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Abstract: The fundamental objective of autopilot design for missile systems is to provide stability with 
satisfactory performance and robustness over the whole range of flight conditions throughout the entire 
flight envelope that missiles are required to operate in, during all probable engagements. Depending on the 
control mode (skid-to-turn or bank-to-turn), intercept scenario (such as surface to surface, surface to air, 
air to air) and mission phase (launch, midcourse, terminal), missile autopilots can command accelerations, 
body rates, incidence angles, or flight path angles. To this end, classical and modern multivariable 
techniques from linear control theory combined with gain scheduling have dominated missile autopilot 
design over the past several decades. In this paper, the concept of extended linearization (also known as 
state-dependent coefficient parameterization) is examined for state-dependent nonlinear formulation of 
the vehicle dynamics in a novel and very general form for the development of a generic and practical 
autopilot design approach for missile flight control systems. Any extended linearization control method, 
such as the currently popular State-Dependent Riccati Equation (SDRE) methods, can then be applied to 
this state-dependent formulation for missile flight control system design. The unique contribution of this 
paper is the novel use of a very general and realistic nonlinear aerodynamic model that captures all major 
aerodynamic nonlinearities attributed to missiles, together with the fully nonlinear and coupled 6-DOF 
equations of motion of rigid-body missile dynamics for full-envelope, 3-axes nonlinear autopilot design, 
without invoking any of the usual simplifying assumptions of the traditional linear design philosophy, and 
independent of any flight or trim conditions. Moreover, in the development of the generic approach, all the 
autopilot command structures mentioned above are incorporated in one compact topology. Practical 
considerations such as actuator dynamics and actuator position and rate saturation are also included in the 
development of the nonlinear autopilot. The proposed approach has been implemented and its performance 
and robustness validated in detailed 6-DOF simulations in three dimensional environments, using various 
missile configurations with stable, unstable and nonminimum-phase characteristics. 

Keywords: Actuator saturation; Aerospace applications; Autopilot design; Flight control systems; Missile 
dynamics; Nonlinear control; Nonlinear systems; Optimal control; Riccati equations. 

 
1. INTRODUCTION 

Missiles are required to operate over a large flight envelope to 
meet the challenge of highly maneuverable targets in all 
probable engagements, such as surface-to-air and air-to-air 
missions against threats posed by both tactical aircraft and 
missiles. The fundamental objective of autopilot design for 
missile systems is to provide stability with satisfactory 
performance and robustness over the whole range of flight 
conditions that may be encountered throughout the flight 
envelope. However, the equations of motion that govern the 
behavior of a flight vehicle in six (three translational and three 
rotational) degrees of freedom (DOF) are both nonlinear and 
time varying, making flight control system design for missiles 
a complex, nontrivial multi-input–multi-output control 
problem. In view of the uncertainties in aerodynamic 
parameters, cross-coupling effects, nonlinearities, and 
measurement inaccuracies, the task of guaranteeing stability, 
performance and robustness throughout the entire flight 
envelope is a challenging one. 

Conventional missile autopilot design is based on the 
application of linear control techniques to the decoupled and 
linearized longitudinal and lateral equations of motion of 

missile dynamics, neglecting all aerodynamic cross couplings 
between channels. Clearly, an autopilot derived from 
linearization about a single flight condition will be unable to 
achieve suitable performance over all envisioned operating 
conditions. Thus, standard practice in designing missile 
autopilots is to linearize the equations of motion for various 
flight conditions (around certain finite number of operating 
points and trim conditions in the flight envelope), and apply 
linear design techniques to these static models to deliver the 
desired performance characteristics in the local region of the 
fixed operating point. Satisfactory performance across the 
flight envelope may then be achieved by gain scheduling the 
resulting sets of local autopilot controller parameters as 
functions of the flight conditions (such as Mach number, 
altitude and angle of attack) to yield a global controller. 

Although gain scheduling is the most prominent approach in 
missile autopilot design, there are some drawbacks to this 
design philosophy. The first is that due to wide variations in 
flight conditions, such as those encountered by high angle-of-
attack missiles, linear autopilots require gain scheduling with 
respect to Mach number, altitude, angle of attack and sideslip 
angle. Therefore, depending on the mission and the flight 
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envelope, conventional autopilots with gain scheduling may 
necessitate controller design for several flight conditions. 
Although powerful classical and multivariable linear 
techniques are available for design, gain scheduling is a very 
tedious process that can consume an enormous amount of 
time and effort. Secondly, control design methods based on 
linear time-invariant models ignore the fundamental 
(nonlinear) nature of the plant for flight control systems. The 
controller so designed may offer unsatisfactory performance 
and are severely limited, especially when the dynamics is 
highly nonlinear and undergoes large motion. The ever 
increasing high performance and greater maneuverability 
requirements demand that missiles operate in regimes of large 
angles and angular rates, where nonlinearities are dominant 
and a high degree of coupling exists between the lateral and 
longitudinal motions because of inertial coupling. Under these 
circumstances, the assumption of small motion about an 
operating point does not hold true and nonlinear approaches 
must be employed for autopilot design. 

In comparison to linear designs, nonlinear autopilots require 
significantly higher initial analysis effort, but are considerably 
easier to design than gain-scheduled linear controllers. Due to 
current technological trends and the sufficient computational 
resources that are nowadays available on-board, nonlinear 
autopilots have become viable candidates for implementation 
in missiles. Owing to these reasons and the severe nonlinear 
characteristics of flight vehicle dynamics at large angles and 
angular rates, there is obvious temptation for control designers 
to venture outside the linear design domain, and select 
nonlinear design methods. 

In this paper, a generic and practical approach to nonlinear 
missile autopilot design is developed through a novel state-
dependent nonlinear formulation of missile aerodynamics and 
6-DOF rigid-body dynamics, using the concept of extended 
linearization, also known as state-dependent coefficient 
(SDC) parameterization (Çimen, 2010). The development is 
pursued independent of any flight (or trim) condition and 
without invoking any of the usual simplifying assumptions in 
missile autopilot design, such as constant mass (post burnout), 
constant speed or constant air density, and without neglecting 
any cross coupling effects, such as roll rate, sideslip, and yaw 
rate. The design is based on a much more general and realistic 
missile model compared to the plethora of nonlinear 
approaches previously considered in the literature. 

In the development of the nonlinear missile autopilot, all 
nonlinearities of missile dynamics are taken into full account. 
Specifically, the model captures all major nonlinear variations 
of the aerodynamic coefficients with flight parameters, and 
includes the inertial coupling between roll, pitch and yaw 
channels as well as the asymmetric structure of the missile 
airframe. The genericity to the approach is achieved through 
the use of a very general and realistic nonlinear aerodynamic 
model together with the fully coupled, nonlinear model for the 
6-DOF rigid-body dynamics, by developing a high-
performance, full-envelope, 3-axes nonlinear missile autopilot 
design concept. Through this genericity, the approach 
becomes applicable to both skid-to-turn (STT) and bank-to-
turn (BTT) missiles (whether canard, wing or tail controlled), 
and during all phases of flight. More importantly, however, 

the design does not involve any decoupling of flight 
dynamics, does not require gain scheduling, is independent of 
trim conditions, and is very straightforward and practical. 

The paper is organized as follows. For completeness, Section 
2 first provides an overview of the general form of the 6-DOF 
rigid-body equations of motion for flight vehicle dynamics, 
clearly stating any assumptions, definitions and conventions 
used in deriving the model. These equations are required in 
deriving the nonlinear dynamic equations for state-dependent 
nonlinear formulation of the dynamics for missile autopilot 
design, and to illustrate how the 3-axes, coupled dynamics, 
which are valid at high angle of attack and sideslip angle, 
differ from conventional decoupled dynamics. The derivation 
of this nonlinear design model is presented in Section 3, along 
with actuator characteristics. For the purposes of this study, 
only aerodynamic control surfaces (canard, wing or tail) are 
considered as missile control effectors, leaving thrust vector 
control and reaction jet control thrusters as straightforward 
extensions of the developed approach. The proposed nonlinear 
autopilot topology, presented in Section 4, exploits the time-
scale separation between the long-period (phugoid) and short-
period modes, as well as between “slow” translational 
dynamics and “fast” rotational dynamics of the short-period 
mode inherent in missiles and other flight vehicles. In Section 
5, the dynamics derived in Section 3 are formulated in state-
dependent nonlinear form. In Section 6, a fully coupled, 
nonlinear approach is taken to design a high-performance, 3-
axes, full-envelope missile autopilot based on the state-
dependent nonlinear formulation of Section 5. In order to 
validate the satisfactory performance, robustness, genericity 
and practicality of the nonlinear missile autopilot design 
approach developed in this study, detailed 6-DOF nonlinear 
simulations have been carried out in three dimensional 
environments, under several noteworthy, realistic and coercive 
engagements, with various missile configurations. However, 
due to space limitations, only a brief discussion is pursued 
about the configurations tested, simulations performed and the 
results obtained, leaving discussions on design details, 
engagement scenarios, performance and robustness 
evaluations, and missile flight control system simulations for 
these test cases for presentation during the Congress. The 
paper is then closed with a brief summary in Section 7. 

2. MISSILE FLIGHT DYNAMICS 

2.1 Assumptions, Definitions and Conventions 

The first objective is to derive the general form of equations 
of motion for a flight vehicle in 6 DOF (for further reading, 
readers may refer to Blakelock, 1991; Etkin, 2005; Stevens & 
Lewis, 2003; Zipfel, 2007). The derivation is carried out 
under the following assumptions: 

A1) The effects of structural deflections (aeroelasticity) and 
of the dynamics of the relative motion of the control 
surfaces on overall missile dynamics are neglected, 
such that missile dynamics is based on the equations of 
motion for a single rigid body. 

A2) The rotation of the Earth is neglected, with the curved 
surface (longitude/latitude grid) of the fixed Earth 
unwrapped into a flat plane tangential to the launch 
point. This is the so called stationary and flat-Earth 
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approach applicable to in-atmosphere, Earth-bound 
flights, valid for vehicles flying in the atmosphere with 
speeds less than Mach 5 (below hypersonic speed). 

A3) The air is assumed to be at rest, neglecting any effect 
caused by wind. 

A4) Gravity is assumed to be acting through the center of 
mass of the missile, so that missile center of mass 
(CM) coincides with missile center of gravity (CG). 

Note that these are standard assumptions for deriving the 6-
DOF rigid-body equations of motion of a flight vehicle, and 
all are applicable to tactical missiles and, with the exception 
of Assumption A3, to aircraft as well. 

For modeling the motion of a rigid-body flight vehicle under 
Assumption A1, two reference frames are introduced. They 
are the fixed-Earth frame ( ; , , )E E E E EO i j kF  and the missile 
body-fixed frame ( ; , , )B B B B BO i j kF , whose triad of unit base 
vectors are orthonormal and right-handed by convention. The 
axes of the coordinate systems associated with each of the 
frames EF  and BF  are aligned with their respective triads, as 
shown in Fig 1. Due to assumption A2, the fixed-Earth frame 

EF  is declared as an inertial (Newtonian) reference frame. Its 
origin EO  is defined as the launch point of the missile, with 

EX -axis pointing North, EY -axis pointing East, and the 
positive EZ -axis pointing downward in the direction of the 
local gravity vector. The body-fixed frame BF  has its origin 

BO  located at the instantaneous CM of the missile, the BX -
axis is parallel with the body longitudinal centerline and 
points toward the nose of the missile, the BY -axis is directed 
to the right when viewed from the rear, and the BZ -axis 
points in a direction below the horizontal. The three Euler 
angles φ , θ  and ψ  in roll, pitch and yaw, respectively, then 
describe the instantaneous angular orientation of the body 
coordinate system relative to the Earth coordinate system. 

