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1. INTRODUCTION

In this paper we formulate and study a class of stochastic
positional games applying the game-theoretical concept to
Markov decision problems with average and discounted
costs optimization criteria. We consider Markov decision
processes that may be controlled by several actors (play-
ers). The set of states of the system in such processes is
divided into several disjoint subsets which represent the
corresponding positions sets of the players. Each player
has to determine which action should be taken in each
state of his positions set in order to minimize his own
average cost per transition or discounted expected total
cost. The cost of system’s transition from one state to
another in the Markov process is given for each player
separately. In addition the set of actions, the transition
probability functions and the starting state are known.
We assume that players use only stationary strategies, i.e.
each player in an arbitrary his position uses the same
action for an arbitrary discrete moment of time. In the
considered stochastic positional games we are seeking for
a Nash equilibrium.

The main results we describe in this paper are concerned
with existence of Nash equilibria in the considered games
and elaboration of algorithms for determining the opti-
mal stationary strategies of players. We show that Nash
equilibria for the game model with average cost payoff
functions of the players exists if an arbitrary situation
generated by the strategies of players induces a Markov
unichain. For the game model with discounted payoff
function we show that Nash equilibria always exists. The
obtained results can be easy extended for antagonistic
game models of Markov decision problems and the corre-
sponding conditions for existence of saddle points in such
games can be derived.

The proposed approach for Markov decision processes
can be extended for multi-objective decision problems
with Stackelberg and Pareto optimization principles and
the corresponding algorithms for determining the optimal
solutions of problems in the sense of Stackelberg and
Pareto can be developed.

2. STOCHASTIC POSITIONAL GAMES WITH
AVERAGE PAYOFF FUNCTIONS OF PLAYERS

We consider a class of stochastic positional games that
extends and generalizes cyclic games (Gurvich [1988], Lo-
zovanu [2006]) and Markov decision problems with aver-
age and discounted optimization costs criteria (Puterman
[2005], White [1993]). The considered class of games we
formulate using the framework of Markov decision process
(X,A, p, c) with a finite set of states X, a finite set of
actions A, a transition probability function p : X ×X ×
A→ [0, 1] that satisfies the condition∑

y∈X

pa
x,y = 1, ∀x ∈ X, ∀a ∈ A

and a transition cost function c : X × X → R which
gives the costs cx,y of states transitions for the dynamical
system when it makes a transition from the state x ∈ X
to another state y ∈ X.

We consider the noncooperative game model with m
players in which m transition cost functions are given

ci : X ×X → R, i = 1, 2, . . . ,m,

where cix,y expresses the cost of system’s transition
from the state x ∈ X to the state y ∈ X for the
player i ∈ {1, 2, . . . ,m}. In addition we assume that
the set of states X is divided into m disjoint subsets
X1, X2, . . . , Xm
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X = X1 ∪X2 ∪ · · · ∪Xm (Xi ∩Xj = ∅, ∀i 6= j),
where Xi represents the positions set of player i ∈
{1, 2, . . . ,m}. So, the Markov process is controlled by m
players, where each player i ∈ {1, 2, . . . ,m} fixes actions
in his positions x ∈ Xi. We consider the stationary game
model, i.e. we assume that each player fixes actions in the
states from his positions set using stationary strategies.
The stationary strategies of players we define as m maps:

s1 : x→ a ∈ A1(x) for x ∈ X1;
s2 : x→ a ∈ A2(x) for x ∈ X2;
.................................................

sm : x→ a ∈ Am(x) for x ∈ Xm,
where Ai(x) is the set of actions of player i in the state
x ∈ Xi. Without loss of generality we may consider
|Ai(x)| = |Ai| = |A|, ∀x ∈ Xi, i = 1, 2, . . . , m. In order to
simplify the notation we denote the set of possible actions
in a state x ∈ X for an arbitrary player by A(x).

A stationary strategy si, i ∈ {1, 2, . . . , m} in the state
x ∈ Xi means that at every discrete moment of time t =
0, 1, 2, . . . the player i uses the action a = si(x). Players
fix their strategy independently and do not inform each
other which strategies they use in the decision process.

