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Abstract. In this paper we study controllability for continuous-time, linear systems with finite Markov

jump parameters. We consider a controllability notion that requires that the expected value of the

controllability Gramian is positive definite. We introduce a set of controllability matrices for this class of

systems and, based on certain invariance properties, we derive a rank test for controllability. Numerical

examples are included.
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1. INTRODUCTION

The concepts of observability and controlability play an impor-

tant role in the theory of dynamical systems, as they charac-

terize the strucural relations between state, input and output of

the system. Such structures have significant influence on the

means for control and filtering, hence are of much relevance for

applications. Controllability and observability have deserved

a great deal of attention and there are a number of available

results, see for instance Bittanti et al. (1984); Ji and Chizeck

(1988); Costa et al. (2006); Astolfi and Praly (2006); Davis

and Vinter (1984); Gray and Mesko. (1999); Petersen (2002).

The situation is somewhat different regarding controllability

of continuous-time Markov jump linear systems (MJLS). In

fact, MJLS comprise a class of linear stochastic systems that

are relevant for applications (see e.g. do Val and Basar (1999);

Saridis (1983); Siqueira and Terra (2004)) and present a number

of features that parallel the ones of linear deterministic systems,

see for instance O. L. V. Costa and Marques (2000) for an

operator theory approach for MJLS, Meskin and Khorasani

(2010); Zhang et al. (2010); Geromel et al. (2009); Todorov

and Fragoso (2008); de Souza and Coutinho (2006); Dragan

and Morozan (2008) as an illustration of recent developments

and the seminal papers Ji and Chizeck (1988, 1990), however,

controllability has been taken into account in a pathwise sense

only, see e.g. Ji and Chizeck (1990).

In this paper we consider the continuous-time MJLS defined in

a fundamental probability space (Ω,F ,{Ft},P)

ẋ(t) = Aθ(t)x(t)+ Bθ(t)u(t), x(0) = x0, θ (0) ∼ π0 (1)

⋆ This work was supported by FAPESP Grant 2010/12360-3, CNPq Grants

551328/2009-6, 304429/2007-4 and 306466/2010-4, and by CAPES.

where t ≥ 0, x ∈ Rn and u ∈ Rq. As usual in MJLS, at each

instant of time t, we have Aθ(t) = Ai whenever θ (t) = i, where

Ai is a matrix of appropriate dimensions taken from a known

collection matrices A = (A1, . . . ,AN) and similarly for B. We

assume Θ = {θ (t),t ≥ 0} is a Markov chain and θ (t) takes val-

ues on S = {1,2, . . . ,N}. The transition rate matrix is denoted

by Λ = [λi j] (see details on Markov chains in Bhattacharya and

Waymire (1990)), and the probability distribution of θ at time

instant t is denoted by π(t) = [P(θ (t)) = 1, · · · ,P(θ (t)) = N].

The state of the system is (x(t),θ (t)) and we refer to x(t) as the

continuous state. We consider the controllability Gramian for

continuous, linear time-varying systems Davis (2002),

Γ(t0,t1) =
∫ t1

t0

Φ(t0,τ)Bθ(τ)B
′
θ(τ)Φ(t0,τ)′dτ. (2)

where Φ stands for the state transition matrix, and we say that

the system is controllable when E{Γ(0,t)|θ (0)= i}> 0, i∈S ,

t ≥ 0. One interpretation is that, for non-controllable system,

there exists initial conditions that can not be driven to zero over

the time interval [0,t] almost surely, see Remark 2.

