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Abstract: We study the problem of heating, ventilation, and air conditioning (HVAC) control in
a typical commercial building. We propose a model predictive control (MPC) approach which
minimizes energy use while satisfying occupant comfort constraints. A sequential quadratic
programming algorithm is used to efficiently solve the resulting bilinear optimization problem.
This paper presents the control design approach and the procedure for computing its solution.
Extensive numerical simulations show the effectiveness of the proposed approach. In particular,
the MPC is able to systematically reproduce a variety of well-known commercial solutions for
energy savings, which include demand response, “economizer mode” and precooling/preheating.

1. INTRODUCTION

The building sector consumes about 40% of the energy
used in the United States and is responsible for nearly
40% of greenhouse gas emissions, see McQuade (2009).
It is therefore economically, socially and environmentally
significant to reduce the energy consumption of buildings.
Previous work by Henze et al. (2004); Ma et al. (2010);
Oldewurtel et al. (2010) has evaluated the energy saving
potential of model predictive control (MPC) for heating
ventilation and air conditioning (HVAC) in buildings.

The main idea of MPC is to use a model of the plant
to predict the future evolution of the system, see Borrelli
(2003); Mayne et al. (2000). At each discrete sampling
time, an open-loop optimal control problem is solved over a
finite horizon starting from the current state. The optimal
command signal is applied to the process only during the
first sampling interval. At the next time step a new optimal
control problem based on new measurements of the state
is solved over a shifted horizon. Model predictive control
has become the accepted standard in the process industry
for solving complicated constrained multivariable control
problems, see Qin and Badgwell (2003). The success of
MPC is largely due to its ability to simply and effectively
handle hard constraints on states and control inputs.

Section 2 of this paper introduces the common type of
HVAC system we focus on, then derives low-order models
for the temperature dynamics and energy costs. Section
3 outlines the MPC control algorithm and presents a
tailored sequential quadratic programming (SQP) method
which exploits the bilinear structure of the optimal control
problem. Simulation results presented in Section 4 show
good performance and computational tractability of the
resulting scheme. Additionally, the model predictive con-
troller exhibits desirable control behaviors that resemble
modern advanced heuristic strategies for HVAC control,
reproducing those strategies in a systematic manner.

2. SYSTEM MODEL

The system considered in this work, known as variable air
volume (VAV) with reheat, is depicted in Fig. 1. This type
of HVAC system provides cooling using a variable speed
supply fan and a cooling coil (water-to-air heat exchanger)
located in a central air handling unit (AHU). A cold water
valve controls the cooling coil outlet air to a setpoint
temperature, and the supply fan distributes the cold air
to every thermal zone served by the same AHU. The AHU
supply fan speed determines the total flow rate to all zones.
The supply air flows from the AHU into each thermal zone
through a “VAV box” which consists of a damper and a
heating coil. The damper regulates the flow rate to the
thermal zone and the heating coil reheats the supply air
to a higher temperature, if required.
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Fig. 1. VAV with reheat HVAC system schematic

The mixed exit air from all zones recirculates back to the
AHU through a return duct. A set of dampers in the AHU
controls the mix of outside ambient and recirculated air
used as the source for supply air. Usually the return air
will be cooler than ambient temperature on a hot day when
cooling is required, or warmer than ambient on a cold day
when heating is required. So conventional practice is to
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recirculate as much air as possible, while maintaining a
minimum fraction of fresh air for acceptable indoor air
quality. However, the opposite scenario of cooling when
return air is warmer than ambient (or heating when return
air is cooler than ambient) can occur, and in that case
using 100% outside air consumes the least total coil energy.
This is known as “economizer” operation.

In order to develop a low-order control-oriented building
thermal model, we make the following assumptions.

A1 The average air temperature dynamics of the thermal
zones can be reasonably approximated as first-order.
We therefore combine the thermal capacitance of the
air, walls, furnishings, etc. of zone i into a single
lumped parameter denoted (mc)i.

A2 Humidity is not explicitly modeled. 1

A3 All dynamics except those of the thermal zones are
neglected. Actuators are assumed to instantly meet
their control setpoints.

A4 Predictions of outside ambient temperature Toa and
the thermal loads Q̇i in each zone due to occupants,
equipment, and all heat transfer to or from ambient
and other zones are known in advance. 2

2.1 Zone Temperature Dynamics

A first order energy balance gives the following continuous
time system dynamics for the temperature Tzi of zone i.

