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Abstract: This paper addresses the long run average cost control problem for linear systems
with Markov jump parameters and indirect observation of the Markov state. One important
issue that arises when employing some standard optimization methods is that the initialization
often requires a stabilizing control, which may be difficult to obtain in the partial observation
scenario. We propose an algorithm that handles this initialization issue by considering“auxiliary”
problems with intermediate levels of observations, starting with complete observation of the
Markov chain (allowing to use coupled algebraic Riccati equations to find stabilizing controls)
and slowly shifting to the considered indirect observation problem. The effectiveness of the
method is illustrated via a numerical example.
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1. INTRODUCTION

Linear systems with Markov jump parameters (LSMJP)
constitute a well known class of system that can be success-
fully employed in applications featuring random failures,
environmental changes and other phenomena that lead to
random, abrupt changes of behaviour, which are modeled,
in LSMJP, by an underlying Markov chain {θk}. There
exist numerous results for LSMJP, addressing notions of
stability (see e.g. Fragoso and Costa (2005); Dragan and
Morozan (2008); Todorov and Fragoso (2010)), stabiliz-
ability and detectability (e.g. Costa et al. (2005a)), op-
timal control with H2, H∞ norms and other criteria (e.g.
Farias et al. (2001); Costa and Tuesta (2003); Todorov
and Fragoso (2008); Geromel et al. (2009)), filtering (e.g.
Lin et al. (2011); Souza and Fragoso (2003); Souza et al.
(2006)), fault detection (e.g. Meskin and Khorasani (2010);
Zhang et al. (2010)), and different scenarios of observation,
including complete, partial and cluster observations (e.g.
do Val et al. (2002)). We also mention the monograph
Costa et al. (2005b) and references therein.

The long run average cost (LRAC) control problem for
LSMJP arises when additive noise is present in the state,
making usual linear quadratic costs to diverge. The prob-
lem has been studied in the complete observation scenario
and it has been shown that the optimal control in linear
state feedback form and can be obtained using coupled
algebraic Riccati equations (CARE) (Costa et al., 2005b).

However, in scenarios where θk is not observed, or is
indirectly observed, there are few results available in
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literature regarding the LRAC problem for LSMJP. In
do Val and Başar (1999), a variational approach have been
employed to derive an algorithm for the quadratic, finite
horizon T cost, that may provide approximate solutions
(assuming that the control in static linear state feedback
form) to the LRAC by taking the limit T → ∞. In spite
of the fact that convergence of the finite horizon average
cost to the LRAC is demonstrated in Vargas et al. (2006),
convergence of the static state feedback as T → ∞ is
only a conjecture. The problem was also addressed in
Silva and Costa (2009), where a genetic algorithm have
been proposed with the drawback that the initial solution
(initial gain) has to be mean square stabilizing. Obtaining
a stabilizing gain can be a complex task in the partial
observation scenario, making difficult to use the algorithm
in Silva and Costa (2009), as well as other optimization
techniques that could be applied or adapted to the LRAC
problem. In fact, in Silva and Costa (2009) the gains
obtained via the CARE from the complete observation
scenario are employed as “guesses” for stabilizing initial
solutions, but there is no guarantee that these are good
guesses, as the LRAC problems in partial observation and
complete observation contexts are quite different.

In this paper we propose an algorithm that makes the
aforementioned initialization issue easier to handle and to
employ the CARE to initialize the algorithm in a mean-
ingful manner. The basic idea is to consider intermediate
problems, with intermediate“observation levels”. Actually,
we consider indirect observation of the Markov chain via
a variable rk, taking values in the finite set S = {1, . . . ,S}
and satisfying P(rk = θk|θk) = c (with the interpretation
that the observation of θ may be erroneous, that is,
P(rk 6= θk|θk) = 1− c). We assume that control is in the
linear state feedback form uk = Lrk