We introduce a set of matrices Ci, i ∈ S that play the role of

controllability matrices in the sense that the system is control-

lable if and only if Ci are of full rank, i∈S . The demonstration

of this feature is, however, a somewhat intricate problem, and

involves the following tasks. (I) Establish a connection between

the null space of Ci with the null space of Ci(k), k ≥ 0, where

Ci(k) is such that Ci = [Ci(0) Ci(1) . . . Ci(n
2N−1)]; this

involves showing that

v′Civ = 0 is equivalent to Civ = 0,

which is not a trivial issue, since Ci(k) is symmetric but not

necessarily positive semi-definite. We proceed by exploring

dual relations with the property P1 in Narváez and Costa (2010)

and associated results that are summarized in Section 2. (II)
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Link the quantity v′Ci(k)v with the cost of an auxiliary problem,

allowing to recast a result in (Narváez and Costa (2010)) and to

show that

B′
jA

′pm

jm
· · ·A

′p2
j2

A
′p1
j1

v = 0, , (3)

for any sequence j, j1, . . . , jm, i such that λ j, j1λ j1, j2 · · ·λ jm,i 6= 0.

(III) Show that (3) is equivalent to v′E{Γ(0,t)|θ (0) = i}v = 0,

i ∈ S . The basic idea is to connect (3) with the continu-

ous state trajectory of a version of the MJLS (1) (with trans-

poses of matrices Ai and initial condition x(0) = v), yielding

B′
θ(τ)Φ(0,τ)′v = 0, τ ≥ 0, almost surely.

The paper is organized as follows. In Section 2 we present

notation and several preliminary results, mainly from Narváez

and Costa (2010), that are needed for the main results. Section

3 addresses the aforementioned tasks (I) and (II). The controlla-

bility matrices and the rank-test for controllability are presented

in Section 4, and we finish with some concluding remarks.

2. NOTATION, DEFINITIONS AND PRELIMINARY

RESULTS

We first introduce notation and definitions. Let Rn,q (respec-

tively Rn) be the linear space formed by all matrices of size

n × q (respectively n × n) and Rr0 (Rr+) the closed convex

cone of symmetric semidefinite positive matrices {U ∈ Rr :

U = U ′ ≥ 0}, (the open cone of symmetric definite positive

matrices {U ∈Rr :U =U ′ > 0}), U ′ denoting the transposed of

U ; U ≥V (U > V ) means that U −V ∈ Rr0 (U −V ∈ Rr+). For

U ∈ Rn,q, N (U) represents the null space of U . The operator

1{.} is the indicator function (or characteristic function) and

tr{.} denotes the trace. Let M r,n be the linear space formed by

a number N of matrices such that M r,n = {U = (U1, . . . ,UN) :

Ui ∈ Rr,n, i = 1, . . . ,N}; also, M r ≡ M r,r. We denote by M r0

(M r+) the set M r when it is formed by Ui ∈ Rr0 (Ui ∈ Rr+)

for all i = 1, . . . ,N. M r,n defined as before with the inner prod-

uct given by

〈U,V 〉 =
N

∑
j=1

tr{U ′
jV j}

is a Hilbert space (Costa and Fragoso (2005)). Furthermore,

define the norm ||U || = 〈U, I〉 in M n0. Let the operators L :

M n −→M n, T : M n −→M n, and H : M n −→M n defined

as:

Li(U) = A′
iUi +UiAi +

N

∑
j=1

λi jU j,

Ti(U) = AiUi +UiA
′
i +

N

∑
j=1

λ jiU j,

Hi(U) = AiUi +UiA
′
i +

N

∑
j=1

λi jU j,

(4)

for i = 1, . . . ,N. Denote L 0(U) = U and, for k ≥ 1, L k(U) =

L (L k−1(U)). This is similar for T and H . We denote TΛ

and HΛ to emphasize the dependence on the transition matrix

Λ. Note that HΛ = T(Λ′).