(mc)i
d

dt
Tzi = Q̇i + ṁzicp(Tsi − Tzi). (1)

where cp is the specific heat capacity of air, and the
control inputs are the mass flow rates ṁzi and supply
temperatures Tsi to each zone.

If we neglect heat transfer by radiation, the thermal loads
Q̇i are affine functions of the zone temperatures,

Q̇ =

 Q̇1

...

Q̇n

 = R

 Tz1...
Tzn

+ Q̇offset,

where n is the number of thermal zones served by the same
AHU, R is a symmetric n×n matrix and Q̇offset is an n×1
time-varying vector. The elements of R are given by

Rij =


UAij i 6= j

−UAoi −
i−1∑
k=1

UAik −
n∑

k=i+1

UAik i = j

where UAij = UAji is the heat transfer coefficient times
area between zones i and j. Zone i and zone j have no heat
transfer between them when UAij = UAji = 0. The heat
transfer coefficient times area between zone i and specified
external temperatures (such as Toa) is denoted UAoi.

1 Humidity and latent heat can be important factors affecting HVAC
design and actual energy use, but they are not typically directly
measured or controlled. We will deal with this thermodynamic sim-
plification indirectly: throughout this entire work, every temperature
is meant to represent an equivalent dry air temperature, i.e. the
temperature at which dry air would have the same specific enthalpy
as the actual moist air mixture.
2 This is a strong assumption, since load and weather predictions are
not perfectly accurate. We are investigating extensions of this MPC
scheme to robustly account for prediction and model uncertainty.

We can use a weighted undirected graph representation in
order to describe the coupling between zones. In that case,
−R is equal to the weighted Laplacian matrix of the zone
connectivity graph plus a diagonal matrix.

The compact form of (1) for all zones together is then

M
d

dt
Tz = R Tz + Q̇offset + cpṁz ◦ (Ts − Tz), (2)

where M = diag((mc)1, . . . , (mc)n), Tz = [Tz1, . . . , Tzn]′,
ṁz = [ṁz1, . . . , ṁzn]′, Ts = [Ts1, . . . , Tsn]′, and ◦ denotes
the elementwise product.

Assuming ṁz and Ts are zero-order held at sample rate ∆t,
we discretize (2) using the trapezoidal method to obtain

M
T+
z − Tz

∆t
= R

T+
z + Tz

2
+
Q̇+

offset + Q̇offset

2
(3)

+ cpṁz ◦
(
Ts −

T+
z + Tz

2

)
,

where T+
z and Q̇+

offset denote the corresponding values at
the next discrete time step t + ∆t. We choose the trape-
zoidal discretization as a compromise between simplicity
and stability (which some methods lack when ∆t is large).

2.2 Air Handling Unit Model

Although we have neglected the dynamics of the AHU, we
must introduce additional control inputs and constraints
to capture recirculation behavior and the energy cost.

Table 1. Additional variables for AHU model

Symbol Description Units

dr
Fraction of supply flow
recirculated from zones

dimensionless

Tr
Temperature of mixed
return air from zones

◦C

Tm
AHU cooling coil

inlet air temperature
◦C

Tc
AHU cooling coil outlet
air temperature setpoint

◦C

Assuming there is no heat loss or gain in the return duct,
Tr is a flow-weighted average of the zone temperatures,

Tr =

∑n
i=1(ṁziTzi)∑n
i=1 ṁzi

. (4)

An energy balance of the AHU then gives

Tm = (1− dr)Toa + drTr. (5)

2.3 Cost Function

We will consider energy use of the cooling and heating
coils in terms of air-side thermal power, which we can
directly calculate from the models in the previous section.
We represent all of the operating characteristics of the
cold and hot water circuits with two constant parameters:
efficiency ηh for the hot side, and coefficient of performance
ηc for the cold side. So power used by the heating coils and
cooling coil are given respectively by Ph and Pc where

Ph =
cp
ηh

n∑
i=1

(ṁzi(Tsi − Tc)), (6)

and Pc =
cp
ηc

(
n∑
i=1

ṁzi

)
(Tm − Tc). (7)
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Remark 1. A higher-fidelity model would include ancillary
equipment such as water pumps and cooling towers, and
a detailed water-side energy balance.