In the sequel, 6-DOF rigid-body nonlinear equations of 
motion will be derived, and then resolved in the body 
reference frame, such that all components of forces and 
moments acting on the missile will be modeled in the missile 
body-fixed axes. Fig. 1 shows the conventions used for 
positive directions of the vector components of force, 
moment, linear (translational) velocity, and angular 
(rotational) velocity of a missile resolved in the body 
coordinate system. The nomenclature adopted here is 
presented in Table 1. The six projections of the linear and 
angular velocity vectors on the moving body coordinate axes 
are the six degrees of freedom. 

As the vehicle moves through the air mass, it experiences a 
relative wind over its body, which gives rise to aerodynamic 
forces. Introducing the wind frame WF , such that its WX  
coordinate axis lies along the velocity vector V  of the vehicle 
CM w.r.t. the air mass (see Fig. 1), gives rise to the Cartesian 
incidence angles (also called wind angles), which are the 
pitch-plane angle of attack α  and yaw-plane sideslip angle β. 

The wind frame relates “the velocity vector of the CM w.r.t. 
the air mass” to the body frame. In order to relate the “ground 
(inertial) velocity vector of the CM w.r.t. the Earth” (that is, 
velocity vector of the CM w.r.t. the air mass + wind velocity 
w.r.t. inertial fixed-Earth frame) to the inertial fixed-Earth 
frame, an additional frame is introduced, called the velocity 

frame VF  (also known as the flight path frame). Since air is at 
rest by Assumption A3, the two velocity vectors are in fact 
one and the same, so that the VX  coordinate axis also lies 
along the total velocity vector V  of the vehicle CM, as 
shown in Fig. 1. Two angles γ  and χ  then describe the 
instantaneous angular orientation of the velocity coordinates 
relative to the Earth coordinate system. The horizontal flight 
path angle (or heading angle) χ  is measured from North to 
the projection of V  into the local tangent plane E EX Y  
(positive clockwise about downward vertical EZ ), such that 
North and East are expressed by 0 and 2π  rad, respectively. 
The vertical flight path angle γ  takes this projection 
vertically up to V . Note that only WX  of wind coordinates 
has been defined without ambiguity, and so its orientation is 
now defined relative to velocity coordinates through the bank 
(roll) angle μ . The wind and velocity coordinates are then 
related through μ  about the velocity vector, such that the 
velocity frame VF  is obtained by rotating WF  about the WX  
axis so that the VY  axis of VF  becomes parallel to the 
horizontal plane of EF . 

 
Fig. 1: Fixed-Earth and body-fixed reference frames showing 
vector components resolved in Cartesian body coordinates 

Table 1: Nomenclature for vector components resolved in bF  
Vector 

Symbol 
Description Units 

Roll Axis 

B BO X  
Pitch Axis 

B BO Y  
Yaw Axis 

B BO Z  

F  Total Force N  BXF  
BYF  

BZF  

M  Total Moment Nm  L  M  N  

V  Linear Velocity 1ms−  u  v  w  

B Eω  Angular Velocity 1rads−  p  q  r  

a  Total Acceleration 2ms−  BXa  
BYa  

BZa  

2.2 Coordinate Transformations 

Fig. 2 summarizes the different coordinate systems defined in 
Section 2.1, and depicts the transformation angles that relate 
them to each other. Now, let us present the orthonormal 
transformations that connect all these coordinate systems. 
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Fig. 2: Coordinate systems and transformation angles 

The Euler angles φ , θ , and ψ  relate the body coordinates to 
the Earth coordinates. The coordinate (or component) 
transformation matrix of body w.r.t. inertial coordinates is 
obtained using a 3-2-1 (yaw-pitch-roll) Euler sequence, giving 

 ( , )

1 0 0 c 0 s c s 0
0 c s 0 1 0 s c 0 ,
0 s c s 0 c 0 0 1

B E
θ θ ψ ψ

φ φ ψ ψ

φ φ θ θ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦⎣ ⎦

T
 (1) 

with ( )s ⋅  and ( )c ⋅  denoting shorthand notations for sin( )⋅  and 
cos( )⋅ , respectively. 

The orientation of body coordinates relative to wind 
coordinates is related through the angle of attack α  and 
sideslip angle β . By noting that the wind coordinates are a 
transformation of the body coordinates using negative β  and 
positive α  rotation sequence, the transformation matrix 

( , )B WT  of body coordinates w.r.t. wind coordinates becomes 

 ( , )

c 0 s c 0
0 1 0 s 0 .

0 0 0 1

B W

s
c

s c

α α β β

β β

α α

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

T
 (2) 

The orientation of wind coordinates relative to velocity 
coordinates is related through the bank angle μ . The 
transformation matrix ( , )W VT  of wind coordinates w.r.t. 
velocity coordinates is given by 

 ( , )

1 0 0
0 c s .
0 s c

W V
μ μ

μ μ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

T
 (3) 

Finally, the sequence of rotations χ  and γ  relate velocity 
coordinates to Earth coordinates, giving 

 ( , )

c 0 s c s 0
0 1 0 s c 0 .
s 0 c 0 0 1

V E
γ γ χ χ

χ χ

γ γ

⎡ ⎤− ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

T
 (4) 

2.3 Translational Motion 

The three translational degrees of freedom are governed by 
Newton’s second law. Frequently, the trajectory of a vehicle 
is so slow compared to orbital speed and so close to the Earth 
that, under the nonrotating (stationary) and flat Earth 
Assumption A2, the Coriolis and centrifugal accelerations 
related to the rotation of the Earth and the changes in the 
direction of gravity as the missile moves over the surface of 
the Earth can be neglected. Then, under Assumption A2, the 
translational equations of motion of a flight vehicle over a 
nonrotating and flat Earth take on the vector form 
 ( )E B B Ed dt d dt m t= + ×V V V Fω = , (5) 

where ( )m t  is the vehicle (variable) mass, V  is the linear 
velocity vector of the missile CM w.r.t. to the Earth, Ed dtV  
and Bd dtV  are its Earth-frame and body-frame derivatives, 
respectively, B Eω  is the angular velocity of BF  w.r.t. to EF , 
and F  represents the vector sum of external forces applied 
directly to the missile, such that the acceleration of the missile 
CM w.r.t. to the Earth is given by Ed dt m= =a V F . 

Note that the mass is not constant in a missile during the 
operation of the propulsion system because of the 
consumption of propellant. It can be shown that (5) is 
applicable to a missile that has variable mass due to the 
burning of propellant if the value of m  to be used in (5) is a 
function of time t . A derivation that rigorously takes into 
account the change in mass, and arrives at the same result for 
constant mass, except that m  is now a function of time, is 
given in Meriam & Kraige (1986). 

The vector differential equation (5), although valid in any 
reference frame, is simple enough to be expressed in the body 
frame BF  by resolving it into Cartesian body coordinates. 
Thus, using the vector components of V , B Eω  and F  in BF  
defined in Table 1, yields the scalar equations for ( )B

Bd dtV : 

 

.

B

B

B

X

Y

Z

u rv qw F m

v pw ru F m

w qu pv F m

⎫= − +
⎪⎪= − + ⎬
⎪= − + ⎪⎭

�

�

�

 (6) 

The three first-order differential equations (6) govern the 
dynamics of the 3-DOF translational motions of a vehicle 
expressed in the body frame with the Earth as the inertial 
reference frame. These equations are nonlinear and coupled 
by the body rates ( ) [ ]B T

B E p q r=ω . The nonlinearity enters 
through incidence angles in aerodynamic force and moment 
calculations (discussed later in Sections 2.5, 2.6 and 3.1). 

2.4 Rotational Motion 

The three rotational degrees of freedom are governed by 
Euler’s law. The rotational equations of motion of a flight 
vehicle w.r.t. a nonrotating and flat Earth (Assumption A2) 
are expressed by the vector differential equation 
 ( )1( ) ( )B E B E B Et t−= − ×I M I�ω ω ω , (7) 
where ( )tI  is the (variable) inertia matrix of missile body 
referred to the CM, B EIω  is the angular momentum of body 
w.r.t. the Earth frame referred to the CM, and M  represents 
the vector sum of all the external moments referred to the 
missile CM. Although the vector differential equation (7) is 
also valid in any reference frame, the body coordinates 
express the inertia matrix I  in constant form, defined as 

 ( ) ,
x xy xz

B
xy y yz

xz yz z

I I I
I I I
I I I

⎡ ⎤− −
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

I
 (8) 

which is a symmetric and positive-definite (nonsingular) 
matrix whose elements consist of the moments of inertia 

xI , yI , zI  about the axes of BF , and the products of inertia 
xyI , yzI , xzI  over the planes of BF , all having SI units of 

2kg m . Since the reference frame is fixed to the body, the 
inertia matrix appears constant in BF , and does not change by 
body motion. Note, however, that during the operation of the 
missile propulsion system, there is another source of change 
in the inertia matrix that is not related to body motion. As the 
propellant mass is expelled from the missile, the inertia matrix 
changes. Therefore, similar to the variable mass m , the 
parameter I  is not constant in a missile during the operation 
of the propulsion system because of the consumption of 
propellant. Although a rigorous accounting for a variable 
inertia matrix is not easy, the time rate of change of I  due to 
the burning of propellant is usually small enough that terms 
expressing this rate can be neglected. By this assumption, (7) 
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is also applicable to a missile that has variable inertia matrix, 
again provided that the value of I  to be used in (7) is a 
function of time t . 

Often, because of symmetry, missiles have body axes that 
coincide with the principal axes of the moment of inertias, and 
the inertia matrix exhibits only diagonal elements, which 
greatly simplifies the equations of motion, since the products-
of-inertia terms vanish. Moreover, the mass distribution of a 
missile about its BY -axis is often essentially the same as that 
about its BZ -axis. This is a particularly important case for 
conventional missiles having tetragonal symmetry that skid to 
turn, and manifest two equal principal moment of inertias. 
Therefore, the further simplification of setting yy zzI I=  is 
often possible; however, the distinction is retained here for 
generality. On the other hand, bank-to-turn or cruise missiles 
have aircraft-like symmetries, where all of the principal 
moment of inertia axes are not aligned with the body axes. 
However, due to the planar symmetry w.r.t. the BX  and BZ  
axes (that is, 0xy yzI I= = ), the BY  axis is indeed a principal 
axis. Such a configuration gives rise to an inertia matrix in 
body coordinates with diagonal elements consisting of axial 
moments of inertia xxI  and zzI , and the principal moment of 
inertia yyI , and one off-diagonal element xzI , leading to more 
complex solutions. Since the product-of-inertia term xzI , in 
general, is nonzero, it is retained in the development of the 
rotational equations of motion. 

For missiles with planar symmetry only in the B BX Z  plane, 
there are four zero elements in the inertia matrix (8), so that 
its inversion can be tolerated, making it possible to solve for 
the body rate components ( ) [ ]B T

B E p q r=ω  explicitly as 
scalar equations. The rates of change of the body rate 
components are thus obtained in scalar form by expressing (7) 
in the body frame BF , giving 

{ }
{ }

{ }

2

2

21

2 21

21

[ ( ) ] ( )

( ) ( )

[ ( ) ] ( ) .

x z xz

y

x z xz

z xz z y z xz xz x y zI I I

z x xzI

xz x x x y xz xz y z xI I I

p I L I N I I I I qr I I I I pq

q M I I pr I p r

r I L I N I I I I pq I I I I qr

−

−

⎫= + + − − + − +
⎪
⎪= + − − − ⎬
⎪

= + + − + + − − ⎪⎭

�

�

�

 (9) 

The three first-order differential equations (9) govern the 
dynamics of the 3-DOF rotational motions of a vehicle w.r.t. 
the inertial frame expressed in body axes. These equations are 
nonlinear and couple with the translational equations (6) only 
through the aerodynamic moments, which are contained in the 
total moments ( ) [ ]B TL M N=M . Their integration yields the 
angular velocity of the body w.r.t. the inertial frame expressed 
in body coordinates, in short, the body rates ( ) [ ]B T

B E p q r=ω . 