If the players 1, 2, . . . , m fix their stationary strategies
s1, s2, . . . , sm, respectively, then we obtain a situation
s = (s1, s2, . . . , sm). This situation corresponds to a simple
Markov process determined by the probability distribu-
tions psi

x,y(x) in the states x ∈ Xi for i = 1, 2, . . . , m. We
denote P s = (ps

x,y) the matrix of probability transitions
of this Markov process. If the starting state xi0 is given,
then for the Markov process with the matrix of probability
transitions P s we can determine the average cost per
transition M i

x0
(s1, s2, . . . , sm) with respect to each player

i ∈ {1, 2, . . . ,m} taking into account the corresponding
matrix of transition costs Ci = (cix,y) . So, on the set of
situations we can define the payoff functions of players as
follows:
F i

xi0
(s1, s2, . . . , sm) = M i

xi0
(s1, s2, . . . , sm), i = 1, 2, . . . ,m.

In such a way we obtain a discrete noncooperative game in
normal form which is determined by finite sets of strategies
S1,S2, . . . , Sm of m players and the payoff functions
defined above. In this game we are seeking for a Nash
equilibrium (Nash [2050]), i.e. we consider the problem of
determining the stationary strategies

s1
∗
, s2
∗
, . . . , si−1∗, si∗, si+1∗, . . . , sm∗

such that

F i
xi0

(s1
∗
, s2
∗
, . . . , si−1∗, si∗, si+1∗ . . . , sm∗) ≤

≤ F i
xi0

(s1
∗
, s2
∗
, . . . , si−1∗, si, si+1∗ . . . , sm∗),

(∀si ∈ Si, i = 1, 2, . . . ,m). The game defined above
is determined uniquely by the set of states X, the
positions sets X1, X2, . . . , Xm, the set of actions A,
the cost functions ci : X × X → R, i = 1, 2, . . . ,m,
the probability function p : X × X × A → [0, 1]
and the starting position xi0 . Therefore we denote it
(X, A, {Xi}i=1,m, {ci}i=1,m, p, xi0). We call this game
stochastic positional game with average payoff functions .
In the case pa

x,y = 0 ∨ 1, ∀x, y ∈ X, ∀a ∈ A the

stochastic positional game is transformed into the cyclic
game studied by Gurvich [1988], Lozovanu [2009].

3. DETERMINING NASH EQUILIBRIA FOR
STOCHASTIC POSITIONAL GAMES WITH

AVERAGE PAYOFF FUNCTIONS

To provide the existence of Nash equilibria for the consid-
ered stochastic positional game we shall use the following
condition. We assume that an arbitrary situation s =
(s1, s2, . . . , sm) of the game generates a Markov unichain
with the corresponding matrix of probability transitions
P s = (ps

x,y). The Markov process with such property with
respect to the situations s = (s1, s2, . . . , sm) ∈ S of the
game we call perfect Markov decision process. We show
that in this case the problem of determining Nash equilib-
ria for a stochastic positional game can be formulated as
continuous model that represents the game variant of the
following optimization problem:
Minimize

ψ(s, q) =
∑
x∈X

∑
a∈A(x)

µx,asx,a qx (1)

subject to

∑
x∈X

∑
a∈A(x)

pa
x,ysx,aqx = qy, ∀y ∈ X;

∑
x∈X

qx = 1;

∑
a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(2)

where
µx,a =

∑
y∈X+(x)

cx,y p
a
x,y

is the immediate cost in the state x ∈ X for a fixed action
a ∈ A(x).

It is easy to observe that the problem (1), (2) represents
the continuous model for Markov decision problem with
average cost criterion. Indeed, an arbitrary stationary
strategy s : X → A can be identified with the set of
boolean variables sx,a ∈ {0, 1}, x ∈ X, a ∈ A(x) that
satisfy the conditions∑

a∈A(x)

sx,a = 1, ∀x ∈ X; sx,a ≥ 0, ∀x ∈ X, a ∈ A.