xk, where u and x stand
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for the control and the so-called continuous state variable,
respectively; we say that c is the level of observation and
that a gain is stabilizing for the level of observation c

when uk stabilizes the system. The algorithm starts with
c = c0 = 1 (which is equivalent to the complete observation
case) and solution Li, i ∈ S, given by the CARE, which is
meaningful in the sense that it is optimal for the LRAC
problem with c = c0 = 1 and provides a good initial solution
for c1 < c0, c1 ≈ c0. Then, at each step i, the algorithm
sets c = ci < ci−1 and calculates (using, in this paper, the
genetic algorithm of Silva and Costa (2009)) a new MS-
stabilizing gain Li, i ∈ S. We show that there always exist
ci < ci−1 such that the gain obtained in the previous step
i−1 is stabilizing for the level of observation ci, ensuring
that the method finds new values for ci until it reaches the
desired observation level cf (in particular, in the scenario
of non-observed θ one can set cf = 1/S, as we explain in
Section 3), meaning that the algorithm have obtained a
solution for the LRAC problem, or ci−ci−1 satisfies a stop
criterion (algorithm failed).

The paper is organized as follows. Section 2 presents the
LSMJP, the LRAC and some preliminary results from the
context of complete state observation. The structure of
observation and the considered class of control are consid-
ered in Section 3, as well as a formulation for calculating
the LRAC (that can be considered as a relatively simple
extension of available results). In Section 4 we propose
an algorithm for the LRAC problem, and in Section 5
we present a numerical example illustrating the proposed
algorithm.

2. NOTATION AND PROBLEM STATEMENT

Let Mr,s denote the linear space formed by a number S

of r × s-dimensional matrices Ui, i = 1, . . . ,S, that is, Mr,s

= {U = (U1, . . . ,US)}. Also, Mr ≡ Mr,r. For U,V ∈ Mr,
U ≥V signifies that Ui−Vi ≥ 0 for each i ∈ S, and similarly
for other mathematical relations. Consider tr{·} as the
trace operator,

〈U,V 〉 =
S

∑
i=1

tr{U ′
iVi}.

We consider the discrete-time LSMJP

xk+1 = Aθk
xk + Bθk

uk + Gθk
wk, k ≥ 0 (1)

defined in an appropriate probability space, with initial
condition x0 ∈ Rn,m. x ∈ Rn,m is the state, u ∈ Rm is the
input and wk ∈ Rq,m forms a zero-mean, Gaussian iid
random process, satisfying E{wkw′

k} = Σ. We assume that
the sets of matrices A =(A1, . . . ,AS)∈Mn, B = (B1, . . . ,BS)∈
Mn,m and G = (G1, . . . ,GS) ∈ Mn,q are known, and Aθk

= Ai

whenever θk = i, and similarly for Bθk
and Gθk

. θ ∈ S =
{1, . . . ,S} is the state of a finite, homogeneous, ergodic
Markov chain having transition probabilities

P(θk+1 = j|θk = i) = pi j, i, j ∈ S.

We denote µk = [P(θk = 1), . . . ,P(θk = S)], k ≥ 0, and
assume that the initial distribution µ0 and the transition
probability matrix P = [pi j] are known.

Consider the cost function

JT =
T

∑
k=0

x′kCθk
xk + u′kDθk

uk,

with C ∈ Mn,C = C′ ≥ 0 (meaning that Ci = C′
i ≥ 0, as

stated above) and D ∈ Mm,D = D′ > 0. Since xk forms a
stochastic process, for optimization purposes we consider
the expected value of J,

JT = E {JT},
whenever T < ∞, and the LRAC

Y = lim
T→∞

sup
T

JT

T
.