Clearly, the product of inertia xzI  couples the pitch and yaw 
rates to the roll degrees of freedom, and a strong coupling 
exists for large values of xzI . The pitch and yaw equations 
exhibit similar trends. Other phenomena caused by xzI  are the 
coupling of the yawing moment N  into the roll axis and the 
rolling moment L  into the yaw axis. Therefore, if 0xzI = , as 
is the case for missiles with tetragonal symmetry, the 
rotational equations of motion (9) are greatly simplified. 

2.5 Incidence Angles 

The transformation of the missile velocity vector from relative 
wind coordinates to body coordinates is obtained from 
 ( ) ( , ) ( )B B W W=V T V , (10) 

where ( ) [ ]B Tu v w=V , ( ) [ 0 0]W TV=V , and V  is the 
airspeed, given by the magnitude of the missile velocity 
vector, such that 
 2 2 2 2 .V u v w= + +  (11) 
Using (2) and (10), the components of the total velocity vector 
in body coordinates are thus obtained as 
 c c , s , s c .u V v V w Vα β β α β= = =  (12) 
The definitions for the Cartesian incidence angles are derived 
from (12) in terms of the velocity components in body 
coordinates ( u , v , w ) and the relative wind axis component 
(airspeed V ), given by the algebraic relationships 
 1 1tan , sinw v

u Vα β− −= = . (13) 

2.6 Forces and Moments 

Equations (6) and (9) express the translational and rotational 
equations of motion in body coordinates. With the exception 
of Assumptions A1-A4, these equations are perfectly general, 
that is, no simplifying assumptions have been used in their 
derivation. Solution of these equations of motion requires 
knowledge of the sum of the forces and the sum of the 
moments acting on the missile. The forces and moments are 
produced by gravity, aerodynamics, and propulsion. Since, by 
Assumption A4, missile CM and CG are the same point, the 
gravitational force does not cause any external moment about 
the CM. Consequently, gravity contributes only as external 
force acting on the missile body axes. Therefore, the forces 
and moments are generally composed of: 

• gravitational forces, 
• aerodynamic forces and moments, and 
• propulsive thrust forces and any moment caused either 

by design (such as thrust vectoring and/or reaction jet 
controls) or by error (misalignment of the thrust). 

The total force applied to the missile body, therefore, consists 
of gravitational, aerodynamic and propulsive forces gF , aF  
and pF , respectively, whereas the total moment acting on the 
body generally consists of aerodynamic and propulsive 
moments aM  and pM , respectively, giving g a p+ +F F F F=  
and a p+M M M= . 

In aerodynamically controlled missiles, propulsive thrust is 
usually designed to act through the missile CM, and thus 
produces no moment about the CM (that is, =pM 0 ). When 
the thrust vector does not pass through the CM, either by 
design or error, the equations used to describe the resulting 
propulsive moment pM  on the missile is equal to the product 
of the magnitude of the thrust and the perpendicular distance 
between the thrust vector and the CM. In this study, only the 
generic design approach for aerodynamically controlled 
missiles will be developed in order to highlight the steps 
involved in the missile autopilot design procedure, without 
further complicating the nonlinear equations of motion. 
However, the formulation presented here can readily be 
extended to combining thrust vectoring and reaction jets into 
missiles’ aerodynamic control system. 

The flat-Earth model is represented by having the 
gravitational force always pointing along the EZ  axis in the 
inertial coordinate system, such that ( )Eg  is formulated in the 
form [0 0 ]Tg , where g  is the acceleration due to gravity. 
Hence, gravity in body coordinates is modeled as 

( ) ( , ) ( )B B E E=g T g , using the transformation matrix ( , )B ET  given 
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in (1). The gravitational force acting on the body can then be 
obtained from ( ) ( )B B

g m=F g . The components of gravitational 
force resolved into body coordinates are thus obtained as 
 ( ) [ s s c c c ] .B T

g mg θ φ θ φ θ= −F  (14) 
Aerodynamic forces and moments acting on the body are 
expressed in body coordinates using the nondimensional 
aerodynamic (axial, side and normal) body-axes force 
coefficients ( )X AC C− , YC , ( )Z NC C− , nondimensional 
aerodynamic (rolling, pitching and yawing) body-axes 
moment coefficients 

CGlC , 
CGmC , 

CGnC  acting about the CG, 
the dynamic pressure q , missile reference (characteristic) 
length d  (such as maximum diameter), and missile reference 
area S  (such as maximum cross-sectional area), as follows: 

( ) ( )[ ] , [ ] .
CG CG CG

B T B T
a X Y Z a l m nqS C C C qSd C C C= =F M  (15) 

The dynamic pressure q  is a function of airspeed V  and air 
density ρ  (which, in turn, is a function of the altitude h ), 
and is obtained from 
 21

2 .q Vρ=  (16) 
Since, by assumption, the thrust vector pF  passes along the 

BX  axis and through the missile CM, pF  does not create any 
external moment, giving 
 ( ) ( )[ 0 0] , [0 0 0] .B T B T

p pT= =F M  (17) 
The total forces and moments acting on the body can now be 
obtained from (14)-(17), which are expressed in component 
form in body coordinates as 

 ( ) ( )

s
s c , .
c c

CGB

B CG

B CG

lX X
B B

Y Y m

ZZ n

qSdCF mg qSC T L
F mg qSC M qSdC

mg qSC NF qSdC

θ

φ θ

φ θ

⎡ ⎤⎡ ⎤ ⎡ ⎤− + + ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = + = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

F M  (18) 

Aerodynamic forces and moments are modeled directly in the 
body axes, using body-axes aerodynamic force and moment 
coefficients. These coefficients are typically functions of 
flight conditions, such as Mach number ( M ), altitude ( h ), 
incidence angles (α , β ) and their rates (α� , β� ), body angular 
rates ( p , q , r ), effective (virtual) aerodynamic control surface 
deflections ( aδ , eδ , rδ ), changes in CG, and whether the 
thrust power is on or off (referred to as plume effects). Thus, 

2

( , , , , , , , , , , , , CG, thrust on/off),

, , , , , , ( ) ( ),
j j a e r

d
CG CG CG V

C C M h p q r

j X Y Z l m n

α β α β δ δ δ∗ ∗ ∗ ∗ ∗

∗

=

= ⋅ = ⋅

��  (19) 

with ( )∗⋅  representing nondimensionalized motion related 
variables for angular rates. These complicated and highly 
nonlinear functions are used in the equations of motion to 
model the airframe’s aerodynamics. Note that, since all 
coefficients are unitless, all angles are in radians. Note also 
that the control surface deflections can be canard, wing or tail. 

3. DERIVATION OF THE NONLINEAR DYNAMIC 
EQUATIONS FOR MISSILE AUTOPILOT DESIGN 

With the general equations of motion of a flight vehicle over a 
flat Earth in place, we can now proceed with the first step 
necessary for autopilot development. This will be deriving the 
equations of motion required for nonlinear missile autopilot 
design, which is pursued for all variables used in the 
aerodynamic coefficients. Since aerodynamic coefficients for 
missiles are generally modeled as having functional 
dependence on several variables given in (19), the equations 
of motion for autopilot design will be developed based on at 
least these variables, in addition to the command variables 
that will be conveyed to the autopilot. 

3.1 Aerodynamic Model 

In this work, a generic and realistic aerodynamic model, 
applicable as a general rule to missiles, is proposed. Because 
of the complicated functional dependence of the aerodynamic 
coefficients represented in (19), in practice, each “total” 
coefficient is modeled as the sum of a baseline component 
(that are, individually, functions of fewer variables), plus 
incremental terms. The baseline components are primarily 
functions of M ,α , β , aδ , eδ , rδ , whereas incremental terms 
are functions of only M . Component buildups of the “total” 
nondimensional aerodynamic coefficients for missiles, in 
general, are then expressed in the form 

2

2

2

( , , , , , , ) for thrust on/off

( , , , ) [ ( ) ( ) ( ) ]

( , , , ) [ ( ) ( ) ( ) ]

( , , , , , ) ( )

( , , , )

j

r p

q p

CG RP p

CG RP

X X a e r

d
Y Y r Y Y YV

d
Z Z e Z Z YV

d
l l a e r lV

m m e

C C M h j

C C M C M r C M C M p

C C M C M q C M C M p

C C M C M p

C C M lC

αβ

α α

α β δ δ δ

α β δ β α

α β δ α β

α β δ δ δ

α β δ

′= =

′= + + +

′= + + +

′= +

′= −

�

�

�

�

2

2

[ ( ) ( ) ( ) ]

( , , , ) [ ( ) ( ) ( ) ],
q p

CG RP r p

d
Z m m nV

d
n n r Y n n nV

C M q C M C M p

C C M lC C M r C M C M p
α α

αβ

α β

α β δ β α

⎫
⎪
⎪
⎪
⎪⎪
⎬
⎪
⎪+ + + ⎪
⎪′= + + + + ⎪⎭

�

�

�

�

 (20) 

where all angular-rate variables are nondimensionalized. The 
baseline components are the first terms on the right-hand side 
of the equations, which are followed by incremental terms, in 
the order of importance, consisting of the angular-rate 
variables. The coefficients of these incremental terms, 
indicated by an additional level of subscripts, represent 
aerodynamic derivatives, which are partial derivatives of the 
aerodynamic force and moment coefficients, all having 
functional dependence on the Mach number M . Note that the 
Magnus terms 

pYC
α

 and 
pnC
α

 in (20) are particularly 
significant for agile missiles with canard-controlled and 
rolling airframe configurations, in which case they should be 
included in the autopilot model (Nielsen, 1988). 

Due to the significant changes in CG position during 
propellant consumption, aerodynamic rolling, pitching and 
yawing moments are generally measured about a fixed 
reference point (RP) at a distance of RPx  meters from the 
missile nose (in the case the reference point is the missile 
nose, then 0RPx = ), thus obtaining 

RPlC , 
RPmC  and 

RPnC . In 
this way, the implicit dependence of the aerodynamic moment 
coefficients on the varying CG position is avoided. The 
moment coefficients about the CG (

CGlC , 
CGmC  and 

CGnC ) are 
then obtained by shifting moments about the fixed RP to the 
instantaneous CG position, located CGx  meters away from 
missile nose, using the moment arm CG RPx x− . Although this 
is assumed to have no effect on 

CGlC  (
CG RPl lC C= ), the shifting 

of aerodynamic moments from the RP to the CG couples ZC  
into 

CGmC  and YC  into 
CGnC , as is evident from the latter two 

expressions in (20), where ( )CG RPl x x d−� . In doing so, the 
dependence of these coefficients on the instantaneous CG 
position, which varies during propellant consumption, is 
explicitly expressed. 