The electrical power Pf used by the supply fan is equal to

Pf =

(
n∑
i=1

ṁzi

)
∆p

ρ ηf
,

where ∆p is the pressure difference across the fan, ρ is
the air density, and ηf is the efficiency of the fan. If all
zone dampers were held at fixed positions, incompressible
flow would give ∆p ∝ (

∑
ṁzi)

2. However, when zone
dampers open, the pressure drop for a given flow rate
decreases. As an average trend direction, increasing total
flow will correspond to more-open zone dampers. So we
expect pressure drop to increase more slowly than total
flow squared. For simplicity we restrict our model to
polynomial form, so we take ∆p = ρ ηfκf

∑
ṁzi. Recorded

data for a representative AHU supply fan shows in Fig. 2
that fan power versus fan flow fits a quadratic model.

Fig. 2. Recorded data from an AHU supply fan in the
Bancroft Library at University of California, Berkeley

With this form of fit and simplification, we have

Pf = κf

(
n∑
i=1

ṁzi

)2

, (8)

where κf is a parameter that captures both the fan
efficiency and the duct pressure losses.

We introduce several parameters to reflect utility pricing.
The cost in currency per unit energy content is denoted
re for electricity and rh for heating fuel (typically gas, or
steam from a central plant). These costs may vary in time,
especially for electricity, to reflect time-of-use or dynamic
utility pricing. We assume time variation of utility rates
occurs in a zero-order hold manner at sample rate ∆t.

We also incorporate a feature of some utility structures
wherein peak electric power use is penalized. Some utilities
only implement this peak-use charge during certain hours
of the day, so we express this feature by defining a
windowing function φ(t). The value of φ(t) equals the given
cost per unit peak power during restricted time intervals,
and zero elsewhere.

Assuming cold water is produced immediately on demand
by electric chillers, and likewise for hot water by a fuel-
powered boiler or district steam heat exchanger, the total
utility cost from time t to time t+N∆t is

J =

∫ t+N∆t

t

(rePf + rePc + rhPh)dτ

+ max
τ∈[t,t+N∆t]

(φ(τ)(Pf + Pc)), (9)

where N is the prediction horizon length.

Note that the cooling coil power (7) depends on the
cooling coil inlet air temperature Tm, which depends (5)
on return air temperature Tr, which depends (4) on zone
temperatures Tz, so this utility cost integral is a function
of the state variables and all of the control inputs. The
integral in (9) is approximated numerically according to
the trapezoidal discretization for consistency with the
discrete state dynamics (3).

2.4 Constraints

The system states and control inputs are subject to the
following constraints due to control requirements and
actuator limits.

C1: T zi ≤ Tzi ≤ T zi ∀ i ∈ {1, . . . , n}, comfort range.
C2: ṁzi ≤ ṁzi ≤ ṁzi ∀ i ∈ {1, . . . , n}, minimum ventila-

tion requirement and maximum VAV box capacity.
C3: Tsi ≥ Tc ∀ i ∈ {1, . . . , n}, heating coils can only

increase temperature.
C4: Tsi ≤ Th ∀ i ∈ {1, . . . , n}, heating coil capacity.
C5: Tc ≤ Tm, cooling coil can only decrease temperature.
C6: Tc ≥ T c, cooling coil capacity.
C7: 0 ≤ dr ≤ dr, minimum is no recirculation, maximum

set by required fresh air for indoor air quality.

In all of the above constraints, limit values denoted by ?
and ? may be time-varying and are assumed to be known
in advance. These constraints must hold at all times t.

Due to the trapezoidal discretization of the system dy-
namics, we approximate the time variation of the zone
temperatures Tzi as piecewise linear between discrete time
steps t and t+ ∆t. We treat the disturbance inputs Q̇offset

and Toa the same way, as continuous piecewise linear
functions of time. All of the control inputs are zero-order
held so they are discontinuous piecewise constant functions
of time. Due to (5), cooling coil inlet temperature Tm
is therefore discontinuous and piecewise linear in time.
To enforce constraint C5 at all times we introduce the
following additional variables

T̃r =

∑n
i=1(ṁziT

+
zi)∑n

i=1 ṁzi
, (10)

T̃m = (1− dr)T+
oa + drT̃r, (11)

P̃c =
cp
ηc

(
n∑
i=1

ṁzi

)
(T̃m − Tc), (12)

and corresponding constraint

C8: Tc ≤ T̃m.