Following the notation of Costa et al. (2005a) we define,
for U ∈ Mn, V ∈ Mn, the linear operator TU : Mn → Mn by

TU,i(V ) :=
S

∑
j=1

p jiU jV jU
′
j, i ∈ S, (2)

and we define for convenience T0(V ) = V , and for t ≥ 1,
Tt(V ) = T(Tt−1(V )). We consider the set of conditional
second moments X(k) ∈ Mn as

Xi(k) = E{xkx′k11{θk=i}}, i ∈ S

where 11C represents the Dirac function of the set C and we
define ϕ ∈ Mn as

ϕi(k) = ∑
j∈S

p jiµk( j)G jΣG′
j, ∀i ∈ S.

The following proposition is an adaptation of the results
in Costa et al. (2005b).

Proposition 1. Let X ∈ Mn be defined by Xi = x0x′0µ0(i),
and assume linear state feedback in the form uk = Kθk

xk

for some K ∈ Mm,n. Then,

X(k + 1) = TA+BK(X(k))+ ϕ(k). (3)

Moreover,

JT =
T

∑
k=0

〈

X(k) , C + K′DK
〉

. (4)

We say that the control is stabilizing (or the gain K is
stabilizing, when appropriate) if, for each initial condition
x0 and µ0, X(k) is bounded (i.e., exists M such that Xi(k)≤
M). In Vargas et al. (2006), it is shown that |JT −T 〈X , C+
K′DK〉| ≤α‖µ0−µ∞‖+β‖X(0)−X‖, for some non-negative
scalars α,β , where X ∈ Mn is such that X = TA+BK(X)+
ϕ(∞), provided that K is stabilizing. Multiplying the above
inequality by T−1 and taking the limit T → ∞, yields the
next result Vargas et al. (2006).

Proposition 2. Consider the LSMJP and assume that the
linear state feedback control uk = Kθk

xk, for some K ∈Mm,n,
is stabilizing. Then,

Y =
〈

X , C + K′DK

〉

(5)

where X ∈ Mn satisfies

X = TA+BK(X)+ ϕ(∞). (6)

3. INDIRECT OBSERVATION OF θ

Assume that θk is observed via a variable rk having
conditional distribution

P(rk = θk|θk) = c,

P(rk = j|θk) =
1− c

S−1
, when j 6= θk.

Note that for c = 1, we have θk = rk almost surely cor-
responding to the scenario of complete observation and
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c = 1/S retrieves the scenario of non-observed θ , as Bayes’s
rule yields

P(θ = i|r = r̃) =
P(r = r̃|θ = i)P(θ = i)

∑
j∈S

P(r = r̃|θ = j)P(θ = j)

=
1
S

µ(i)

∑
j∈S

1
S

µ j

= µ(i) = P(θ = i),

that is, the distribution of θ does not depend on r when
c = 1/S. Intermediate values of c (1/S < c < 1) have an
interpretation of different“levels of observation”for θ , and
we refer to c as the observation level.

In accordance with this structure of observation, we con-
sider a linear state feedback control in the form,

uk = Lrk
xk, (7)

where L ∈ Mm,n. We say that L is stabilizing with the
observation level c when the control u given in (7) stabilizes
the system (1) and the observation level is c.

Remark 3. One can employ Proposition 2 to calculate
the LRAC by considering a modified, augmented Markov
chain, having (θk,rk) as the state and transition probabil-
ities P(θk+1 = ℓ,rk+1 = m|θk = i,rk = j) = piℓ(c11{ℓ=m}+(1−
c)(S−1)−1 11{ℓ 6=m}), and“cluster”gains in the form K(θk,rk) =
Lrk

. This leads to a large set of conditional second moments
X(i, j), i, j = 1, . . . ,S, making considerably more difficult to
obtain solutions for the system of linear equations (6).

In order to circumvent the difficulty pointed out in Remark
3, in what follows we present a formulation that allows
to use the original Markov chain, however with different
operators that take into account the indirect observation
of θ and the control structure in (7); the results can
be considered as a relatively simple extension, and some
proofs are omitted.

Consider the closed loop matrix

A j,ℓ = A j + B jLℓ, j, ℓ ∈ S.