These conditions determine all feasible solutions of the
system (2). The rest restrictions in (2) correspond to
the system of linear equations with respect to qx for
x ∈ X. This system of linear equations reflects the
ergodicity condition for the limiting probability qx, x ∈ X
in the Markov unichain, where qx, x ∈ X are determined
uniquely for given sx,a, ∀x ∈ X, a ∈ A(x). Thus, the value
of the objective function (1) expresses the average cost
per transition in this Markov unichain and an arbitrary
optimal solution s∗x,a, q

∗
x (x ∈ X, a ∈ A) of problem (1),

(2) with s∗x,a ∈ {0, 1} represents an optimal stationary
strategy for Markov decision problem with average cost
criterion. If such an optimal solution is known, then an
optimal action for Markov decision problem can be found
by fixing a∗ = s∗(x) for x ∈ X if s∗x,a = 1.

The problem (1), (2) can be transformed into a lin-
ear programming problem using the notations αx,a =
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sx,aqx, ∀x ∈ X, a ∈ A(x). Based on such transformation of
the problem we will describe some additionally properties
of the optimal stationary strategies in Markov decision
processes.
Lemma 1. Let a Markov decision process (X,A, p, c) be
given and consider the function

ψ(s) =
∑
x∈X

∑
a∈A(x)

µx,asx,a qx,

where qx for x ∈ X satisfy the condition

∑
x∈X

∑
a∈A(x)

pa
x,ysx,aqx = qy, ∀y ∈ X;

∑
x∈X

qx = 1.
(3)

Assume that an arbitrary stationary strategy s in the
Markov decision process generates a Markov unichain,
i.e we have a perfect Markov decision process. Then the
function ψ(s) depends only on sx,a for x ∈ X, a ∈ A(x),
and on the set S of solutions of the system

∑
a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(4)

the function ψ(s) is monotone.

Proof. In the perfect Markov decision processes an ar-
bitrary basic solution of the system (4) corresponds to a
stationary strategy that generates a Markov unichain. For
such an arbitrary strategy the rank of system (3) is equal
to |X| and (3) has a unique solution with respect to qx (x ∈
X) (see Puterman [2005], White [1993]). Moreover, in the
mentioned references is shown that for Markov unichain
the system of linear equations (3) uniquely determines
qx,∀x ∈ X for an arbitrary solution of system (4).

Now let us prove the second part of the lemma. We show
that on the set of solutions of system (4) the function ψ(s)
is monotone. For this reason it is sufficient to show that
for arbitrary s′, s′′ ∈ S with ψ(s′) 6= ψ(s′′) the following
relation holds

min{ψ(s′), ψ(s′′)} < ψ(s) < max{ψ(s′), ψ(s′′)}. (5)
if s = θs′ + (1− θ)s′′, 0 < θ < 1.

We show that the relation (5) holds for an arbitrary
s ∈ S(s′, s′′), where
S(s′, s′′) = { s | min{s′x,a, s

′′
x,a} < sx,a < max{s′x,a, s

′′
x,a},

∀x ∈ X, a ∈ A(x)}
and the equations

ψ(s) = ψ(s′), ψ(s) = ψ(s′′)
on the set
S(s′, s′′) = { s | min{s′x,a, s

′′
x,a} ≤ sx,a ≤ max{s′x,a, s

′′
x,a},

∀x ∈ X, a ∈ A(x)}
have the unique solutions s = s′ and s = s′′,
respectively. The correctness of this property we prove
using the relationship of the problem (1), (2) with the
following linear programming problem:
Minimize

ψ(α) =
∑
x∈X

∑
a∈A(x)

µx,a αx,a (6)

subject to

∑
x∈X

∑
a∈A(x)

pa
x,y αx,a = qy, ∀y ∈ X;

∑
x∈X

qx = 1;

∑
a∈A(x)

αx,a = qx, ∀x ∈ X;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(7)

The problem (6), (7) is obtained from (1), (2) introducing
the substitutions αx,a = sx,yqx for x ∈ X, a ∈
A(x). These substitutions allow us to establish a bijective
mapping between the set of feasible solutions of the
problem (1), (2) and the set of feasible solutions of the
linear programming problem (6), (7). So, if αx,a for
x ∈ X, a ∈ A(x) and ψ(α) are known then we can
uniquely determine

sx,a =
αx,a

qx
, ∀x ∈ X, a ∈ A(x) (8)

for which ψ(s) = ψ(α). In particular, if an optimal basic
solution α∗, q∗ of the linear programming problem (6), (7)
is found, then the optimal stationary strategy for Markov
decision problem can be found fixing

s∗x,a =

{
1, if α∗x,a > 0;

0, if α∗x,a = 0.