Multiply both sides of (4) and (10) by
∑
ṁzi:(

n∑
i=1

ṁzi

)
Tr =

n∑
i=1

(ṁziTzi), (13)(
n∑
i=1

ṁzi

)
T̃r =

n∑
i=1

(ṁziT
+
zi). (14)
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Note that when
∑
ṁzi = 0, the HVAC system consumes

no energy and the system dynamics evolve only according
to thermal loads Q̇i. In that case the return temperature
is not important, so enforcing (13) and (14) is equivalent
for our purposes to enforcing (4) and (10).

3. OPTIMAL CONTROL FORMULATION

Let xk|t be the value of the state vector Tz at time
t + k∆t predicted at time t, uk|t be the value of the
combined control input vector [ṁ′z, T

′
s, dr, Tc]

′ at time t+
k∆t predicted at time t, and vk|t be the value of the

vector of auxiliary variables [Tr, Tm, Ph, Pc, Pf , T̃r, T̃m, P̃c]
′

at time t+ k∆t predicted at time t.

The system dynamics (3), and auxiliary-variable equalities
(5)-(8) and (11)-(14) can all be expressed in the following
bilinear form:

1

2

 xk|t
uk|t
vk|t
xk+1|t


′

Cj,k|t

 xk|t
uk|t
vk|t
xk+1|t

+d′j,k|t

 xk|t
uk|t
vk|t
xk+1|t

+ ej,k|t = 0

∀ j ∈ {1, . . . , n+ nv}, ∀ k ∈ {0, . . . , N − 1} (15)

The matrices Cj,k|t are symmetric and indefinite, and
nv = 8 is the number of auxiliary variables.

We cannot influence whether the given initial conditions
x0|t = Tz(t) satisfy the comfort constraints C1, so we
compactly represent the constraints C1-C8 as

Ak|t

 uk|t
vk|t
xk+1|t

 ≤ bk|t, ∀ k ∈ {0, . . . , N − 1}. (16)

Let rk|t be the value of the vector [0, 0, rh,
re
2 , re, 0, 0,

re
2 ]′

at time t+ k∆t. Then by the trapezoidal discretization,∫ t+N∆t

t

(rePf + rePc + rhPh)dτ =

N−1∑
k=0

∆t r′k|tvk|t. (17)

Lastly, we introduce an epigraph variable βt to represent
the peak power term in (9).

Let Fk|t =

[
0 0 0 φ(τ) φ(τ) 0 0 0
0 0 0 0 φ(τ) 0 0 φ(τ)

]
evaluated at

τ = t+ k∆t. Then we have the equivalence that

max
τ∈[t,t+N∆t]

(φ(τ)(Pf + Pc)) = minβt s.t. Fk|tvk|t ≤
[
βt
βt

]
,

∀ k ∈ {0, . . . , N − 1}. (18)

The constrained finite time optimal control (CFTOC)
problem at time t is then

min
Xt,Ut,Vt,βt

βt +

N−1∑
k=0

∆t r′k|tvk|t (19)

s.t, ∀ j ∈ {1, . . . , n+ nv}, ∀ k ∈ {0, . . . , N − 1},

1

2

 xk|t
uk|t
vk|t
xk+1|t


′

Cj,k|t

 xk|t
uk|t
vk|t
xk+1|t

+d′j,k|t

 xk|t
uk|t
vk|t
xk+1|t

+ ej,k|t = 0

Ak|t

 uk|t
vk|t
xk+1|t

 ≤ bk|t, Fk|tvk|t ≤
[

1
1

]
βt, x0|t = Tz(t)

where Ut = {u0|t, . . . , uN−1|t} is the set of predicted
control inputs at time t, Xt = {x1|t, . . . , xN |t} is the set
of predicted system states at time t, starting from initial
state x0|t = Tz(t) and applying the input sequence Ut to
the system model (3), and Vt = {v0|t, . . . , vN−1|t} is the
corresponding set of predicted auxiliary variables at t.

Let the optimal solution of problem (19) have input
sequence denoted by U?

t = {u?0|t, . . . , u
?
N−1|t}. Then, the

first step of U?
t is input to the system, u(t) = u?0|t. The

optimization (19) is repeated at time t + ∆t, with the
updated new state

x0|t+∆t = Tz(t+ ∆t)

yielding a moving or receding horizon control strategy. The
values of bk|t+∆t, dj,k|t+∆t, ej,k|t+∆t, Fk|t+∆t, and rk|t+∆t

may change relative to the previous time step due to time-
varying constraints, predictions, and utility costs.