Data for baseline components and incremental terms in (20) 
are derived from empirical methods, aerodynamic prediction 
programs, computational modeling, and/or through wind-
tunnel experiments, and are compiled in the aerodynamic 
database generally in the form of look-up tables. Incremental 
terms consist of 1-dimensional look-up tables, since these are 
functions of only the Mach number. However, look-up tables 
for baseline components are necessarily multi-dimensional. 
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For the development of the autopilot model, general nonlinear 
representations of baseline components will now be presented. 
The proposed model uses nonlinear representations up to 
cubic terms for baseline components of “total” aerodynamic 
force and moment coefficients, and captures the most 
significant nonlinearities attributed to missiles, as follows: 

 

0

0

0

0

0

2 2 2 2 2
1 2 3 4 5 6 7

2 3 2
1 2 3 4 5

2 3 2
1 2 3 4 5

2 2
1 2 3 4 5

2
1 2 3 4

j

r

e

RP

RP e

X X e r e r a

Y Y Y r

Z Z Z e

l l a a a e r

m m m e

C C a a a a a a a

C C C b b b b b

C C C c c c c c

C C d d d d d

C C C e e e e

δ

δ

δ

α β αδ βδ δ δ δ

δ β β β β β α β

δ α α α α α αβ

δ α δ β δ αδ βδ

δ α α α α α

′ = + + + + + + +

′ = + + + + + +

′ = + + + + + +

′ = + + + + +

′ = + + + + +

0

3 2
5

2 3 2
1 2 3 4 5 ,

RP rn n n r

e

C C C f f f f f
δ

αβ

δ β β β β β α β

⎫
⎪
⎪
⎪
⎪⎪
⎬
⎪
⎪

+ ⎪
⎪

′ = + + + + + + ⎪⎭

 (21) 

where the newly introduced aerodynamic derivatives (such as 

rYC
δ

, 
eZC

δ
, etc.) as well as the rest of the coefficients (such as 

1a , 1b , etc.) in these expressions all have functional 
dependence on only the Mach number M , although not 
explicitly shown in (21) for notational convenience. 

The proposed form of the aerodynamic coefficients given in 
(21) can be obtained using data fitting techniques. Noting that 
there is linearity with respect to the unknown coefficients of 
the baseline components in (21), linear least squares method 
can be used to estimate these parameters. The best fit to the 
tabulated aerodynamic data using the proposed model (21) is 
then obtained by solving the resulting overdetermined system. 
For example, suppose that the baseline component ZC′  is 
represented in tabular form as a function of only the three 
variables M , α  and eδ . Hence, from (21), 
 

0

2 3
1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ,

eZ Z Z eC C M C M c M c M c M c M
δ

δ α α α α α′ = + + + + +  

which is a multinomial in two independent variables α  and 
eδ . Suppose also that ZC′  is tabulated, say, using x , y  and 

z  breakpoints of M , α  and eδ , respectively. This results in 
yz  equations for 6 unknowns for each set of Mach 

breakpoints 1, ,k x= … , and yields an overdetermined system 
k k k=A x b , where 6yz

k
×∈A \ , 1yz

k
×∈b \  and 

 
0 , , 1, 2, 3, 4,[ ]

e

T
k Z k Z k k k k kC C c c c c

δ
=x  

with 6yz � . The best fit that gives the optimal parameter 
values ˆ kx  is then found by solving the corresponding normal 
equation of the overdetermined system, that is, 

ˆ( )T T
k k k k k=A A x A b . This is carried out for the complete set 

of Mach breakpoints 1, ,k x= … . Then, if desired, the 6 
coefficients solved at each Mach breakpoint can be obtained 
in analytical form as functions of Mach number, by fitting an 
appropriate function (such as polynomial, Fourier, etc.) to 
these data. Another option is to store these coefficients in 1-
dimensional look-up tables and use interpolation techniques to 
obtain intermediate values online. 

Nonlinear and coupled terms in (21) represent the dominant 
nonlinearities in the baseline components of the missile 
aerodynamic force and moment coefficients. Coupled terms in 
these expressions produce coupling between channels at high 
angle of attack. Depending on the application, some of these 
terms may have negligible effect on missile aerodynamics 
and, hence, may be neglected. For example, some of the terms 
at zero incidence angles and control deflections (

0YC ,
0ZC , 

0l
C ,

0mC ,
0nC ) will be zero, except for asymmetric airframes/ 

airfoils. Similarly, 2α  and 2β  terms in the expressions for 
YC′ , ZC′ , mC′  and nC′  will be obtained as zero when data is 

symmetric w.r.t. the origin. However, these terms will not be 
zero for unsymmetrical data, in which case they must be 
retained. In addition, inclusion of second-order nonlinearities 
α α  and β β  in the expressions provides more accurate 

estimates to those obtained using 3α  and 3β  terms alone, 
respectively, and vice versa. Some of the neglected terms 
(such as higher order terms), on the other hand, are often 
negligible, but can be included in the expressions if desired. 

3.2 Mach Dynamics 

Aerodynamic coefficients are modeled as having functional 
dependence on the Mach number M , as opposed to body-
axes components u , v , w  or the airspeed V . A differential 
equation describing the dynamics of M  is thus required, 
which can be derived from the algebraic relationship 
 ,M V a=  (22) 
where a  is the speed of sound. Assuming a standard 
atmospheric model, the speed of sound is a function of the 
altitude h . Thus, differentiating (22) gives 
 2 .Va Va

a
M −= � ��  

However, inside the troposphere (the lowest portion of the 
Earth’s atmosphere, which extends from sea level up to 11 
km), the speed of sound changes only around 10% in value. 
Therefore, even though h  and a  are both varying, the time 
rate of change of a  is so small that, in the derivation of the 
differential equation for Mach number, it can be assumed 
zero, giving 
 .M V a≅� �  (23) 
The equation for �V  is obtained by differentiating (11), and 
substituting (6) to give 

 
1

1

( )
[ ( ) ( ) ( )],

B B B

V

X Y ZV

V uu vv ww
u a qw rv v a ru pw w a pv qu

= + +

= − + + − + + − +

� � � �  

where =
B BX Xa F m , =

B BY Ya F m , and =
B BZ Za F m  are the 

components of total acceleration in body coordinates resulting 
from the gravitational, aerodynamic and thrust forces acting 
on the vehicle. Substituting (12) into this equation yields the 
differential equation for airspeed, that is, 
 c c s s c .

B B BX Y ZV a a aα β β α β= + +�  (24) 
Hence, substituting (24) into (23) yields 
 1 ( c c s s c ).

B B BX Y ZaM a a aα β β α β= + +�  (25) 

3.3 Incidence Angle Dynamics 

Using body coordinates, the translational equations of motion 
(6) are solved for the rates of change of the components u , v  
and w  of the total velocity vector V . Their integration yields 
u , v  and w , which are used to calculate α  and β  using 
(13). The use of the wind coordinate system causes the rate of 
change of the magnitude of the velocity vector (V ) to also lie 
along the WX  wind axis, and yields explicit equations for the 
rates of change of α  and β . The following derivation will 
form a set of differential equations describing the dynamics of 
α  and β , valid for large α  and 90β < ° . 

The equations for α�  and β�  are obtained by differentiating 
(13) and using (12) to yield 
 2 2 2 2

sc s
c c, .v Vw uuw wu Vv vV

V Vu w V V v

βα α

β β
α β −−− −

+ −
= = = =

��� � �� � ���  

Substituting (6), (22) and (24) into these equations yields 
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 1
c( c s ) t ( c s )

B BZ XMaq p r a a
βα α β α αα = − + + −�  (26) 

 1s c ( c s c s s ),
B B BX Y ZMap r a a aα α α β β α ββ = − − − +�  (27) 

where ( )t ⋅  denotes tan( )⋅ . 

3.4 Actuator Dynamics 

Missiles operate using four aerodynamic control surfaces, 
using either canards or wings or tail fins. Generally, these 
four control surfaces actuate independently, each driven by a 
separate but identical actuator (servomotor). These actuators 
are required for tracking the guidance commands (such as 
lateral and normal acceleration commands expressed in g’s) 
through actual control surface deflections iδ  via commanded 
control surface deflections com

iδ , with 1, , 4i = … . Therefore, 
the effective (virtual) control surface deflection commands of 
aileron (roll), elevator (pitch), and rudder (yaw) control 
( aδ , eδ , rδ ) from the missile autopilot are distributed to the 
four (actual) individual control surface deflections iδ  
( 1, , 4i = … ). The control mixing logic that relates these 
effective control surface deflections to individual control 
surface deflections is configuration specific, and depends 
upon whether the missile flies with a “+” or “×” aerodynamic 
control (or “delta”) configuration, as shown in Fig. 3. The 
arrows in this figure show the direction of forces and leading 
edge of panel where, by convention, a positive panel 
deflection is one which will produce a negative 
(counterclockwise when viewed from the rear) rolling 
moment increment at zero angle of attack and sideslip. The 
equations for the control surface mixing logic are then given by 
 logic 1 2 3 4[ ] [ ] .T T

a e rδ δ δ δ δ δ δ= Δ  (28) 
Two conventional mixing logics for the “+” and “×” delta 
configurations, respectively, are defined by 

logic logic

1 1 1 1 1 1 1 1
1 10 2 0 2 , 1 1 1 1 .
4 4

2 0 2 0 1 1 1 1

+ ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

Δ Δ
 

 

(+) (–) 

(–) (+) 

(+) (–) 

(–) (+) 
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1 

(+) 

(+) 

(+) 

(–) 

(+) (–) 

(–) 

(–) 

4 

3 2 

1 

negative rolling
moment 

 
Fig. 3. Rear-View Projection of “+”, “×” Delta Configurations 

For satisfactory autopilot performance, actuator dynamics 
must also be considered. It is usually sufficient to consider a 
second-order actuator dynamic model, with transfer function 
 

2

2 2

( )

( ) 2
, 1, , 4,i n

com
i n n

s

s s s
iδ ω

δ ζω ω+ +
= = …  

where ζ  is the actuator damping ratio, nω  is the natural 
frequency, com

iδ  is the commanded control surface deflection 
of the thi  aerodynamic control surface, and iδ  is its actual 
deflection. However, actuators possess significant 
nonlinearities, such as angular position and rate limits as well 
as mechanical backlash, and it is preferable to include these 
nonlinearities in the actuator model. It is important to note 
that it is iδ  that exhibit these nonlinearities (not aδ , eδ , rδ ). 

In the design and the analysis of the nonlinear autopilot, 
actuator dynamics are modeled using actuator saturation, that 

is, position and rate limits of the aerodynamic control 
surfaces, as shown in Fig. 4. Actuator dynamics are, therefore, 
represented by the 2nd-order nonlinear differential equation 
 2 2

max max( sat( , )) 2 sat( , )com
i i i n n iδ δ δ δ ω ζω δ δ= − −�� � �  (29) 

using the saturation function 
 max max

max max

max max

,
sat( , ) ,

,

σ σ σ
σ σ σ σ σ

σ σ σ

>⎧
⎪ ≤⎨
⎪− < −⎩

�
 

with ,i iσ δ δ= � , for 1, , 4i = … . 
 

maxsat( , )iδ δ

maxsat( , )iδ δ� �  

rate limit position limit 
com
iδ  +−

2
nω +− ∫  

iδ��  
∫  

2 nζω  

 maxδ�  
maxδiδiδ�  

 
Fig. 4. 2nd-Order Nonlinear Actuator Block Diagram Model 

Therefore, defining the actual and the commanded control 
surface deflection vectors, respectively, as 

 1 2 3 4

1 2 3 4

[ ]

[ ] ,

T

com com com com com T

δ δ δ δ

δ δ δ δ

�
�

δ

δ
 

(29) can be represented in state-space form as 

{ } { }max max

4 4 4 4 4 4
sat( , ) sat( , )2 2 2

4 4diag 2 diagi i

i i

com

n n n
δ δ δ δ

δ δ
ω ζω ω

× ×
×

×

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

0 I 0
I

� �
�

�
���
δδ

δ
δδ

 (30) 

for 1, , 4i = … , where 4 4×0  and 4 4×I  are 4 4×  zero and 
identity matrices, respectively, and diag{}⋅  represents a 
diagonal matrix. 