Let s′, s′′ be arbitrary solutions of the system (4) where
ψ(s′) < ψ(s′′). Then there exist the corresponding feasible
solutions α′, α′′ of the linear programming problem (6),
(7) for which

ψ(s′) = ψ(α′), ψ(s′′) = ψ(α′′),
α′x,a = s′x,aq

′
x, α′′x,y = s′′x,aq

′′
x ∀x ∈ X, a ∈ A(x),

where q′x, q
′′
x are determined uniquely from the system of

linear equations (3) for s = s′ and s = s′′, respectively.
The function ψ(α) is linear and therefore for an arbitrary
α = θα′ + (1 − θ)α′′, 0 ≤ θ ≤ 1 the following equality
holds

ψ(α) = θψ(α′) + (1− θ)ψ(α′′),
where α is a feasible solution of the problem (6), (7),
that in initial problem (1), (2) corresponds to a feasible
solution s for which

ψ(s) = ψ(α); qx = θq′x + (1− θ)qx, ∀x ∈ X.
Using (8) we have

sx,a =
αx,a

qx

, ∀x ∈ X, a ∈ A(x),

i.e.

sx,a =
θα′x,a + (1− θ)α′′x,a

θq′x + (1− θ)q′′x
=
θs′x,aq

′
x + (1− θ)s′′x,aq

′′
x

θq′x + (1− θ)q′′x
=

=
θq′x

θq′x + (1− θ)q′′x
s′x,a +

(1− θ)q′′x
θq′x + (1− θ)q′′x

s′′x,a.

So, we obtain
sx,a = θxs

′
x,a + (1− θx)s′′x,a,

where

θx =
θq′x

θq′x + (1− θ)q′′x
, 0 ≤ θ ≤ 1.
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It is easy to observe that 0 ≤ θx ≤ 1, were θx = 0, ∀x ∈ X
if and only if θ = 0 and θx = 1, ∀x ∈ X if and only if
θ = 1. This means that for an arbitrary s ∈ S(s′, s′′) the
condition (5) holds and the equations

ψ(s) = ψ(s′), ψ(s) = ψ(s′′)

on the set S(s′, s′′) have the unique solutions s = s′ and
s = s′′, respectively. Thus the function ψ(s) on the set of
solutions of system (4) is monotone.

Now we extend the results described above for the con-
tinuous model of stochastic positional game with average
payoff functions. We consider the game model for perfect
Markov decision processes.

Let denote by Si, i ∈ {1, 2, . . . m} the set of solutions
of the system

∑
a∈A(x)

si
x,a = 1, ∀x ∈ Xi;

si
x,a ≥ 0, ∀x ∈ Xi, a ∈ A(x).

(9)

So, Si is a convex compact set and its arbitrary extreme
point corresponds to a basic solution s′ of the system (9),
where s′x,a ∈ {0, 1},∀x ∈ Xi, a ∈ A(x). Thus, if s′ is an
arbitrary basic solution of system (9), then s′ ∈ Si.

On the set S = S1 × S2 × · · · × Sm we define m payoff
functions

ψi(s1, s2, . . . , sm) =
m∑

i=1

∑
x∈Xi

∑
a∈A(x)

µi
x,as

i
x,aqx, i = 1,m,

(10)
where

µi
x,a =

∑
y∈X

cix,yp
a
x,y

is the immediate cost of player i ∈ {1, 2, . . . , m} in
the state x ∈ X for a fixed action a ∈ A(x); qx for
x ∈ X are determined uniquely from the following system
of linear equations

m∑
i=1

∑
x∈Xi

∑
a∈A(x)

pa
x,ys

i
x,aqx = qy, ∀y ∈ X;

∑
x∈X

qx = 1
(11)

when s1, s2, . . . , sm are given.