Let V ∈ Mn; we define the operator LL : Mn → Mn by

LL,i(V ) := ∑
ℓ∈S

∑
j∈S

p jiA jℓV jA
′
jℓ

(

c 11{ j=ℓ}+
1− c

S−1
11{ j 6=ℓ}

)

, (8)

and ϕ̄ ∈ Mn by

ϕ̄i := ∑
ℓ∈S

∑
j∈S

p jiµ( j)G jΣG′
j

(

c 11{ j=ℓ}+
1− c

S−1
11{ j 6=ℓ}

)

. (9)

The next Lemma is a counterpart of Proposition 1, provid-
ing a recursive formula for X(k) in terms of the operator
in (8) and the forcing term in (9). This is an important
formula that allows us to obtain a condition for stability
in terms of eigenvalues of a certain matrix A, derived in
what follows.

Lemma 4. Consider the LSMJP (1) with indirect observa-
tion of the Markov state via the variable r and control in
the form (7). Then,

Xi(k + 1) = LL,i (X(k))+ ϕ̄i(k). (10)

Proof. Please see the Appendix.

An useful formulation for calculating the LRAC in the
context of indirect observation of θ that parallels the one
in Proposition 2 is as follows.

Lemma 5. Consider the LSMJP (1) with indirect observa-
tion of the Markov state via the variable r and control in
the form (7) then,

Y =
〈

X , C + L′DL
〉

(11)

where X ∈ Mn satisfies

X = LA+BL(X)+ ϕ̄(∞). (12)

A vector form of (10) can be obtained in a straightforward
manner using the Kronecker tensor product (denoted by
kron as usual). For V ∈ Mn, let us identify the columns of
V by

V =
[

v1 v2 · · · vn

]

and define ϕ(V ) =









v1

v2

...
vn









,

and, for U ∈ Mn, vec(U) = [ϕ(U1)
′ ϕ(U2)

′ . . .ϕ(US)
′]′.

Lemma 6. Let X(k) ∈ Mn defined as in (10), then

vec(X(k + 1)) = A vec(X(k))+vec(ϕ̄)

where A ∈ RnS,1 is defined by A = [aℓ j] with

aℓ j =







cpℓikron(Aℓ j,Aℓ j), if ℓ = j

1−c
S−1

pℓikron(Aℓ j,Aℓ j), otherwise.

Proof. Consider Xi(k + 1) = LL,i (X(k)) + ϕ̄i(k). Assume
ϕ̄(k) = 0 (the proof for general ϕ̄ is similar and is not
presented). We have

Xi(k + 1) = ∑
ℓ∈S

∑
j∈S

p ji

(

A jℓX j(k)A
′
jℓ

)(

c 11{ j=ℓ}+
1− c

S−1
11{ j 6=ℓ}

)

.

Applying the Kronecker tensor product on both sides we
obtain

vec(Xi(k + 1)) = ∑
ℓ∈S

∑
j∈S

p ji

(

kron(A jℓ,A jℓ) vec(X j(k))
)

(

c 11{ j=ℓ}+
1− c

S−1
11{ j 6=ℓ}

)

.

This yields

vec(Xi(k +1)) = ∑
j∈S

a1 j vec(X1(k))+ . . .+ ∑
j∈S

aS j vec(XS(k)),

which leads to the result.

The next result is an adaptation of Costa et al. (2005b),
which can be derived by showing that, for each forcing
term ϕ̄ , the solution X(k) of (10) is bounded if and only
if the spectral radius of LL,i is smaller than one, which is
equivalent to require that the eigenvalues of A lie in the
open unit disk.

Lemma 7. Consider the LSMJP (1) with indirect observa-
tion of the Markov state via the variable r and controls as
in (7). The set of gains L ∈ Mm,n is stabilizing if and only
if the eigenvalues of A lie in the open unit disk.

