j =
_____

1 : 4

a11= p2
12ε
−1
3 +p12β1+p2

13ε
−1
6

a22= p2
22ε
−1
4 +sign (x̃1,t) p22g1 + p2

23ε
−1
7

−p23f1sign (x̃1,t) +p23β4

a33= −p22β3+p2
23ε
−1
5 −p23sign (x̃2,t)

+p2
33ε
−1
8 +p33f1sign (x̃2,t)

a21= a12= −p12g1sign (x̃1,t) +p12β3
−p22β1−p13f1sign (x̃1,t) + p13β4

a32= a23= p22g1sign (x̃2,t)−p23g1sign (x̃1,t) +p23β3
−p23f1sign (x̃2,t) +p33f1sign (x̃1,t)−p33β4

a13= a31= −p12g1sign (x̃2,t) +p23β1
−p13f1sign (x̃2,t)−p33β2

(13)
Then the observation error provided by the suggested
sliding mode observer (6) converges to a small ball Bδ
whit radius given as follows
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δ ≤ max

((
ρ1

α1

)2

,
ρ2

α2

)

α1 :=
λ1/2 min (P )λmin (Q0)

λmax (P )

α2 := λmin (P ) ,

ρ1 := (ε0 + ε1 + ε2 + ε3 + ε4 + ε5)
(
g0 + ξ+

1

)2
ρ2 := (ε6 + ε7 + ε8)

(
f0 + η0 + ξ+

2 + η1d
+
)2

(14)

The proof of the main theorem is developed in the Appen-
dix.

Comment. The assumption about the possitiveness of Q0

and negativeness of Q1 could seem to be very restrictive.
Nevertheless, using the S-procedure, one can simplify this
condition. Indeed, if one try to solve such problem as is,
it is natural to obtain more equations than variables. But,
using the S-procedure, one will obtain the same number of
variables than equations leading to a well defined solution.
Therefore, the theorem statement may be changed to:

There are real numbers τ1 ≥ 0 and τ2 ≥ 0 (τ1 + τ2 > 0)
such that

Q := τ1Q1 + τ2Q2 < 0 (15)

This transformation changes the problem of the state
observation defined in the theorem to find the adequate
values of

βi, i = 1, 4 and τ j , j = 1, 2 (16)

such that Q < 0.

Several numerical procedures may be proposed to obtain
the solution to the problem recently introduced. In this
paper, the interior point method was used to obtain the
solution for the linear matrix inequality stated in (15).
Nevertheless, a non-complex analysis may lead to find
some analytical solutions for (16). Similar analysis were
developed in (Poznyak (2008)).
Remark 1. LMI’s defined by Q0 and Q1 are actually de-
pending on sign (x̃1,t) and sign (x̃2,t). Therefore, one can
see that, for example the term a22= p2

22ε
−1
4 +sign (x̃1,t) p22g1+

p2
23ε
−1
7 − p23f1sign (x̃1,t) +p23β4 will have two values.

Therefore, Q0 := Q0(sign (x̃1,t) , sign (x̃2,t)) and Q1 :=
Q1(sign (x̃1,t) , sign (x̃2,t)) represents a number of 4 differ-
ent matrixes when

(Q01, Q11) := {(Q0, Q1) | x̃1,t > 0, x̃2,t > 0}
(Q02, Q12) := {(Q0, Q1) | x̃1,t > 0, x̃2,t < 0}
(Q03, Q13) := {(Q0, Q1) | x̃1,t < 0, x̃2,t > 0}
(Q04, Q14) := {(Q0, Q1) | x̃1,t < 0, x̃2,t < 0}

(17)

The case where x̃1,t = x̃2,t = 0 is not considered by
the solution offered by the Lyapunov analysis. This point
of the trajectory may be excluded from the analysis
considered the assumptions and results founded in the
theorem 1.

Based on the representation of four matrices explained in
this remark, it is necessary to extend the application of
the S-Procedure described in the previous comment. Now,
eight different positive scalars τ1i > 0, τ2i > 0 i = 1..4.
such that

Fig. 1. Plasma Insulin Level as a control input

Q :=

4∑
i=1

(τ1iQ0i + τ2iQ1i) < 0

where Q0i and Q1i are the versions of Q0 and Q1 respec-
tively when each combination in (17) is considered. There-
fore, the results obtained in the main theorem introduced
in this paper is well posed.

5. NUMERICAL RESULTS

As an illustration of the results presented in this paper, it
is designed a GSTO for a nonlinear system describing the
glucose-insuline interactions in the human body. Consider
a second order nonlineal math model given by

d

dt
Gt = SG (Gb −Gt)−XtGt

d

dt
Xt = k3 [SI (It − Ib)−Xt]

y = Gt

(18)

In these equations, t is the independent model variable
time [min], t0 is the time of glucose injection, Gt is the
plasma glucose concentration [mg/dL], It is the plasma
insulin level [µU/mL] and Xt is the interstitial insulin
activity. Looking at the structure of the equation (18),
it is clear that Xt does not represent a physiological,
measurable quantity, this variable is related to the effective
insulin activity. Gb is the basal plasma glucose concentra-
tion [mg/dL] and Ib is the basal plasma insulin concen-
tration [µU/mL]. Basal plasma concentrations of glucose
and insulin are typically measured before administration
of glucose (or sometimes 180 minutes after). The para-
meter SG is defined as the insulin sensitivity whereas SI
represents the glucose effectiveness. For simulation these
were chosen as