3.5 Body Rate Dynamics 

Expanding the equations derived in (9), substituting the total 
moments (18) and aerodynamic coefficients (20)-(21), and 
using the derivations obtained for α�  and β�  in (26) and (27), 
respectively, yields the following nonlinear representations 
for missile body angular rate dynamics: 

2 2
2 2

a e r

e

a e r

bias p r pq qr a e r

bias p q r pr ep r

bias p r pq qr a e r

p L L p L r L pq L qr L L L

q M M p M q M r M p M r M pr M

r N N p N r N pq N qr N N N

δ δ δ

δ

δ δ δ

δ δ δ

δ

δ δ δ

⎫= + + + + + + +
⎪⎪= + + + + + + + ⎬
⎪

= + + + + + + + ⎪⎭

�

�

�

 (31) 

where the coefficients are defined as 
0 0 0
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4e xzN kI dδ α�  5[ ( )]
r r rxz x n YN k I d I C lC

δ δδ β + +�
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which are highly nonlinear functions of M ,α , β ,α� , β� ,V , 
with 2( )x z xzk qSd I I I−� , 21

2 ρ=q V  and ( )cg refl x x d= − . 
Although not explicitly shown, recall that the moment and 
product of inertia terms in these expressions are time-varying 
due to changes in CG position during propellant consumption. 

3.6 Acceleration Dynamics 

First, a relation between the Euler angular rates φ� ,θ� ,ψ�  and 
the body-fixed angular rates ( ) [ ]B T

B E p q r=ω  is required. 
Using a ψ -θ -φ  rotation sequence from fixed-Earth 
coordinates to body-fixed coordinates and then inverting this 
matrix equation yields 
 1 0 s 1 s t c t

0 c s c 0 c s .
0 s c c 0 s c c c

p p
q q
r r

θ φ θ φ θ

φ φ θ φ φ

φ φ θ φ θ φ θ

φ φ
θ θ
ψ ψ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⇒ = −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

� �
� �

� �

 

Let us now derive the rigid-body acceleration dynamics for 
the missile body acceleration components at the CM. The 
components of acceleration in body coordinates, 

( ) [ ]
B B B

B T
X Y Za a a=a , are obtained from the components of 

total force acting at the CM along the missile body coordinate 
axes, ( ) [ ]

B B B

B T
X Y ZF F F=F , divided by the mass m . Now, 

taking into account the dependence of q  on V  in (16), and 
recalling the functional dependence of the aerodynamic force 
coefficients on flight conditions α , β  and the aerodynamic 
control surfaces aδ , eδ , rδ , differentiating ( ) ( )B B m=a F  
using (18), keeping terms up to first order, ignoring the time 
rate of change of thrust, substituting for the Euler angular 
rates, and grouping terms yields the acceleration dynamics 

2

1 2

2

0 c c s c
c c 0 s
s c s 0

a e rB

B a e r

B a e r

V X X XX X XX a

VY Y Y Y Y Y Y em

rZ V Z Z Z Z Z Z

C C CC C Ca p V
a g q qS C C C C C C

ra C C C C C C

δ δ δα β

α β δ δ δ

α β δ δ δ

φ θ φ θ

φ θ θ

φ θ θ

δ
α δ
β δ

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡⎡ ⎤⎡ ⎤− ⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= + +⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦ ⎣⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

���
���

� ��
.

⎛ ⎞⎤⎜ ⎟⎥⎜ ⎟⎥⎜ ⎟⎢ ⎥⎜ ⎟⎦⎝ ⎠

 

Substituting (22), (24), (26) and (27) into this equation, the 
acceleration dynamics can be represented in the compact form 

 
2

1 2

2

2

1 2

2

c c s s c
s c 0 c c
c s c s s

0 0 0
c

B B

B B

B B

Ma X X XX X

MaY Y Y Y YmMa

Z ZMa Z Z Z

Ma X X X

Ma Y Y Ym

Ma Z Z Z

C C Ca aMa Ma Ma
a qS C C C a

a aC C C

C C C

qS C C C

C C C

α β

α β

α β

α β

α β

α β

α β β α β

α β α β

α β β α β

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥= −⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥+ −
⎢ ⎥
⎢ ⎥⎣ ⎦

�
�

�

1

0 c c s c
t 1 s t c c 0 s

s 0 c s c s 0

.
a e r

a e r

a e r

X X X a

Y Y Y em

rZ Z Z

p p
q g q
r r

C C C

qS C C C

C C C

δ δ δ

δ δ δ

δ δ δ

φ θ φ θ

α β α β φ θ θ

α α φ θ θ

δ
δ
δ

⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥+ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

�
�
�

 

Therefore, expanding these equations, substituting the 
aerodynamic force coefficients from (20)-(21), taking partial 
derivatives of (20)-(21) to obtain aerodynamic derivatives of 
force coefficients (that is, X XC C

α
α= ∂ ∂ , etc.), and noting 

that 0
a e a rY Y Z ZC C C C

δ δ δ δ
= = = = , algebraic manipulations 

yield the following nonlinear representations of missile body 
acceleration dynamics: 

2

2

2

2

2

2

( )

( )

( ) ,

B X B Y B Z B

B X B Y B Z B

B X B Y B Z B

X a X a Y a Z p q rM

Y a X a Y a Z p q rM

Z a X a Y a Z p q rM

a X a X a X a M X M X p X q X r

a Y a Y a Y a M Y M Y p Y q Y r

a Z a Z a Z a M Z M Z p Z q Z r

⎫= + + + + + +
⎪⎪= + + + + + + ⎬
⎪

= + + + + + + ⎪⎭

�

�

�

 (32) 

where 
1 3

2 4

7

2
2
2

a

X e

X r

X a

C a a
C a a
C a

α

β

δ

α δ
β δ
δ

= +
= +
=

 
5 2

2 2
1 2 3 4 5

3 5

2
2 3

2

p

e

d
Y YV

Y

X e

C b C p
C b b b b b

C a a

α α

β

δ

αβ

β β β α
α δ

≈ +

≈ + + + +
= +

 2 2
1 2 3 4 5

5 2

4 6

2 3
2

2
p

r

Z
d

Z YV

X r

C c c c c c
C c C p
C a a

α

β α

δ

α α α β
αβ

β δ

≈ + + + +
≈ +
= +

 

2

(2 c c s c c s )
(2 s c )
(2 s c c c s s )

( )

X j

Y j

Z j

a e r

a X X X

a X X

a X X X

X a X e X rM

X C C C
X C C
X C C C

X a C C C

α β

β

α β

δ δ δ

α β α β α β

β β

α β α β α β

λ
λ
λ

λ δ δ δ

′ − −

′ +
′ + −

+ +

�
�
�

� � ��

 
2

2

2

( c t s )
c c

( s t c ) s c

p X X

q X

r X X

X M a C C
X M aC g
X M a C C g

α β

α

α β

α β α

φ θ

α β α φ θ

λ

λ
λ

− +

−

− + +

�
�
�

 

2

2

( )

2

2

2

2 ( c s c s s )

( c c s c c s )
( s c )
( s c c c s s )

( c t s )
( s ) c c

( s

B B B

X

Y

Z

r

p

d
Y Y X Y ZMa

a Y Y

a Y

a Y Y

Y rM

p Y Y

Y Y

q Y

r Y

Y C C a a a

Y Y C C
Y Y C
Y Y C C

Y aC

Y M a C C
Md C C g

Y M aC
Y M a C

β

α β

β

α β

δ

α β

α β

α

α

α β β α β

α β α β α β

β β

α β α β α β

α β α

α φ θ

λ
λ
λ

λ δ

λ

λ α

λ
λ

′ ′ − − +

′ − −
′ +
′ + −

− +

+ + +

−

�

�

�
�
�
�

��
�

�

�
� t c )

( c ) s
r

Y

Y Y

C
Md C C g

β

β

α β α

α θλ

+

+ − +
�

�

 

2

2

( ) c

2

2

2 ( c s )

( c c s c c s )
( s c )
( s c c c s s )

( c t s )
( c t ) s c

( ) s

B B

X

Y

Z

e

p

q

d
Z Z Z XMa

a Z Z

a Z

a Z Z

Z eM

p Z Z

Y Z

q Z Z Z

Z C C a a

Z Z C C
Z Z C
Z Z C C

Z aC

Z M a C C
Md C C g

Z M aC Md C C g

αβ

α β

β

α β

δ

α β

α α

α α

α α

α β α β α β

β β

α β α β α β

α β α

α β φ θ

θ

λ
λ
λ

λ δ

λ

λ β

λ λ

′ ′ + −

′ − −
′ +
′ + −

− +

+ − −

+ + −

�

�

�

�

�
�
�

��
�

�
��

2 ( s t c )

s t
r Z Z

Z

Z M a C C

MdC
α β

α

α β α

α β

λ

λ

− +

−
�

�
�

 

with 1
2m aSλ ρ� . Here , ,X Y ZC C C′ ′ ′  are obtained directly from 

(21), whereas XC  and M�  from (20) and (25), respectively. 

3.7 Bank Angle Dynamics 

The respective angular velocities W Eω  and B Eω  of the wind 
frame WF  and the body frame BF  w.r.t. the Earth frame EF  
are related by 
 .B E W E W Bβ α= − +k j� �ω ω  
Resolving this equation in body coordinates gives 
 ( ) ( , ) ( ) ( , ) ,B B W W B W

B E W E W Bβ α= − +T T k j� �ω ω  
so that ( )W

W Eω  can be expressed in component form as 
 ( ) ( , )[ s ] ,W W B T

W E p q r cα αβ α β= − − +T � ��ω  (33) 
with ( , )W BT  obtained from (2). A relationship between the 
angular rates μ� , γ� , χ�  and the wind-fixed angular rates ( )W

W Eω  
can also be derived using a χ - γ - μ  sequence of rotations 
from fixed-Earth coordinates to wind coordinates, giving 
 

( )

1 0 s
0 c s c .
0 s c c

W
W E

γ

μ μ γ

μ μ γ

μ
γ
χ

⎡ ⎤− ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

�
�
�

ω
 

Inverting this matrix equation and substituting into (33) gives 
 1 t s t c c c s c s

0 c s c .
0 s c c c s 0

s p
s c s s q

c r c

γ μ γ μ α β β α β α

μ μ α β β α β

μ γ μ γ α α α

μ β
γ α
χ β

⎡ ⎤⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= − − − −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

��
� �

��

 

The required equation for μ�  is then obtained from the above 
relation by expanding it and substituting (26) and (27) for α�  
and β� , respectively, thus obtaining the bank angle dynamics 

 
c 1
c c [ (s t s t s c s t c )

(c t c ) (s s t c c t c t s )].
B

B B

s
XMa

Y Z

p r a

a a

α α

β β α β α γ μ α β γ μ

β γ μ α β γ μ α β α γ μ

μ = + + + −

+ − + +

�
 (34) 

3.8 Flight Path Angle Dynamics 

For a flat Earth, 
 ( ) ,E V V Ed dt d dt m t= + × =V V V Fω  
which can be expressed in velocity coordinates as 
 ( ) ( ) ( ) ( ) ,V V V V