Lemma 8. If L is stabilizing for c, then there exists δ > 0
such that K is stabilizing for c− δ

Proof. It is a well know fact that the system is stable with
control uk = Lrk

xk if and only if the spectral radius of LL,c,
rLL,c satisfies rLL,c < 1. This is equivalent to require that the
eigenvalues of AL,c lie in the open unit disk. The eigenvalues
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of AL,c depend continuously on c, in suck a manner that
there exist δ > 0 suck that the eigenvalues of AL,c also lie
in the unit disk. This implies that L is stabilizing for c−δ .

4. ALGORITHM FOR LRAC

In this section we are interested in the LRAC with indirect
observation of θ , with observation level c = cf, as presented
in Section 3. We consider the Algorithm 1, which generates
a sequence of intermediate levels of observation cℓ, ℓ =
0,1, . . . , with c0 = 1 and cf ≤ cℓ ≤ cℓ−1. The algorithm
considers the associated problems in the variables X ∈ Mn

and L ∈ Mm,n (see Lemma 5),

Pcℓ
: minL〈X ,C + L′DL〉

s.t.
X = LL,cℓ

(X)+ ϕ(∞)
L is stabilizing

(13)

where we denote the operator L defined in (8) by LL,c

to emphasize the dependence on the set of gains L and
the observation level c. The method obtains a sequence
of gains Lℓ ∈ Mm,n, ℓ ≥ 0, such that each Lℓ is stabilizing
considering the observation level cℓ.

In order to formalize the algorithm, we denote by AL,c the
matrix A (as in Lemma 6) when it is associated with the
set of gains L and observation level c. Stabilizability of
L can be checked via the eigenvalues of AL,c, see Lemma
7. We shall also need the following CARE in the variable
P ∈ Mn, Pi = P′

i ≥ 0,

Pi = A′
iEiAi − (A′

iEiAiBi)(Di + B′
iEiBi)

−1(B′
iEiAi)+Ci (14)

where Ei = ∑S
j=1 pi jPj is the coupling term. We can obtain a

solution to the CARE via the Algorithm 3 (see Costa and
do Val (2002); Costa et al. (2006)) presented in Appendix
B for ease of reference.

Algorithm 1

1) Set c0 = 1 and choose a positive scalar quantity ε to
serve as a stop criterion.

If there is no stabilizing solution for the CARE
(14), stop – there is no stabilizing solution to Pcf .
Else, find the associated set of gains L ∈ Mm,n. Set
i = 1 and L0 = L.

2) Set si, 0 < si ≤ ci−1 − cf and ci = ci−1 − si.
3) If Li−1 is stabilizing with the observation level ci, then

find a solution Li ∈ Mm,n for Pci
.

Else, set si = si/2, ci = ci−1 − si and return to (3).
4) If ci = cf or ci − ci−1 < ε, stop. Else, set i = i+ 1, and

return to (2).

In order to find a solution Li for Pci
at step (3) of

Algorithm 1, we use the algorithm developed in Silva and
Costa (2009). In what follows we give an overview of that

algorithm. We use the set of gains Li−1 = (Li−1
1 , . . . ,Li−1

S ) to
obtain the initial population as follows:

L(ℓ) = (Li−1
1 + R1, . . . ,L

i−1
S + RS), ℓ = 1, . . . ,q (15)

where q is the size of the initial population and Ri, i∈ S, are
random matrices (typically, the variance of each element
of R is small when compared with the modulus of the
corresponding element of Li). The Algorithm 2 describes
the Genetic Algorithm for Pci

.

Algorithm 2

1) Set the GA and system parameters and select a stop
criterion.

2) Initialize the population L(ℓ) as in (15).
3) Perform genetic and evolutionary operators to obtain

a new population and the gains L(ℓ).
4) For each L(ℓ), calculate YL(ℓ) via (11).

5) If the stop criterion is satisfied, set Li = argminℓ YL(ℓ),
otherwise return to (3).