3.1 Sequential Quadratic Programming Approach

The optimization problem (19) is nonconvex due to the
nonlinear equality constraints (15). The method of se-
quential quadratic programming (SQP) is applied here by
linearizing (15) and adding a convex quadratic term to
the cost that approximates the Hessian of the Lagrangian
function, see Han (1977); Nocedal and Wright (2006).

Let λj,k|t be the Lagrange multiplier corresponding to
equality constraint j of step k in problem (19) at time
t. The Hessian of the Lagrangian of problem (19) is then
n+nv∑
j=1

([
0n×(n+nu+nv)N

I(n+nu+nv)N

]′ [
λj,0|tCj,0|t 0

0 0

] [
0n×(n+nu+nv)N

I(n+nu+nv)N

]

+

N−1∑
k=1

[
0(n+nu+nv)k−n 0 0

0 λj,k|tCj,k|t 0

0 0 0(n+nu+nv)(N−k−1)

])
(20)

where nu = 2n + 2 is the number of control inputs. The
first n rows and first n columns of Cj,0|t for constraints at
time step k = 0 are removed because the initial state x0|t
is a known quantity. Since each matrix Cj,k|t is indefinite,
this exact Hessian of the Lagrangian is also indefinite.

We can efficiently calculate the smallest eigenvalue and
corresponding eigenvector of this Hessian using an Arnoldi
iteration, see Lehoucq et al. (1998). We construct a posi-
tive semidefinite approximation of the Hessian by adding a
multiple of the identity to (20). Using the available second
derivative information in this manner was observed to
reduce the number of iterations required for convergence
relative to the quasi-Newton approaches of the commercial
SQP routines we tested.

4. SIMULATION RESULTS

We present simulation results for the following cases:

(1) Nominal case, re uses “low” value from Table 2 and
φ(t) = 0 at all times.

(2) Modified electric rate schedule: re uses “high” value
between 12 noon and 4:30 PM and the “low” value
at all other times. No peak power charge, φ(t) = 0.

(3) Peak power penalty: φ(t) = 1 $/kW and re uses “low”
rate at all times.
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Table 2. Parameter values used

Parameter Value Units

n 5 zones
N 48 steps
∆t 1800 s
cp 1 kJ/(kg·K)

(mc)i 1000 kJ/K
R 0 kW/K
ηh 0.9 dimensionless
ηc 4 dimensionless
κf 0.065 kW·s2/kg2

re

{
“high” = 1.5 · 10−4

“low” = 3 · 10−5 $/kJ

rh 5 · 10−6 $/kJ
T0 18 ◦C

T zi

{
6:30 AM to 6:30 PM = 21

7 PM to 6 AM = 12
◦C

T zi

{
6:30 AM to 6:30 PM = 24

7 PM to 6 AM = 32
◦C

ṁzi

{
6:30 AM to 6:30 PM = 0.025

7 PM to 6 AM = 0
kg/s

ṁzi 1.5 kg/s
T c 5 ◦C

Th 40 ◦C

dr 0.9 dimensionless

For ambient temperature Toa, we use a sinusoid with
period 1 day, minimum value 10 ◦C at time 1:30 AM, and
maximum value 30 ◦C at 1:30 PM. Zone thermal loads Q̇i
are set to the time-varying profiles shown in Fig. 3.

00:00 06:00 12:00 18:00 00:00
−2

−1

0

1

2

3

Z
o
n
e
 T

h
e
rm

a
l 
L
o
a
d
 (

k
W

)

Time (hh:mm)

 

 

Zones 1−4

Zone 5

Fig. 3. Zone thermal loads Q̇i

The SQP iterations were computed using the solver
BPMPD, see Mészáros (1996). The results of case 1 are
shown in Fig. 4 and 5, case 2 is shown in Fig. 6, and case 3
is shown in Fig. 7. More extensive parametric simulations
were executed but are not included here due to space
constraints. Those results can be found in a technical
report available at http://www.mpc.berkeley.edu/.