Consider the MJLS defined as

Ψ : dx(t) = Aθ(t)x(t)dt + Bθ(t)dζ (t), x(0) = x0, θ (0) ∼ π0

(5)

where ζ (t) ∈ Rq is a Wiener process with incremental co-

variance operator Idt. The system Ψ allows us to establish a

link with the observability notion for MJLS, and to employ

the results in Narváez and Costa (2010), leading to the fact

that v′Civ = 0 is equivalent to Civ = 0, which is an important

element for the proof of the main result, as explained in Section

1. We shall assume that the initial distribution is invariant and

is such that πi(0) > 0, which is restrictive for system Ψ but will

not affect the controllability results. We define X(t) ∈ M n0 by

Xi(t) = E{x(t)x(t)′1{θ(t)=i}|F0}, t ≥ 0, i ∈ S ,

which satisfies the linear differential equations (Costa and

Fragoso (2005))

Ẋi(t) = Ti(X(t))+ Ri, X(0) = 0, (6)

for each i ∈ S , where R ∈ M n0 is such that Ri = BiB
′
iπi.

We shall employ the linear and invertible operator ϕ̂ and ϕ

(O. L. V. Costa and Marques (2000)) defined as follows. For

V ∈ Rn, let us identify the columns of V by

V = [v1

...v2

... · · ·
...vn] and define ϕ(V ) =











v1

v2

...

vn











,

and, for U ∈ M n, ϕ̂(U) = [ϕ(U1)
′ ϕ(U2)

′ · · · ϕ(UN)′]′ . With

this notation we obtain,

ϕ̂(T (U)) = A
′ϕ̂(U) (7)

where A is defined as

A =













Â1 + λ11In2 . . . λ1NIn2

λ21In2

. . . λ11In2

...
...

...

λN1In2 . . . ÂN + λNNIn2













with Âi = In ⊗A′
i + A′

i ⊗ In, where ⊗ is the Kronecker product

between matrices, see Costa and do Val (2002).

2.1 Observability matrices

In what follows we gather some results from (Narváez and

Costa (2010)) that will be employed in Section 3 to obtain,

via dual relations, some invariance results that are needed for

the main results. These dualities take into account the relations

between system Ψ and the MJLS defined as

ϒ: ϑ̇(t) = Aθ(t)ϑ(t), ϑ(0) = ϑ0, θ (0) ∼ π0,

y(t) = Cθ(t)ϑ(t), E{ϑ0ϑ ′
01{θ(0)=i}} = Qi, i ∈ S ,

where C ∈ M r,n and Q ∈ M n0, and the associated functional

W t(ϑ ,θ ) = E

{

∫ t

0
ϑ(τ)′C′

θ(τ)Cθ(τ)ϑ(τ)dτ|F0

}

(8)

defined whenever ϑ(0) = ϑ and θ (0) = θ .

Let us define L(t), t ≥ 0, by the linear differential equations:

L̇i(t) = Li(L(t))+C′
iCi, L(0) = 0, (9)

for each i ∈ S .

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9104



Definition 1. (Narváez and Costa (2010)). The set of matrices

O ∈ M n(n2N),n, defined for each i = 1, . . . ,N by

Oi = [Oi(0) Oi(1) . . . Oi(n
2N −1)]′ (10)

is called the set of observability matrices of the system ϒ, where

Oi(k) is given as

Oi(k) =
dk+1Li

dtk+1
(0) (11)

with Oi(0) = C′
iCi for each i ∈ S .

Proposition 1. (Narváez and Costa (2010)). ϑ ′Oi(k)ϑ = 0 for

all k = 0, . . . ,n2N −1, if and only if W t(ϑ , i) = 0, t ≥ 0.

Proposition 2. (Narváez and Costa (2010)). For each ϑ ∈ Rn

and sequence of Markov states i, i1, . . . , im such that ϑ ′Oi(k)ϑ =

0, k = 0, . . . ,n2N −1, and λi,i1λi1,i2 · · ·λim−1,im 6= 0, we have

Cim A
p1
im−1

A
p2
im−2

· · ·Apm

i ϑ = 0, (12)

for each pℓ ≥ 0, ℓ = 1, . . . ,m.

The following example is extracted from (Narváez and Costa

(2010)), to illustrate Proposition 2.