The main results we prove for our game model represent
the following properties:

- The set of Nash equilibria situations of the continuous
model is non empty if and only if the set of Nash equilibria
situations of the game in positional form is not empty;

- If (s1, s2, . . . , sm) is an extreme point of S then
F i

x(s1, s2, . . . , sm) = ψ(s1, s2, . . . , sm), ∀x ∈ X, i =
1, 2. . . . , m and all Nash equilibria situations for the
continuous game model that correspond to extreme points
in S represent Nash equilibria situations for the game in
positional form.

From Lemma 1 as a corollary we obtain the following
result.

Lemma 2. For perfect Markov processes each payoff func-
tion ψi(s1, s2, . . . , sm), i ∈ {i, 2, . . . , m} possesses
the property that ψi(s1, s2, . . . , si−1, si, si+1, . . . , sm)
is monotone with respect to si ∈ Si for arbitrary fixed
sk ∈ Sk, k = 1, 2, . . . , i− 1, i+ 1, . . . , m.

Using this lemma we can prove the following theorem.
Theorem 3. Let (X, A, {Xi}i=1,m, {ci}i=1,m, p, x) be
a stochastic positional game with a given starting position
x ∈ X and average payoff functions

F 1
x (s1, s2, . . . , sm), F 2

x (s1, s2, . . . , sm), . . . ,

Fm
x (s1, s2, . . . , sm),

of players 1, 2, . . . , m, respectively. If for an arbitrary
situation s = (s1, s2, . . . , sm) of the game the tran-
sition probability matrix P s = (ps

x,y) corresponds to a
Markov uni-chain then for the stochastic positional game
(X, A, {Xi}i=1,m, {ci}i=1,m, p, x) there exists Nash equi-
librium s∗ = (s1∗, s2∗, . . . , sm∗). Moreover, for this game
there exists a situation s∗ = (s1∗, s2∗, . . . , sm∗) which
is a Nash-equilibrium for an arbitrary starting position
x ∈ X.

Proof. According to Lemma 2 each function

ψi(s1, s2, . . . , sm), i ∈ {i, 2, . . . ,m}
satisfies the condition that

ψi(s1, s2, . . . , si−1, si, si+1, . . . , sm)

is monotone with respect to si ∈ Si for arbitrary
fixed sk ∈ Sk, k = 1, 2, . . . , i − 1, i + 1, . . . , m.
In the considered game each subset Si is convex and
compact. Therefore these conditions (see Debreu [1952],
Dasgupta [1986], Simon [1987] and Reny [1999]) pro-
vide the existence of Nash equilibrium for the functions
ψi(s1, s2, . . . , sm), i ∈ {i, 2, . . . , m} on S1 × S2 × · · · ×
Sm. Taking into account that S is a polyhedron set and
the functions ψi(s1, s2, . . . , si−1, si, si+1, . . . , sm) are
monotone we obtain that there exists a Nash equilibrium
s1
∗
, s2
∗
, . . . , sm∗ that corresponds to a basic solution of

the system (9). This means that (s1∗, s2∗, . . . , sm∗) is
Nash equilibrium for the functions

F 1
x (s1, s2, . . . , sm), F 2

x (s1, s2, . . . , sm), . . . ,

Fm
x (s1, s2, . . . , sm)

on the set of situations S = S1 × S2 × · · · × Sm.

Using the results described above we may conclude that in
the case of perfect Markov decision processes Nash equilib-
rium for stochastic positional games can be determined by
using classical iterative methods for the continuous game
models with payoff functions ψi(s1, s2, . . . , sm), i ∈
{i, 2, . . . , m} on the set S1 × S2 × · · · × Sm.