We observe several interesting behaviors for the nominal
case 1 in Fig. 4 and 5. Before the occupied period begins
at 6:30 AM, zone 5 is set to zero flow and zones 1-4 have
a small flow rate at the maximum heating temperature
to counteract the cooling loads (negative Q̇i). All zones
preheat to satisfy the tighter occupied temperature con-
straints before the occupied hours begin. From 6:30 AM
until 9 AM, zone 5 is in cooling mode but the other zones
are in heating. This period is an economizer mode condi-
tion: a mix of outside air maintains the mixed temperature
close to T zi, while zone 5 satisfies its cooling demand with
a very large flow rate. After 9 AM the ambient tempera-
ture is warmer than the return temperature so the AHU
dampers return to maximum recirculation. The cooling
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Fig. 4. Case 1 zone results. Shown dashed in the first plot
are T zi and T zi.

00:00 06:00 12:00 18:00 00:00

10

20

30

T
e

m
p

e
ra

tu
re

 (o
C

)

0

0.5

1

R
e

c
ir
c
u

la
ti
o

n
 f

ra
c
ti
o

n

 

 

T
oa

T
m

T
r

d
r

00:00 06:00 12:00 18:00 00:00
0

10

20

30

T
e

m
p

e
ra

tu
re

 (o
C

)

 

 

T
c

T
m

00:00 06:00 12:00 18:00 00:00
0

1

2

Time (hh:mm)

E
le

c
tr

ic
 p

o
w

e
r 

(k
W

)

0

3

6

H
e

a
ti
n

g
 p

o
w

e
r 

(k
W

)

 

 

P
c

P
f

P
h

Fig. 5. Case 1 AHU results.

coil activates at this time, reaching its lowest setpoint
by 10AM. Zones 1-4 begin transitioning to cooling mode
here. Immediately before the end of the occupied period
at 6:30 PM, we see a cooling coil supply temperature reset
behavior. The load prediction is much lower after 6:30
PM, so the cooling coil begins increasing its setpoint early,
trading lower cooling power for higher fan power (the flow
to zone 5 must increase to keep it cooled using warmer
supply air). The erratic one-at-a-time heating of zones 1-4
after 10:30 PM appears to be a consequence of the return
temperature dependence on mass flows. When only one
zone is heated with a large mass flow (others at low flow),
the return temperature is influenced most by the high-flow
zone. Increased return temperature reduces the required
heating coil energy for the next zones to be heated.

Both case 2 in Fig. 6 and case 3 in Fig. 7 demonstrate
precooling of zone 5 and lengthened cooling of zones 1-4,
but with different timing and intent. In case 2, φ(t) = 0
but the electric rate re has a higher value between 12 noon
and 4:30 PM. So precooling is only performed immediately
before noon, with a corresponding spike in cooling power,
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so that less cooling energy is used between 12 noon and
4:30 PM. In case 3, φ(t) = 1 so load-shifting is used to
minimize peak power. Zone 5 is precooled beginning earlier
in the morning, increasing cooling power at a time when
it would otherwise be low and shifting electric power use
away from the times it would normally be highest.

Our computational results show that in response to either
time-varying electric rates (re, case 2) or peak power
penalties (φ(t), case 3), this optimization-based controller
does not use appreciably more total energy. We are not
showing the combination of re high and φ(t) = 1 here, but
the results are very similar to case 3. Imposing a penalty on
peak power rules out the type of short-duration precooling
seen in case 2.
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Fig. 6. Case 2 overview. Note the precooling and spike in
cooling power immediately before noon.
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Fig. 7. Case 3 overview. Note the timing of the precooling
and the intentional plateau in cooling power.

5. CONCLUSIONS

This MPC algorithm has shown encouraging results in a
few interesting cases for a sample problem. The control
performance, entirely from an optimization origin, exhibits
aspects of heuristic HVAC control such as economizer

control, supply temperature reset, demand response, pre-
cooling, and load-shifting in a coordinated manner. The
computational time for each of the above cases was less
than one minute, faster than the time scales of a HVAC
system. We are working toward real-time receding-horizon
implementation of this algorithm to experimentally con-
trol a building. Future work is necessary in the areas of
system identification, model validation, and thermal load
prediction. We also plan on investigating robust MPC for
this system, wherein we account for uncertainty in future
thermal load values and the effects of model mismatch.
Lastly, the SQP algorithm only guarantees local solu-
tions to non-convex nonlinear optimization problems, so
we are investigating branch-and-bound extensions of this
approach for global search algorithms.
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