Example 1. Consider the system ϒ with

A1 =





2 0 0

0.01 1 0

0.9 1 0.1



 , C1 =





1 0 0

0 0 0

0 0 0



 ,

A2 =





0.5 0 0

0 0.99 0

1 1 1



 , C2 =





0 1 0

0 0 0

0 0 0



 ,

A3 =





1 0 0

0.1 0.25 0

0 0 1



 , C3 = 0, Λ =





−3 1 2

2 −5 3

0.5 0.5 −1



 .

Note that S = {1,2,3}, n = 3, N = 3. We consider initial

condition (x(0),θ (0)) with x(0) =
[

0 0 1
]′

and θ (0) = 1

(compatible with initial distribution µ0 = [1 0 0]), Consider

the sequence 1,3,1,2,3,2, for which λ1,3λ3,1λ1,2λ2,3λ3,2 6= 0.

We have checked that x(0)′O1(k)x(0) = 0, k = 0, . . . ,26, thus

satisfying the hypotheses of Proposition 2, and

C2A
p1
3 A

p2
2 A

p3
1 A

p4
3 A

p5
1 x(0) = 0,

for each pℓ = 0, . . . ,20, ℓ = 1, . . . ,5. This confirms (12).

3. INVARIANCE PROPERTIES

In this section we establish a relation between the quantity

v′Ci(k)v with the cost W defined in (8), allowing us to recast

the result in Proposition 2 and to show that

B′
jm

A
′pm

jm
· · ·A′p2

j2
A
′p1
j1

v = 0, ,

for any sequence i, j1, . . . , jm such that λi, j1λ j1, j2 · · ·λ jm−1, jm 6=

0. Based on this result, and considering C(k) ∈ M n0 defined

recursively for k ≥ 0 as

C(k + 1) = H (C(k))+ BB′π , C(0) = BB′π , (13)

we show in Theorem 1 that

v′Civ = 0 is equivalent to Civ = 0.

We proceed as follows. From (6) and applying the operator ϕ̂ ,

we obtain:

ϕ̂(X(t)) = A
′ϕ̂(X(t))+ ϕ̂(R)

and, if we define z(t) = ϕ̂(X(t)) and r = ϕ̂(R) we have

z(t) =

∫ t

0
eA ′τ rdτ. (14)

Next, we present some auxiliary results involving the system ϒ.

Note that ϒ is a version of the system Ψ without additive noise,

hence we can obtain results similar to the ones in Section 2 with

Ri = 0 in a straightforward manner. In particular, in analogy

with (6) we have

V̇ (t) = T (V (t)), V (0) = Q, (15)

Also, consider

W t =
∫ t

0
〈V (t),C′C〉dt.

We denote W t by W t
Q,C to emphasize the dependence on Q and

C. Now, let us link systems Ψ and ϒ by setting Q = R (the

conditional second moment of the initial condition of ϒ is equal

to the conditional second moment of the additive noise in Ψ).

Lemma 1. W t
R,C = ϕ̂(C′C)′z(t) where z(t) is as in (14).

Proof. Please see the Appendix A.

According to Lemma 1, to calculate the cost functional in the

system ϒ is equivalent to the inner product of the solution z(t)

associated to system Ψ with the vector ϕ̂(C′C). Next, for fixed

v ∈ Rn and i ∈ S , we define C ∈ M n,m such that

C j =

{

v′, if j = i,

0, if j 6= i.
(16)

For the following result, we define for each i ∈ S , matrices

Si(k), k = 0,1, . . ., as

Si(k) =
dk+1Xi

dtk+1
(0) =

k

∑
ℓ=0

T
ℓ

i (R). (17)

Lemma 2. v ∈ Rn and i ∈ S satisfy v′Si(k)v = 0, k = 0,1, . . .,

if and only if W t
R,C = 0 for all t ≥ 0, where C is as defined in

(16).

Proof. Please see the appendix B.