V V Ed dt m+ × =V V Fω  (35) 
where ( ) [ 0 0]V TV=V  and thus ( ) [ 0 0]V T

Vd dt V=V � . 
The angular velocity V Eω  of the velocity frame VF  w.r.t. the 
Earth frame EF  consists of the vector addition of the flight 
path angular rates χ�  and γ�  times their respective unit vectors 
so that, by resolving V Eω  in velocity coordinates, the 
following coordinated equation is obtained for expressing the 
velocity-fixed angular rates ( )

/
V

V Eω  in component form: 
 

( )

0 c 0 s 0 s
1 0 1 0 0 .
0 s 0 c 1 c

V
V E

γ γ γ

γ γ γ

χ
γ χ γ

χ

⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

�
� � �

�
ω

 

Now, since ( ) ( ) ( ) ( )V V V V
g a p= + +F F F F , 

 ( ) ( , ) ( ) ( , ) ( , ) ( ) ( )[ ].V V E E V W W B B B
a pm= + +F T g T T F F  

Noting that ( ) ( ) ( ) ( )[ ]B B B B
a p m+ = −F F a g  yields 

 ( ) ( , ) ( ) ( , ) ( , ) ( ) ( )[ ],V V E E V W W B B Bm = + −F T g T T a g  
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which is now conveniently expressed in terms of the body 
accelerations ( )Ba . Substituting these expressions for ( )V

V Eω  
and ( )V mF  into (35) with (22) for V , using the coordinate 
transformation matrices derived in Section 2.2, and solving 
for γ�  and χ� , the expressions for flight path angle dynamics 
are obtained as 

1
1

1
2c

[(s c c s s ) c s (c c s ) ]

[(s s c s c ) c c (c s s c ) ],
B B B

B B B

X Y ZMa

X Y ZMa

a a s s a g

a a s a g
γ

α μ α β μ β μ α μ α β μ

α μ α β μ β μ α μ α β μ

γ

χ

= + − − − + ⎫⎪
⎬= − + − + + ⎪⎭

�

�
 (36) 

where 
 1

2

[(c s s c s c c c )s (s s c c c )c c ]

[(c s s c s c s c c )c (s s c c c )s ].

g g s s

g g s
α β θ β φ θ α β φ θ μ α θ α φ θ μ γ

α β θ β φ θ α β φ θ μ α θ α φ θ μ

+ − + + −

− + − + +

�

�
 

3.9 Altitude Dynamics 

Transforming the components of ( )VV  to the fixed-Earth 
coordinate system gives 
 ( ) ( , ) ( ) [c c c s s ] .E E V V TV γ χ γ χ γ= = −V T V  
Thus the dynamics for the altitude h  is obtained from the 
negative EZ  component of ( )EV , so that using (22) gives 
 s .h Ma γ=�  (37) 

4. AUTOPILOT STRUCTURE 

All equations are now in place to proceed with nonlinear 
autopilot development, which is based on the dynamic models 
derived in Section 3. Note that these dynamic models are very 
general compared to all other nonlinear approaches proposed 
in the literature for missile autopilot design. 

4.1 Autopilot Design Models 

Maximizing overall missile performance requires choosing 
the appropriate autopilot command structure for each mission 
phase. This may include designing different autopilots for 
launch, an agile turn at high angle of attack, midcourse where 
a long flyout is required, and endgame where terminal homing 
maneuvers are necessary. The missile autopilot can command 
accelerations, body rates, incidence angles, and flight path 
angles. For example, vertical launch surface-air missiles may 
require flight path angle commands during the launch phase. 
For air-air missiles, on the other hand, a body rate command 
is typically used during launch, since rate-command autopilots 
are very robust to the uncertain proximity aerodynamics 
(Wise & Broy, 1998). An agile turn requires directional 
control of the missile’s velocity vector relative to the missile 
body (given by incidence angles). This necessitates following 
angle-of-attack and sideslip angle commands, and regulating 
roll to zero. Finally, during midcourse and terminal phases, an 
acceleration autopilot is generally used. Some missiles, such 
as cruise missiles, also employ altitude-hold autopilots. 

In what follows, a generic approach for nonlinear missile 
autopilot design will be developed using the complete set of 
nonlinear dynamic equations (20)-(37) derived in Section 3 

for missile flight control systems. In the development of this 
generic approach, the proposed topology will accommodate 
all the abovementioned autopilot structures. 

4.2 Autopilot Design Topology 

In flight dynamics, short-period mode is primarily described 
by body rates and incidence angles, whereas long-period 
(phugoid) mode is primarily described by flight path angles. 
In addition to this two-layer structure that exists between 
short-period and long-period modes, flight vehicles also 
experience inherent time-scale separation between “slow” 
translational dynamics and “fast” rotational dynamics of the 
short-period mode. This phenomenon causes autopilot design 
philosophies based on a single unified (single loop) 
framework to be ineffective, because control surface 
deflections directly respond to the translational error 
correction demands, which may lead to instability of the 
rotational dynamics. This is especially true for control 
surfaces located either at the front or the tail of the missile, 
because deflections of these control surfaces can create only 
minor forces, whereas they create large moments due to a 
long moment arm from the CM. Consequently, these control 
surfaces are ineffective in directly correcting translational 
errors, whereas they can be very effective in turning the flight 
vehicle. Therefore, for a successful flight control system, the 
design must exploit the time-scale separation that exists 
between translational and rotational motions of the CM. 

In the development of the generic approach to missile 
autopilot design in this study, the proposed structure explicitly 
exploits the inherent time-scale separation that exists between 
translational and rotational motions of flight vehicles, as well 
as between short-period and long-period motions. The former 
issue is addressed using a two-loop autopilot design topology, 
as opposed to using a single-loop structure. The latter issue is 
addressed by an additional outer loop, giving the three-loop 
structure presented in Fig. 5. The outer loop converts flight 
path angle commands ( comγ , comχ ) or altitude commands 
( comh ) from the guidance system to bank angle commands, 
together with either incidence angle commands ( comα , comβ ) 
or lateral-normal (pitch and yaw) body acceleration 
commands (

B

com
Ya ,

B

com
Ya ) for the intermediate loop. The 

intermediate loop then converts these incidence angles or 
body accelerations to body roll rate, pitch rate and yaw rate 
commands ( comp , comq , comr ) for the inner loop. Finally, the 
inner loop converts comp , comq , comr  to actual control surface 
deflection commands com

iδ  ( 1, , 4i = … ) for the actuators. 

In the design, full nonlinear and coupled 6-DOF equations of 
motion describing missile dynamics derived in Section 3 are 
directly used in all three loops, without making any 
simplifications to these equations. This is achieved by 
formulating the equations in state-dependent nonlinear form 
for each loop for controller design, which is discussed next. 
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Fig. 5. Three-Loop Autopilot Design Topology 

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9596



 
 

     

 

5. STATE-DEPENDENT NONLINEAR FORMULATION 

The first objective is to represent the equations for each loop 
in Fig. 5 in the input-affine form 
 0( ) ( ) ( ) ( ), (0)t t= + =x f x B x u x x�  (38) 
with state vector n∈x \  and (unconstrained) input vector 

m∈u \ , where ( )f x  is a continuously differentiable vector-
valued function of x , that is, 1( ) C⋅ ∈f , and the origin =x 0  
is an equilibrium point of the system with =u 0 , such that 

( ) =f 0 0 , and ( ) ≠B x 0  ∀x . Readers may refer to Çimen 
(2010) for an overview of the various methods available for 
systematically handling numerous systems that do not meet 
the basic structure and conditions mentioned above. Once the 
systems meet the proper structure and conditions, the concept 
of extended linearization is used to formulate the nonlinear 
vehicle dynamics in SDC form (Çimen, 2010). Thus, the 
input-affine nonlinear system (38) is represented in the form 
 0( ) ( ) ( ) ( ) ( ), (0)t t t= + =x A x x B x u x x� , (39) 
which has a linear structure with SDC matrices ( )A x  and 

( )B x . Note that in a deterministic setting, the SDC 
parameterization (39) fully captures the nonlinearities of the 
system. Although the SDC parameterization is unique in the 
case of scalar x  for all x , it is nonunique in the 
multivariable case, and the SDC parameterization ( )A x  itself 
can be parameterized as ( , )A x σ , where σ  is a vector of free 
design parameters (see Proposition 1 in Çimen, 2010). The 
introduction of σ  creates additional degrees of freedom that 
can be used to enhance controller performance, avoid 
singularities or loss of controllability, and affect tradeoffs 
between optimality, stability, robustness, and disturbance 
rejection, thus offering a very flexible nonlinear control policy. 

The primary condition in selecting the “right” ( )A x  is that 
the respective pairs { ( ), ( )}A x B x  are pointwise stabilizable 
SDC parameterizations of the nonlinear system (38) ∀ ∈ Ωx . 
In addition to satisfying this requirement, a rule of thumb in 
selecting the state-dependent factorization is that any term 
containing more than one state variable must be parameterized 
and apportioned among the corresponding elements of the 

( , )A x σ  matrix (Cloutier & Stansbery, 2002b). For example, 
if 3 1 2x x x=� , ( ) [ ]ija=A x  is parameterized with 31 1 2a xσ=  
and 32 1 1(1 )a xσ= − . The free design parameter 1σ  can be 
selected to have any finite real value, but is generally chosen 
in the range [0,1]. It is also desirable to shift state-dependent 
factors which exclude the origin even though they are 
embedded in a term which goes to zero as the state goes to 
zero, as discussed in Cloutier & Stansbery (2002a,b) and 
Çimen (2010). For example, consider 2 3 1cosx x x=� . 
Obviously, this term goes to zero as 3x  goes to zero, but it is 
desirable to have a nonzero entry in the (2,1)-element of the 

( , )A x σ  matrix that reflects the fact that 2x�  depends on 1x . 
This is accomplished by shifting the term so that it goes 
through the origin. For the given example, adding and 
subtracting 1 gives 1 1cos [cos 1] 1x x= − + . The function 

1cos 1x −  goes through the origin and can therefore be 
factored as 1 1 1 1cos 1 [(cos 1) ]x x x x− = − . Note that the 
expression in brackets is well-behaved at the origin, when 

1 0x = . Then, by writing 2 1 1 1 3 3[(cos 1) ]x x x x x x= − +�  allows 
the system to be parameterized as 21 2 1 1 3[(cos 1) ]a x x xσ= −  
and 23 2 1(1 )(cos 1) 1a xσ= − − + , which yields the desired 
nonzero entry in 21a . Such an approach provides a complete 
characterization of the possible factorizations of ( )f x  into 

( , )A x xσ , where 1[ , , ]kσ σ= …σ . 

5.1 State-Dependent Formulation of the Inner Loop 

Consider the body-rate dynamics derived in (31), and note the 
presence of the state-independent terms (referred to as bias 
terms) biasL , biasM , biasN , which prevents a direct 1C  
factorization of ( )f x  into ( , )A x xα  for SDC representation of 
(31). In general, within the framework of state-dependent 
parameterization, bias terms are handled by multiplying and 
dividing these terms by a state that will never go to zero 
(Cloutier & Stansbery, 2001; Çimen, 2010). However, the 
three states p , q , r  can all go to zero. Alternatively, if the 
bias term is constant or slowly-varying, then it can be 
modeled as a stable state ( ) ( )b t b tλ= −� , where λ  is a small 
positive number. Each time through the controller, the actual 
value of ( )b t  would then be used in calculating the control u . 
However, biasL , biasM  and biasN  are neither constant nor 
slowly-varying due to their dependence on M ,α , β ,α� , β�  
and q . A third alternative is to introduce an additional state 
s  with stable dynamics ( ) ( )ss t s tλ= −� , 0sλ > , for the 
purpose of absorbing the biases. Augmenting the system with 
the stable state, bias terms can then be factored as [ ]b b s s= , 
where b  denotes the biases biasL , biasM , biasN . Each time 
through the inner-loop controller, the initial value (0)s  
(assumed small) is used in the SDC matrix in calculating u . 