5. NUMERICAL EXAMPLE

The numerical example considered in this paper is an
adaptation from (Oliveira et al., 2009, Ex.1). Consider
system (1) with

A1 =

[

2 2
3 1

]

, A2 =

[

1 0
0.5 1

]

, B1 =

[

2
1

]

, B2 =

[

0
0

]

,

G1 =

[

0.5 0
0 0.4

]

, G2 =

[

1 0
0 0.8

]

, C1 =

[

1 −1
1 1

]

,

C2 =

[

1 0
0 1

]

,P =

[

0.6 0.4
1 0

]

,x0 =

[

0
0

]

,

D1 = D2 = 1 and µk =
[

0.514 0.486
]

. We consider the
LRAC with no observation of the Markov state, that is, we
set cf = 1/S = 1/2. For the initialization of the Algorithm
1, we employ the CARE (14) (solved using the method
presented in the Appendix B), which yields

L0
1 ≈ [−1.002 −1.000]; L0

2 = [0 0].

The Algorithm 1 has produced the sequence c0 = 1,c1 =
0.9, . . . ,c4 = 0.6,c5 = 0.5. The Fig. 1 shows the behaviour of
||XLi(k)|| calculated via Lemma 4, for the gains L1,L3 and
L5, suggesting that the gains are stabilizing (X is bounded).

14

11

4

0

i = 1
i = 3

i = 5

0 7 22 30k

‖X
L

i
(k

)‖

Fig. 1. Norm of XLi for the gains L1, L3 and L5.

The cost associated with each i, YLi ,ci are show in Fig. 2.
We also illustrate in Fig. 3 the cost YLi ,c incurred by each

gain Li in the scenario of no observation of θ , that is,
with fixed c = 0.5; as we can see from the figure, the
algorithm generates a sequence of gains whose costs are
monotonically decreasing. For comparison purposes, we
have employed the variational method of do Val and Başar
(1999) presented in Appendix C, which yields

K ≈ [−1.121 −0.953] and YK,c=0.5 ≈ 25.531.
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20

23

26

29

0 1 2 3 4 5
i

Y
L

i ,
c i

Fig. 2. Values of the LRAC for different levels of observa-
tion c0, . . . ,c5 and the associated gains L0, . . . ,L5.

26.5

27

28

29

0 5 10 15 20 25
i

Y
L

i ,
c=

0
.5

Fig. 3. Values of the LRAC in the non-observed scenario
for different gains L0, . . . ,L5.

The Algorithm 1 provides a similar solution

L5
1 ≈ [−1.110 −0.975],L5

2 = 0 and YL,c=0.5 ≈ 26.050.

6. CONCLUSIONS

Considering the LRAC control problem for linear systems
with Markov jump parameters and indirect observation
of the Markov state, we have proposed the Algorithm 1
that takes into account a sequence of subproblems Pci

with
intermediate levels of observation ci. The algorithm makes
easier to handle Pci

as the set of gains Li−1 obtained at
step i−1 (suboptimal solutions for Pci−1

) represent a good
initial solution for Pci

when ci − ci−1 is small enough; in
particular, we have shown in Lemma 8 that there always
exists ci < ci−1 such that Li−1 is stabilizing for ci. Another
interesting feature of the algorithm is that it allows to use
the CARE solution from the complete observation in a
meaningful manner (it is optimal for the observation level
c0) and slowly shifts to the indirect observation problem.

We have derived in Lemma 5 a formulation for the LRAC
in the indirect observation scenario, motivated by the fact
that, as explained in Remark 3, finding a solution for each
intermediate problem Pci

involves the constraint (6) in
the variables X(1,1), . . . ,X(S,S) arising from an augmented
Markov chain. In the formulation that we have obtained,
(6) is substituted with (12), which involves the variables
X1, . . . ,XS. A numerical example is included to illustrate
the use of Algorithm 1.
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Appendix A. PROOF OF LEMMA 4

Proof.