Corollary 1. v ∈ Rn and i ∈ S satisfy v′Si(k)v = 0, k ≥ 0, if

and only if

B′
iA

′pm

j1
· · ·A′p2

jm−1
A
′p1
jm

v = 0, (18)

for any sequence i, j1, . . . , jm such thatλi, j1λ j1, j2 · · ·λ jm−1, jm 6= 0.

Proof. Please see the Appendix C.

If we replace the transition rate matrix by its transpose Λ′ in

Corollary 1 and denote SΛ′(k) accordingly, it is simple to check

that HΛ = T(Λ′) and CΛ(k) = SΛ′(k), leading to the next result.

Corollary 2. v ∈ Rn and i ∈ S satisfy v′Ci(k)v = 0, k ≥ 0, if

and only if

B′
jm

A
′pm

jm
· · ·A′p2

j2
A
′p1
j1

v = 0, (19)

for any sequence i, j1, . . . , jm such thatλi, j1λ j1, j2 · · ·λ jm−1, jm 6= 0.

Remark 1. One interpretation for (19) is that there is no se-

quence in the form A
′pm

jm
· · ·A

′p2
j2

A
′p1
j1

that can take v out of the

null space of B′
jm

. A
p
ℓ is related to the derivatives of order p

of x(t) whenever θ (t) = ℓ, which can be employed to show
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that state trajectories starting with (x(0) = v,θ (0) = i) remain

almost surely in the null space of B′
jm

, constituting an invariance

property for x similar (dual) to the ones obtained in Narváez and

Costa (2010).

One can check, similarly to the case of observability (see

Narváez and Costa (2010) for details), that Ci(k) can be written

as a sum involving terms of the form

A
q1
j1

A
q2
i1
· · ·A

qm

im−1
B jm B′

jm
A
′pm

jm
· · ·A

′p2
j2

A
′p1
j1

, (20)

where j1, . . . , jm and j1, i1, . . . , im−1, jm are sequences of Markov

states. Then, assuming v′Ci(k)v = 0 for each k = 0, . . . ,n2N −

1, Corollary 2 produces A
q1
j1
· · ·A

qm

im−1
B jmB′

jm
A
′pm

jm
· · ·A′p1

j1
v = 0

whenever j1 reaches jm, yielding the next results.

Theorem 1. Consider system Ψ and let i ∈ S . For each k =

0,1, . . . ,n2N−1 we have Ci(k)v = 0 if and only if v′Ci(k)v = 0.

From Corollary 2 and Theorem 1 we obtain the next result.

Corollary 3. v ∈ Rn and i ∈ S satisfy Ci(k)v = 0 for k =

0,1, . . . ,n2N −1 if and only if v ∈ N (B′
jm

A
′pm

jm
· · ·A′p1

j1
).

4. CONTROLLABILITY

In this section we present a rank test for controllability. Note

that the null space of Ci is not altered if we replace the forcing

term BB′π of (13) with BB′ (recalling that we have assumed that

πi > 0); then, in what follows we consider C(k) ∈ M n0 defined

recursively for k ≥ 0 as

C(k + 1) = H (C(k))+ BB′, C(0) = BB′. (21)

Definition 2. We define C ∈ M n,n2N as

Ci(A,B,Λ) = [Ci(0) Ci(1) . . . Ci(n
2N −1)], (22)

where C(k) ∈ M n0 is as defined in (21). We refer to C as the

set of controllability matrices.

Definition 3. (Controllability). We say that the MJLS in (1) is

controllable if E{Γ(0,t)|θ (0) = i} > 0, i ∈ S , t ≥ 0.

Remark 2. If (v, i) is such that v′E{Γ(0,t)|θ (0) = i}v = 0, then

we have that v′Γ(0,t)v = 0 (a.s.). This yields that the null

space of Γ(0,t) is not trivial (a.s.), hence the range of the

controllability Gramian does not include Rn. This means that

there exists a set of initial conditions x0 such that
∫ t1

t0

Φ(t0,τ)Bθ(τ)u(τ)dτ 6= x0 (a.s.),

meaning that the associated continuous state trajectory can not

be sent to zero over the finite time interval [0,t] (a.s.).