Thus, defining the state vector [ ]Tp q r sx �  and control 
vector [ ]T

a e rδ δ δu � , (31) can now be represented 
(nonuniquely) in SDC form (39). Following the systematic 
procedure described above, any term containing more than 
one state variable must first be parameterized and then 
apportioned among the corresponding elements of the A  
matrix. There are five such terms in (31), each containing a 
pair of state variables. Thus, introducing the vector 1σ  with 
five design parameters 1,1 1,5, ,σ σ ∈… \ , these terms can all 
be parameterized, and a family of SDC parameterizations for 
the system can then be constructed with 

 
1

11 12 13
1

21 22 23
1 1

31 32 33

0 0
( , ) , ,

0 0 0 0 0 0

a e r

e

a e r

biass

biass

biass

s

L L La a a L
Ma a a M

a a a N N N N

δ δ δ

δ

δ δ δ

λ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

− ⎢ ⎥⎣ ⎦ ⎣ ⎦

A x Bσ
 (40) 

where the ija  elements of the inner-loop SDC matrix 
1( , )A x σ  are presented in Appendix A.1. State-dependent 

nonlinear formulation of the inner loop is then based on the 
complete set of dynamic equations (28), (30) and (40). 
Therefore, for control design, the inner loop is represented in 
SDC form by the augmented system 
 ( )IL IL IL IL IL IL= +x A x x B u�  (41) 
with the respective state and control input vectors 
 [ ] , .T T T T com

IL ILx x u�� �δ δ δ  
Using the relationship logic=u Δ δ  from (28), together with 
(30) yields the SDC matrices for the inner loop as 

{ } { }max max

1 logic 4 4
8 4

4 4 4 4 4 4 2
4 4sat( , ) sat( , )2 2

4 4

( , )
( ) ,

diag 2 diagi i

i i

IL IL IL
n

n n
δ δ δ δ

δ δ

ω
ω ζω

×
×

× × ×
×

×

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥− −
⎣ ⎦

A x B 0
0

A x 0 0 I B
I

0
� �
�

� �
σ Δ  (42) 

for 1, , 4i = … , with 1( , )A x σ  and B  constructed as in (40). 

State-dependent nonlinear formulation of the inner-loop given 
by (41) and (42) incorporates hard bounds on the control 
surface deflection angles iδ  and their rates iδ� . This is 
accomplished using the second-order nonlinear actuator 
dynamics given by (30). This is different from the inner-loop 

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9597



 
 

     

 

design of the missile control problem presented by Cloutier & 
Stansbery (2001), where zero-order (that is, lag-free) actuator 
dynamics was assumed with hard bounds imposed only on the 
effective control surface deflections angles ( aδ , eδ , rδ ) using 
integral control. In reality, however, these constraints take 
effect on individual control surfaces iδ  ( 1, , 4i = … ), which 
makes the approach proposed here more practical. Note also 
that without actuator dynamics, imposing hard bounds on both 

iδ  and iδ�  would require the use of double integral control. 

5.2 State-Dependent Formulation of the Intermediate Loop 

For state-dependent nonlinear formulation of the intermediate 
loop, let us define the state vector and the control vector as 
 [ ] , [ ] .

B B B

T T
ML X Y Z MLa a a M p q rα β μx u� �  

Since p , q , r  are the controls in the intermediate loop, the 
current values of the control surface deflections jδ  and their 
rates jδ�  ( , ,j a e r= ) are used in this loop. 

Since thrust is not controllable, the controllability of the Mach 
dynamics (25) is due to angle of attack and sideslip angle. 
Consequently, Mach controllability is lost when α  and β  
are both zero, as also noted by Cloutier & Stansbery (2001). 
Therefore, similar to Cloutier & Stansbery (2001), a 
stabilizing term of 0.1M−  is added to the Mach dynamics so 
as to eliminate loss of controllability in the state-dependent 
formulation of the intermediate-loop dynamics (Çimen, 2010). 

Eqs. (25), (26), (27), (32) and (34) can now be represented in 
SDC form (39). Once again, following the systematic 
procedure previously described, any term containing more 
than one state variable must first be parameterized and then 
apportioned among the corresponding elements of the A  
matrix. Note that multiples of three individual states, say 

1 1 2 3x x x x=� , can be parameterized as 1
11 1 2 2 33 ( )a x xσ σ= + , 

1
12 1 3 1 33 (1 )a x xσ σ= − + , 1

13 2 3 1 23 (2 )a x xσ σ= − − . Therefore, a 
vector 2σ  with 42 design parameters 2,1 2,2 2,42, , ,σ σ σ ∈… \  
is introduced, which is used in parameterizing nonlinear terms 
in these equations. A hypersurface of SDC parameterizations 
for the intermediate-loop system is then constructed with 

11 12 13 14

21 22 23 24

31 32 33 34

2 41 42 43 45 46

51 53 55

61 62 63 65 66

71 72 73 75 76 77

0 0 0
0 0 0
0 0 0

0 0 0( , ) 0.1 0 , ( )
c t 1 s t0 0 0 0
s 0 c0 0

c c0

p q r

p q r

p q r

ML ML ML ML

X X Xa a a a
Y Y Ya a a a
Z Z Za a a a

a a a a a
a a a
a a a a a
a a a a a a

α β α β

α α

α β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= − =⎢ ⎥
⎢ ⎥ − −
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎣ ⎦

A x B xσ ,

0 csα β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (43) 

where the ija  elements of the intermediate-loop SDC matrix 
2( , )ML MLA x σ  are given in Appendix A.2. 

5.3 State-Dependent Formulation of the Outer Loop 

The outer loop is formulated using the flight path angle and 
altitude dynamics derived in (36) and (37), respectively. 
However, there are two possible ways of formulating the outer 
loop in SDC form, which are now both discussed. 

For the first formulation, the state vector and the control 
vector for the outer loop are defined as 
 [ ] , [ ] .

B B

T T
OL OL Y Zh a aγ χx u� �  

The bias terms contained in (36) are handled by multiplying 
and dividing these terms by the state h , which never goes to 
zero. Constructing the required SDC parameterization is then 
very straightforward, giving 

 13 11 12

23 21 22

31

0 0
( ) 0 0 , ,

0 0 0 0
OL OL OL

a b b
a b b

a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A x B
 (44) 

with the resultant coefficients defined in Appendix A.3. 
The second alternative formulation follows Cloutier & 
Stansbery (2002a), using angle of attack and bank angle 
commands, while issuing a zero sideslip command for a BTT 
autopilot. However, the controls α  and μ  appear nonlinearly 
in (36) as products of sines and cosines. Therefore, in order to 
bring the dynamics into control-affine form (38), integral 
control must be applied. Defining the state and control vectors 

[ ]T
OL hγ χ α μx �  and [ ]T

OL α μu � �� , bias terms 
contained in (36) can be handled by multiplying and dividing 
these terms by the state h . The SDC parameterization can 
then be constructed in a similar manner as before. Although 
this alternative formulation increases the order of the state 
vector by two, it can provide the desired set of controls for 
BTT missiles using flight path angle commands from the 
guidance system (Cloutier & Stansbery, 2002a). The former 
formulation, however, has the advantage of providing 
acceleration commands to the intermediate loop, which are 
directly available from sensor measurements, as opposed to 
estimates of incidence angles required for the second 
formulation. Therefore, the former formulation proposed here 
is used with the three-loop topology, whereas, for BTT 
missiles, use of the inner two-loop structure is proposed. 

6. CONTROLLER DESIGN 

6.1 Control Design Approaches 
For control design of the proposed three-loop structure 
presented in Fig. 5, any extended linearization control method 
(Çimen, 2010) such as pole placement can be applied. 
However, recent attention has been directed towards 
satisfying performance and stability robustness requirements 
by designing autopilots using optimal control theory, because 
these requirements for current and future missiles necessitate 
the use of optimally designed multivariable digital flight 
control systems (Wise, 2007). LQR state feedback designs 
generally give good performance characteristics and stability 
margins, with the availability of the states required for 
implementation. Command tracking is achieved through this 
framework by augmenting the system with an integrator, and 
designing the controller for the augmented system. In many 
practical designs not all the states are available for feedback 
and, for these problems, H2 and H∞ frameworks can be 
applied. All these methods lead to the various State-
Dependent Riccati Equation (SDRE) control methodologies 
proposed in the literature, such as the SDRE nonlinear 
regulator, SDRE integral servomechanism, SDRE nonlinear 
H2 control, and SDRE nonlinear H∞ control, which are all 
viable approaches for controller design. These methods use 
either state feedback or output feedback architectures, and are 
all the product of optimal control based designs. 
Using SDRE nonlinear regulation with integral control, the 
SDRE controller can be implemented as an integral 
servomechanism to provide a type 1 controller for all three 
loops in order to perform perfect tracking of the loop 
commands (Çimen, 2010). This is accomplished by first 
decomposing the state vector x  (which must be available for 
feedback) as [ ]T T T

R N=x x x , where it is desired for the 
vector components of Rx  (the tracked states) to track a 
reference, input or command signal p∈r \ , and Nx  consists 
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of the nontracked states. The state vector x  is then augmented 
with Ix , the integral states of Rx . The augmented system 
becomes 
 ( , ) ( ) ,= +x A x x B x u� � �� � � �σ  
 [ ] , ( , ) , ( )( , ) ( )

T T T T
I R N

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

0 I 0 0x x x x A x B x0 A x B x
� �� � �� σ σ

 

with ( , )A x σ  and ( )B x  derived in Section 5 for each of the 
three loops. The problem is then formulated as a nonlinear 
optimal control problem, with the minimization of 
 { }1

2 0
( ) ( ) .T TJ dt

∞
= +∫ x Q x x u R x u� �� � � �  

Then, by mimicking the LQR formulation, the full-state 
feedback, robust SDRE integral servo controller becomes 
 1( ) ( ) ( ) ( ) ,

IT
R

N

dt
−

⎡ ⎤− ∫
⎢ ⎥= − −
⎢ ⎥
⎣ ⎦

x r
u x R x B x P x x r

x
� � �� � �

 

where ( )P x�  is the unique, symmetric, positive-definite 
(pointwise stabilizing) solution of the SDRE 
 1( ) ( , ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .T T−+ − + =P x A x A x P x P x B x R x B x P x Q x 0� � �� � � � � � �� � � � � � � � � �σ σ  
In the absence of the integral states Ix , the above formulation 
reduces to the SDRE servomechanism problem. 

6.2 Selection of Design Parameters 

The respective vector design parameters 1σ  and 2σ  defining 
the hypersurface of SDC parameterizations given in (40) and 
(43) (see Appendix A) must now be selected for controller 
design. A systematic and an effective procedure has been 
described in Çimen (2010) for selecting the “best” SDC 
parameterization, which is to attempt to maximize the 
pointwise controllable spaces of the possible factorizations by 
computing the state-dependent controllability matrix 
 1( , ) [ ( ) ( , ) ( ) ( , ) ( )], 1, 2n

C i i i i−= =M x B x A x B x A x B x"σ σ σ  
and evaluate it for different values of 1σ  and 2σ . This is 
clearly the logical choice, since pointwise control effort can 
be directly linked to these issues (for a detailed discussion 
with examples, readers may refer to Çimen, 2010). 