Xi(k + 1) = ∑
ℓ∈S

E

{

xk+1x′k+1 11{θk+1=i,rk=ℓ}
}

= ∑
ℓ∈S

∑
j∈S

E

{(

Aθk,rk
xk + Gθk

wk

)(

Aθk,rk
xk + Gθk

wk

)′

11{θk+1=i,rk=ℓ,θk= j}
}

= ∑
ℓ∈S

∑
j∈S

E

{(

Aθk,rk
xk + Gθk

wk

)(

Aθk,rk
xk + Gθk

wk

)′

11{θk+1=i} |rk = ℓ,θk = j
}

P(θk = j,rk = ℓ)

= ∑
ℓ∈S

∑
j∈S

E

{(

A jℓxk + G jwk

)(

A jℓxk + G jwk

)′}

P(rk = ℓ |θk = j )P(θk+1 = i,θk = j)

= ∑
ℓ∈S

∑
j∈S

(

A jℓE

{

xkx′k 11{θk= j}
}

A′
jℓ + G j

E

{

wkw′
k 11{θk= j}

}

G′
j

)

P(rk = ℓ |θk = j )

P(θk+1 = i |θk = j )

= ∑
ℓ∈S

∑
j∈S

p ji

(

A jℓX j(k)A
′
jℓ + G jΣµk( j)G′

j

)

(

c 11{ j=ℓ}+
1− c

S−1
11{ j 6=ℓ}

)

= ∑
ℓ∈S

∑
j∈S

p ji

(

A jℓX j(k)A
′
jℓ

)(

c 11{ j=ℓ}+
1− c

S−1
11{ j 6=ℓ}

)

+ ∑
ℓ∈S

∑
j∈S

p ji

(

G jΣµk( j)G′
j

)(

c 11{ j=ℓ}+
1− c

S−1
11{ j 6=ℓ}

)

= Li (X(k))+ ϕ̄i(k).

Appendix B. ALGORITHM FOR SOLVING (14)

Algorithm 3

1) Set κi ≤ 1 as the largest integer for which
√

κipiiAi is
stable.

2) Set P0 = (P0
1 , ...,P0

N) ∈ Mn+.
3) For k = 1,2, .. and i = 1,2, ...,N solve the standard

algebraic Riccati equations:

−Pk
i +κi piiA

′
iP

k
i Ai + A′

iẼ
k
i Ai − (κipiiA

′
iP

k
i Bi + A′

iẼ
k
i Bi)

× (Di + κipiiB
′
iP

k
i Bi + B′

iẼ
k
i Bi)

−1

× (κipiiB
′
iP

k
i Ai + B′

iẼ
k
i Ai)+Ci = 0

where

Ẽk
i =

i

∑
j=1

pi jP
k
j +(1−κi)piiP

k
i .

Appendix C. VARIATIONAL METHOD

Algorithm 4

1) Create an sequence of gains K(0).

2) Find X (η)(k) as in Proposition 1. Then set η = η + 1
and k = T −1.

3) Determine K(η)(k) define by

T

∑
i=1

[

Λ
(η)
i (k + 1)K(η)(k)+ B

′
iEi

(

F (η)(k + 1)
)

Ai

]

X
(η−1)
i (k) = 0

with

Λ(η)(k) = D+ B
′
E

(

F (η)(k)
)

B.

Calculate F(η)(k) through

F
(η)
i (k) = Ci + K(η)(k)

′
DiK

(η)(k)+
(

Ai + BiK
(η)(k)

)′

Ei

(

F (η)(k + 1)
)(

Ai + BiK
(η)(k)

)

with F
(η)
i (T ) = 0 and

Ei

(

F(η)(k)
)

= ∑
j∈S

p jiF
(η)
i (k).

Do k = k−1; if k ≥ 0, return to (3).
4) If the stop criterion is not satisfied, return to (2).
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