Theorem 2. The MJLS in (1) is controllable if and only if

rank(Ci(A,B,Λ)) = n, i ∈ S .

Proof. Assume that i ∈ S is such that E{Γ(0,t)|θ (0) = i} is

not a positive definite matrix for some t > 0. Then, there exists

v 6= 0 such that v′E{Γ(0,t)|θ (0) = i}v = 0. This is equivalent

to

E
{

∫ t

0
v′Φ(0,τ)Bθ(τ)B

′
θ(τ)Φ(0,τ)′vdτ|θ (0) = i

}

= 0. (23)

Note that, for a stochastic variable V such that V ≥ c and

E{V} = c, we have that V = c (a.s.) and vice versa; here,

setting V = v′Φ(0,τ)Bθ(τ)(v
′Φ(0,τ)Bθ(τ))

′ for 0 < τ ≤ t (note

that V ≥ 0 and (23) means that E{V} = 0) we get that (23) is

equivalent to

v′Φ(0,τ)Bθ(τ)B
′
θ(τ)Φ(0,τ)′v = 0, (a.s.). (24)

Next, using the fact that Φ(0,τ) = Φ−1(τ,0) and denoting by

i, i1, . . . , iq the Markov states visited by θ over the time interval

[0,τ], and the respective jump time instants by t1, . . . ,tq, (24)

can be written as

v′Φ(0,τ)Bθ(τ)B
′
θ(τ)Φ(0,τ)′v

= v′Φ−1(τ,0)Bθ(τ)B
′
θ(τ)Φ

−1(τ,0)′v

=
[

B′
θ(τ)(Φ

−1(τ,tq))
′ · · · (Φ−1(t,0))′v

]

×B′
θ(τ)(Φ

−1(τ,tq))
′ · · · (Φ−1(t,0))′v = 0, (a.s.).

(25)

The term on the right-hand side of (25) is equivalent to

B′
iq

e
−A′

iq
(τ−tq)

· · ·e−A′
i(t1−0)v = 0, (a.s.),

and, similarly to the proof in (Narváez and Costa, 2010, Corol-

lary 3) we obtain in a recursive manner

B′
iq

A
′pq

iq
· · ·A′p1

i v = 0,

for any exponents p1, . . . , pq. Note that i, i1, . . . , iq is any se-

quence of Markov states satisfying λi,i1 · · ·λiq−1,iq 6= 0, and from

Corollary 3 we have that Ci(k)v = 0, k = 0,1, . . . ,n2N−1. This

is equivalent to rank(Ci(A,B,Λ)) < n.

Example 2. Consider the continuous-time MJLS (1) with

A1 =

[

1 1

0 1

]

, B1 =

[

1 0

0 0

]

, A2 = 0, B2 = I2,

and

Λ =

[

0 0

1 −1

]

.

We consider the initial condition x0 =
[

0 1
]′

and θ (0) = 1. (21)

yields

C1(k) =

[

ck 0

0 0

]

,

k = 0,1, . . . ,7, where c0 = 1, c1 = 3, c2 = 7, c3 = 15, c4 = 31,

c5 = 63, c6 = 127, and c7 = 255. This implies that rank(C1) < 2

and we conclude from the test of controllability appearing

in Theorem 2 that the system is not controllable. Note that

x0 ∈ N (C1(k)), for k = 0,1, . . . ,7. It is simple to check that

the second component of x(t) is given by x2(t) = et (a.s.) for

any control u(t), confirming that x(0) can not be driven to zero

over a time interval [0,t] (see Remark 2).