In order for the SDRE to have a solution, the pointwise 
detectability condition must also be satisfied (Çimen, 2010). 
The state-dependent weighting matrix ( )Q x� �  must be selected 
and tuned for the entire range of flight conditions, in order to 
maintain good autopilot response over the entire flight 
envelope (Cloutier & Stansbery, 2001). The state weightings 
on the tracked outputs, therefore, must be varied at low, 
medium and high speeds and altitudes until similar 
performance is achieved for all cases. The state weightings 
can then be curve fit to a quadratic function of dynamic 
pressure q , which is a function of both altitude and airspeed, 
and hence Mach number (one of the states in the outer loop). 
Alternatively, they can be calculated online by interpolation. 

6.3 Design Genericity 

Skid-to-turn (STT) and bank-to-turn (BTT) are the two basic 
modes of controlling a missile. In the STT mode, the roll 
angle is either held constant or uncontrolled. This has the 
major advantage of decoupling roll dynamics from the pitch 
and yaw dynamics, and delivering faster response than the 
BTT mode. A BTT missile, on the other hand, allows only 
positive angles of attack while maintaining small sideslip 
angles to prevent missile maneuvers from shading the inlet of 
air-breathing engines in order to increase fuel efficiency and 
thereby maximize range. The desired orientation is achieved 
by rolling (banking) the missile so that the plane of maximum 

aerodynamic normal force is in the desired direction, and the 
magnitude of the force is controlled by adjusting the angle of 
attack in that plane. 

Recall that maximizing overall missile performance requires 
choosing the appropriate autopilot command structure for 
each mission phase. The genericity of the design presented in 
Sections 4 and 5 thus becomes apparent, where the reference 
command can be selected as any of the state variables, 
depending on the specific control mode, intercept scenario, or 
mission phase. For example, for STT missiles, the tracking 
command is usually given by [ ]

B B

com com com T
Y Za a μ=r , so that 

Rx  is defined as [ ]
B B

T
R Y Za a μ=x , with 0comμ =  such 

that the bank angle is regulated to zero. For BTT missiles, on 
the other hand, the autopilot can easily be transformed to 
follow roll angle and angle-of-attack commands generated by 
the guidance system (or the outer loop, if desired), so that 

[ ]T
com com comα β μ=r  and thus [ ]T

R α β μ=x  with 
0comβ = , since the sideslip angle must be kept as small as 

possible during flight. In case of altitude-hold autopilots, the 
altitude in the outer loop may be selected as the commanded 
input, so that comr h=  and Rx h= . The required autopilot 
command structure then becomes a consequence of the chosen 
reference commands. If body rates are the guidance 
commands, then only the single inner-loop layer in Fig. 5 is 
required for autopilot design. Alternatively, for acceleration 
or incidence angle commands, the required autopilot topology 
is given by the inner two-loop structure of Fig. 5. On the other 
hand, if the guidance algorithm supplies flight path angle or 
altitude commands, the complete three-loop autopilot design 
topology of Fig. 5 is then required. Additionally, several 
possible combinations can be used for each mission phase by 
switching between the required command structures within 
the proposed topology during different phases of flight. 

6.4 Performance and Robustness Results 

The genericity, performance and robustness of the autopilot 
design approach developed in the paper has been tested and 
evaluated on several alternative missile configurations, using 
different intercept scenarios, and for entire engagements, from 
launch to intercept, using detailed 6-DOF simulations and 
Monte Carlo runs. In particular, the developed approach has 
been used in autopilot design for several hypothetical missile 
configurations, including a highly unstable missile airframe 
with canard controls, stable and unstable nonminimum-phase 
tail-controlled configurations, and a configuration which has 
combined characteristics, with a separable booster mechanism 
that switches between thrust vectoring during launch and 
canard control after separation. In the latter case, different 
autopilots for vertical launch, midcourse and terminal phases 
have been successfully implemented for entire engagements, 
based on different sets of autopilot command structures in Fig. 
5. The nonlinear autopilot has been implemented into the 
simulation and integrated with a high-order control actuation 
system, as opposed to the second-order dynamics assumed in 
the autopilot model. Guidance and navigation algorithms were 
supplied using a strapdown IMU sensor, taking into account 
sensor location. Simulations were then performed with the 
nonlinear autopilot solved online at a rate of 1 kHz. Due to 
space limitations, however, the various sets of simulation 
results could not be included in the paper, and will be 
presented during Congress presentation. At this point, 
however, it is worth mentioning that the inner-, intermediate- 
and outer-loop SDRE controllers all provide excellent 
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tracking performance over the full range of flight conditions 
and throughout the entire operating envelope, for various 
missile configurations and intercept scenarios. This should not 
come as a surprise, since outstanding performance of SDRE-
based designs for nonlinear missile autopilots have already 
been demonstrated in several works in the literature (see, for 
example, Mracek & Cloutier, 1996, 1997; Cloutier & 
Stansbery, 2001, 2002a; and Vaddi, Menon & Ohlmeyer, 
2009). Simulations have shown that at different flight 
conditions within the flight envelope the time-scaled 
nonlinear autopilot structure presented in Fig. 5 consistently 
delivers uniform performance when designed with SDRE 
control. Thus, the SDRE autopilot provides the same level of 
performance at all Mach numbers and altitudes. Additionally, 
since no gain scheduling is required to implement the 
autopilot, tremendous savings in the design effort can be 
realized. Moreover, robust performance of the nonlinear 
autopilot design approach using the SDRE method has been 
evaluated and validated in the presence of high uncertainties 
in the aerodynamic coefficients, measurement inaccuracies, 
noise and delays, INS errors, as well as continuous wind and 
turbulent atmospheric effects, achieving outstanding 
performance in all these cases. 

7. CONCLUSIONS 

In this study, a generic approach to missile autopilot design 
has been developed using state-dependent nonlinear control. 
The proposed topology has a three-loop structure. The outer 
loop uses either flight path angle commands or altitude 
commands from the guidance law to generate roll angle 
command together with either body acceleration commands or 
incidence angle commands, depending on whether the missile 
flies STT or BTT. The intermediate loop tracks the outer-loop 
commands by generating commanded body (roll, pitch and 
yaw) rates. The inner loop then tracks the intermediate loop 
body rate commands using the control surface deflections. In 
this topology, any extended linearization control method, such 
as various SDRE methods, can be applied in the design of all 
three loops. Full nonlinear and coupled 6-DOF equations of 
motion describing missile dynamics are derived and used 
directly in all three loops, where state-dependent nonlinear 
control is applied in each loop without making any 
simplifications to the equations. A general form of the 
hypersurface of SDC parameterizations is constructed for the 
inner, intermediate and outer loops to carry out the control 
design. This topology also preserves the inherent time-scale 
separation between translational and rotational dynamics of 
the short-period mode, and produces an effective approach to 
missile autopilot design. Detailed 6-DOF simulations have 
also indicated that the proposed approach significantly 
improves gain-scheduled linear autopilots. The generic 
approach developed in this study for autopilot design can be 
easily extended to even more general cases, such as advanced 
missile control problems with thrust vectoring and reaction 
jets, and even other flight control design problems using the 
general form of the 6-DOF rigid-body equations of motion in 
the design of state-dependent nonlinear flight control systems. 
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Appendix A. SDC MATRIX COEFFICIENTS 

A.1 Inner-Loop SDC Matrix Coefficients 
2

2

11 11 12 13 13 14

21 11 12 22 23 14 15

31 12 32 13 33 15

(1 ) (1 )
(1 ) (1 ) (1 )

p pq p pr p pqp

pq qr q pq qr

r qr pr r qrr

a L L q a M M p M r a N N q

a L p L r a M a N p N r
a L L q a M r M p a N N q

σ σ σ

σ σ σ σ
σ σ σ

= + = + + = +

= − + = = − +
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A.2 Intermediate-Loop SDC Matrix Coefficients 
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c 1c 11 1
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45 2,10 2,12 2,13 2,16 2,3 3

[ ( ) (c 1) (c 1) 1]

s

[ s (c 1)( )s ]

[ (c 1)(1 ) (1 ) (1 ) (c 1)(2
B B B

a

a

a

X X Za

a

a

a

a a a a

βα

α α α

α βα β

β

α β α

β βα α α

σ σ αβ σ σ

σ

σ α α

σ σ σ σ α

−−

− −

= + + − + − +

=

= + − +

= − − + + − + − + − − s
18 2,19

c 1 c 1 s c 11 1 1
46 2,11 2,12 2,14 2,15 2,17 2,193 3

) ]

[ (c 1) (2 ) (1 ) (1 ) (1 ) s ]
B

B B B B

Z

X X Y Za

a

a a a a a

α

β β β β

α

α αβ β β β

α

σ σ σ σ α α− − −

−

= − − − + − + − + − +

 

c 1 s1 1 1
51 2,21 53 2,20 55 2,20 2,21c c cs [1 (c 1) ] [ (1 ) (1 ) ]

B BZ XMa Ma Maa a a a aα α

β β βα α α ασ σ σ σ−= − = + − = − − −  
1 1

61 2,22 2,23 2,253

1
62 2,26

1 1
63 2,27 2,283

c 1 s1 1
65 2,22 2,24 2,27 2,293

s1 1
66 2,23 2,24 2,253

[ (c 1)( )s s ]

[(c 1) 1]

( )s s

s [ (1 ) (1 ) ]

[ (c 1)(2 ) (1 )
B B

B B

Ma

Ma

Ma

X ZMa

X XMa

a

a

a

a a a

a a a

α α

β

α β β

β

α β

β α α

α β

σ σ σ

σ

σ σ

σ σ σ σ

σ σ σ

−

= − − + +

= − +

= − +

= − − + + − +

= − − − − + − s c 1 s1
2,26 2,28 2,293(1 ) (2 ) s ]

B BY Za aβ β β

αβ β βσ σ σ−− − + − −

 

1 1 1
71 2,30 2,31 2,33 2,34 2,363 3

1 1 1
72 73 2,37 2,38 2,41 2,423

1 1 1 1
75 2,30 2,32 2,33 2,35 2,373 3 3

[ ( ) s t ( ) s t s c s t c ]

c t c , [ ( ) s s t c c t c t s ]

[ (1 ) t (1 ) t s (1
B B

Ma

Ma Ma

X XMa

a

a a

a a a

α β α γ μ α β γ μ

β γ μ α β γ μ α β α γ μ

β γ μ

α α α α σ

α α σ σ

α α α α α

= + + + −

= = − + + +

= − + + − + − − + s
2,39

1 1 1 1
76 2,31 2,32 2,36 2,38 2,393 c 3

s1
2,41 c

s1 1
77 2,34 2,35 2,423

) s t c ]

[ (2 ) s (1 ) c t c (2 ) s t c

(1 ) c ]

[ (2 ) s (1 ) c ] t

B

B B B

B

B B

Z

X X ZMa

Z

X ZMa

a

a a a a

a

a a a

α

β

β

β

μ

β γ μ α

α α γ μ α γ μ

α β

α α γ μ

α

α α σ α α

σ

α α σ

= − − − − − − −

+ −

= − − + −

 

A.3 Outer-Loop SDC Matrix Coefficients 
1 1 1

13 1 11 12

1 1 1
23 2 21 22c c c

31

[(s c c s s ) ] c s (c c s )

[(s s c s c ) ] c c (c s s c )

s

B

B

XMah Ma Ma

XMah Ma Ma

a a g b b s s

a a g b b s

a Ma
γ γ γ

α μ α β μ β μ α μ α β μ

α μ α β μ β μ α μ α β μ

γ γ

+ + − − −

− + − +

� � �

� � �
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