SI = 5.0× 10−4 [mg/dL] I0 = 0 [µU/mL]
SG = 2.6× 10−2

[
min−1

]
Ib = 11 [µU/mL]

Gb = 90 [mg/dL] G0 = 279 [mg/dL]

The input of the system, given by It is displayed in the
figure 1 according to the results presented in (Van Riel
(2004)). The figure 2 shows the estimation of the first
state, the plasma glucose Concentration, it can be seen
how after a short period of time, the GSTO reach the
real trayectories. of the system. For the second state,
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Fig. 2. Estimation of the Glucose Plasma Concentration
using the GSTO

Fig. 3. Performance index for the estimation erro

corresponding to the Interstitial insulin level, the figure 5
depicts the estimation process and the effectiveness of the
proposed observer. The performance index for the GSTO,
using the Euclidean norm is represented in the figure 3. To

Fig. 4. Comparation between the GSTO, the classical STO
and a Luenberger observer (LBO)

demonstrate the difference between the observer working
with four correction terms and the previous achieves it is
presented in the figure 4, the performance index for the
GSTO presented in this paper, the classical STO and a
Luenberger Observer. (LBO). It can be seen advantages
to use the GSTO, it reach the manifold x̃ = 0 in less time
than the others algorithms. The chattering effect decrease
in comparison with the classical Super-Twisting observer,
and the class of perturbations is extended.

6. CONCLUSION

It has been presented a novel design for a Generalized
Super-Twisting Observer based on Strong Lyapunov Func-
tions, the perturbations in the state grow up together with
the nonlinear states of the system. This is the principal dif-
ference between this result and previous results using the
same technique. The performance of the observer applying
in a nonlinear biomedical model, suggest a good behavior
under the presence of disturbances and uncertainties in the
model.
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Appendix A. PROOF OF THE MAIN THEOREM

Consider the following strong Lyapunov function

V (x̃, t) = ςᵀ (x̃t)Pς (x̃t)

ς (x̃t) :=

[
λ (x̃1,t) sign (x̃1,t)

x̃1,t

x̃2,t

]
if P = PT > 0 is selected in the form

P =
1

2

4β3+β2
1 β1β2 −β1

β1β2 2β4+β2
2 −β2

−β1 −β2 2


Note that V (x̃, t) is continuous but not differentiable at
x̃1,t = 0. Moreover, it satisfies

λmin (Q) ‖ς (x̃t)‖22 ≤ V (x̃, t) ≤ λmax (Q) ‖ς (x̃t)‖22
(A.1)

Taking the derivative for the Lyapunov functions leads

to V̇ (x̄t, x̂, t) = 2ςᵀP ς̇ and ς̇ is given by the following
equation

ς̇ (x̃t) =


1

2
λ−1 (x̄1)

d

dt
x̃1

d

dt
x̃1,t

d

dt
x̃2,t


substituting the trayectories. of the error dynamics given
by the equation (7) it is possible to obtain the next
equation for the ς̇ (x̃t), defining g̃ := g (x, t)−ĝ (x1, x̂2, t),
f̃ := f (xt, ut)−f (x̂t, ut) and η̃ := η (xt, t)−η (x̂t, t)

ς̇ (x̃t) =

 1
2λ
−1 (x̃1,t)

(
g̃ + ξ1,t−β1λ (x̃1,t) sign (x̃1,t)−β3x̃1,t

)
g̃ + ξ1,t−β1λ (x̃1,t) sign (x̃1,t)− β3x̃1,t

f̃ + η̃ + ξ2,t−β2sign (x̃1,t)−β4x̃1,t


Solving the Lyapunov function V̇ (x̃, t) = 2ςT (x̃t)P ς̇ (x̃t)

leads to

V̇ (x̃, t) = −
(
ςTt Q0ςt − ρ1

)
+ ξ>t Q1ξt + ρ2

with Q0 and Q1 defined in (12) and (13). If the gains for

the observer are selected in such way Q0 is positive definite
and Q1 is negative definite simultaneously, it follows that

V̇ ≤ −λ−1 (x̃1,t)λmin {Q0} ‖ς (x̃t)‖22−λmin {Q1} ‖ς (x̃t)‖22
Using equation (A.1) and the fact that

λ (x̃1,t) ≤ ‖ς (x̃t)‖2 ≤
V 1/2 (x̃, t)

λ1/2 min {Q0}
it follows that

V̇t ≤ − |x̄1|−1/2
(
α1

√
Vt − β1

)
− α2Vt + β2

if the following conditions are fulfilled (Poznyak et al.

(1998)) √
Vt ≥

ρ1

α1
, Vt ≥

ρ2

α2

the zone of convergence for the estate estimator (6) is

Vt ≤ max

((
ρ2

α1

)2

,
ρ2

α2

)
and this conclude the proof.
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