Example 3. Consider the continuous-time MJLS (1) with

A1 =

[

1 1

0 0

]

, B1 = I2, A2 = B2 = 0,

x0 =
[

1 0
]′

, θ (0) = 2, and Λ as in Example 2. For this system

we have checked that E{Γ(0,t)|θ (0) = 2} > 0 for all t >

0, hence the system is controllable. One can check that the

controllability matrices are of full rank, confirming Theorem

2. The control u(t) was designed as follows; let T denote the

jump time instant when the Markov chain enters θ (T ) = 1, and

set u(t) = 0, t < T and, for t ≥ T set u(t) in such a manner that

x(t) is sent to zero at time instant t f = 0.9 in a linear fashion.
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We illustrate in Fig. 1 three trajectories x(t,wℓ), ℓ = 1,2,3,

corresponding to three different realizations w1, w2 and w3 of

the Markov chain. As we can see from the figure, x(t,w3) does

not reach zero over the interval [0,t f ] as T (w3) > t f .

tT (w1)T (w2) t f

x(w1,t)
x(w2,t)

x(w3,t)

0.5 1.0

1.0

Figure 1. Three realizations of x for the system in Example 3.

5. CONCLUSIONS

We have introduced a controllability notion for continuous-

time MJLS, and obtained the invariance property in Corollary

3, see also Remark 1. Based on this result, we have shown

in a rather direct manner in Theorem 2 that the MJLS is

controllable if and only if the set of controllability matrices are

formed of full rank matrices Ci, i ∈S , which brings the theory

of (continuous-time) Markov jump linear systems to a more

complete parallel with the one of deterministic linear systems.

The numerical examples illustrate that, for non-controllable

MJLS, there exist initial conditions that can not be sent to

zero (via the control u) over a finite time interval [0,t f ], almost

surely; for controllable systems, u(t) can be selected so x(t f ) =

0 with positive probability.
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Appendix A. PROOF OF LEMMA 1

We shall need the following notation. We write

R = ∑N
j=1 R̃ j, where R̃ j = (0, . . . ,0,R j,0, . . . ,0) and each R j is

a component of R. We also write R j = ∑n
k=1 r jkr′jk. Therefore,

R̃ j = ∑n
k=1 R̃ jk with R̃ jk = (0, . . . ,0,r jkr′jk,0, . . . ,0), noting that

the non-trivial element is in the j-th position; finally,

R =
N

∑
j=1

n

∑
k=1

R̃ jk. (A.1)

Applying the operator ϕ̂ in (15) and defining w(t) = ϕ̂(V (t))

we obtain ẇ(t) = A ′w(t), whose solution is given by

w(t) = eA ′t
N

∑
j=1

n

∑
k=1

ϕ̂(R̃ jk). (A.2)

In addition, for each j = 1, . . . ,N e k = 1, . . . ,n, we introduce

X̃ jk(t) ∈ M n0 by

˙̃X jk(t) = T (X̃ jk(t)), X̃ jk(0) = R̃ jk. (A.3)

In fact, we can define systems ϒ j,k such that δ̇ jk(t)= Aθ(t)δ jk(t),

y(t) = Cθ(t)δ jk(t), θ (0) ∼ π0 and δ jk(0) is such that X jk(0) =

E{δ jk(0)δ jk(0)′} = R̃ jk, j = 1, . . . ,N. Using again the operator

ϕ̂ and replacing z jk(t) = ϕ̂(X̃ jk(t)) we obtain ż jk(t) = A ′z jk(t)

whose solution is given as z jk(t) = eA ′t ϕ̂(R̃ jk). Then, when

calculating W t
R,C we have,

W t
R,C = ϕ̂(C′C)′

∫ t

0
eA ′τ rdτ. (A.4)

then, from (14) and (A.4) we have

W t
R,C = ϕ̂(C′C)′z(t), (A.5)

completing the proof.

Appendix B. PROOF OF LEMMA 2

We need to prove the following proposition before.

Proposition 3. Consider the system Ψ and let r = ϕ̂(R). The

following statements are equivalent:

(i) v′X ′
i (s)v = 0 for some s ≥ 0

(ii) ϕ̂(C′C)′
dmz

dtm
(0) = 0 for m = 1,2, . . .

(iii) ϕ̂(C′C)′A ′m−1r = 0 for m = 1,2, . . .

(iv) ϕ̂(C′C)′z(t) = 0 and v ∈ N (Xi(t)), for all t ≥ 0

Proof: (i) ⇒ (ii). X(t) ≤ X(s), for 0 ≤ t ≤ s, then:

z(t)′ϕ̂(C′C) = 〈X(t),C′C〉 ≤ 〈X(s),C′C〉 ≤ v′Xi(s)v = 0.

Thus,

z(t)′ϕ̂(C′C) = 0, for 0 ≤ t ≤ s

yielding,

ϕ̂(C′C)′
dmz

dtm
(0) = 0 for m = 1,2, . . .

(ii) ⇒ (iii). ϕ̂(C′C)′
dmz

dtm
(0) = A ′m−1r, m = 1,2, . . ., leads to

the result.

(iii) ⇒ (iv). We have X(t) = S′S for some nonsingular matrix

S. Then, for all t ≥ 0 we have Xi(t)v = 0. This is equivalent to

S′Sv = 0. One can check the following equivalences:

S′Sv = 0 ⇔ v′S′Sv = 0 ⇔ v′Xi(t)v = 0 ⇔ 〈X(t),C′C〉 = 0,

and 〈X(t),C′C〉 = 0 is equivalent to

ϕ̂(C′C)′z(t) = 0, ∀t ≥ 0,

hence, ϕ̂(C′C)′z(t) = 0 is equivalent to v ∈ N (Xi(t)), for all

t ≥ 0. Now, let us show that ϕ̂(C′C)′z(t) = 0 ∀t ≥ 0. We have

that

z(t) =
∫ t

0
eA ′τ rdτ =

∫ t

0

(

∞

∑
k=0

(A ′τ)k

k!

)

rdτ =

∫ t

0

(

∞

∑
k=0

τk

k!
A

′k

)

rdτ,

then (iii) leads to

ϕ̂(C′C)′z(t) =
∞

∑
k=0

[

∫ t

0

(

τk

k!
dτ

)

ϕ̂(C′C)′A ′kr

]

= 0,

concluding the proof. (iv) ⇒ (i). Trivial.

B.1 Proof of Lemma 2

Now, for k = 0,1, . . . we have the equivalences:

v′Si(k)v = 0 ⇔ v′
dk+1Xi

dtk+1
(0)v = 0 ⇔ ϕ̂(C′C)′

dk+1z

dtk+1
(0) = 0.

From the Proposition 3, the last equality is equivalent to

ϕ̂(C′C)′z(t) = 0 ∀t ≥ 0 which, in turn, is equivalent to W t
R,C =

0 ∀t ≥ 0 (see (A.4)).

Appendix C. PROOF OF COROLLARY 1

Assume v′Si(k)v = 0, k ≥ 0, then Lemma 2 leads to W t
R,C = 0.

Now, we have that

W t(x(0) = rik,θ (0) = i) ≤W t
R̃i,C

≤W t
R,C = 0,

where rik is as in (A.1), hence,

W t(rik, i) = 0

for k = 1, . . . ,n. Then, if jm is accesible from i, Proposition 2

yields that

C jm A
p1
jm−1

A
p2
jm−2

· · ·A
pm

j1
rik = 0,

that is equivalent to

C jm A
p1
jm−1

A
p2
jm−2

· · ·Apm

j1

n

∑
k=1

rikr′ik = 0,

and by definition of Ri and transposition we finally have

RiA
′pm

j1
· · ·A′p2

jm−2
A
′p1
jm−1

C′
jm

= 0,

and hence,

B′
iA

′pm

j1
· · ·A′p2

jm−2
A
′p1
jm−1

C′
jm

= 0.

Finally, from (16) we have

B′
iA

′pm

j1
· · ·A′p2

jm−1
A
′p1
jm

v = 0

completing the proof.
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