In general, for stochastic positional games with average
payoff functions of players, Nash equilibrium may not
exists if the stationary strategies do not generate Markov
uni-chain. Moreover, Nash equilibrium may not exists even
for deterministic positional games (see Gurvich [1988],
Lozovanu [2009]). So, the Theorem 3 in the case pa

x,y ∈
{0, 1}, gives conditions for existence of Nash equilibria in
cyclic games with average payoff functions.
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4. STOCHASTIC POSITIONAL GAMES WITH
DISCOUNTED PAYOFF FUNCTIONS OF PLAYERS

The stochastic positional game model for discounted
Markov decision problem we formulate in a similar way
as the game model from Section 2. We apply the game-
theoretical concept to discounted Markov decision process
(X,A, p, c) with given discounted factor γ, 0 < γ < 1
(see Puterman [2005], White [1993]). So, in for our game
model we assume that m transition cost functions ci : X×
X → R, i = 1, 2, . . . ,m, are given and the set of states X
is divided into m disjoint subsets X1, X2, . . . , Xm, where
Xi represents the positions set of player i ∈ {1, 2, . . . ,m}.
Thus, the Markov process is controlled bym players, where
each player i ∈ {1, 2, . . . ,m} fixes actions in his positions
x ∈ Xi using stationary strategies. The stationary strate-
gies of players in this game we define as m maps:

si : x→ a ∈ A(x) for x ∈ Xi; i = 1, 2, . . . , m.

Let s1, s2, . . . , sm be a set of stationary strategies of
players that determine the situation s = (s1, s2, . . . , sm).
Consider the matrix of probability transitions P s = (ps

x,y)
which is induced by the situation s, i.e. each row of this
matrix corresponds to probability distributions p

si(x)
x,y in

the state x were x ∈ Xi. If the starting state x0 is given,
then for the Markov process with the matrix of probability
transitions P s we can determine the discounted expected
total cost σi

x0
(s1, s2, . . . , sm) with respect to each player

i ∈ {1, 2, . . . ,m} taking into account the corresponding
matrix of transition costs Ci = (cix,y). So, on the set of
situations we can define the payoff functions of the players
as follows:

F
i

x0
(s1, s2, . . . , sm) = σi

x0
(s1, s2, . . . , sm), i = 1, 2, . . . ,m.

In such a way we obtain a new discrete noncooperative
game in normal form which is determined by the sets of
strategies S1,S2, . . . , Sm of m players and the payoff
functions defined above. In this game we are seeking for a
Nash equilibrium.

This game is determined uniquely by the set of states X,
the positions sets X1, X2, . . . , Xm, the set of actions A,
the cost functions ci : X ×X → R, i = 1, 2, . . . ,m,, the
probability function p : X×X×A→ [0, 1] the discounted
factor γ and the starting position x0. Therefore we
denote it (X, A, {Xi}i=1,m, {ci}i=1,m, p, γ, x0). We
call this game stochastic positional game with discounted
payoff functions.

5. DETERMINING NASH EQUILIBRIA FOR
STOCHASTIC POSITIONAL GAMES WITH

DISCOUNTED PAYOFF FUNCTIONS

In this section we show that Nash equilibrium exists for
an arbitrary stochastic positional game with discounted
payoff functions of the players and given discounted factor
γ, 0 < γ < 1. To prove this result we shall use a continuous
game which represent the game model for the following
continuous optimization problem:
Maximize

ϕx0(σ, s) = σx0 (12)
subject to



σx − γ
∑
y∈X

∑
a∈A(x)

sx,a p
a
x,y σy =

∑
a∈A(x)

sx,a µx,a,∀x ∈ X;

∑
a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x),
(13)

where
µx,a =

∑
y∈X

pa
x,y c

a
x,y.

This problem represents the continuous model for dis-
counted Markov decision problems. Based on this model
we can determine the optimal stationary strategy of the
discounted Markov decision problem for an arbitrary start-
ing state x ∈ X. In (13) the system of linear equations
with respect to σx has a unique solution and therefore
the objective function (12) on the set of feasible solutions
depends only on s. It is easy to observe that these equa-
tions in (13) can be changed by inequalities (≤). If after
that we dualize (12), (13) with respect to σx for fixed s
then we obtain the following problem:
Minimize

ϕ(s, β) =
∑
x∈X

∑
a∈A(x)

µx,a sx,aβx (14)

subject to

βy − γ
∑
x∈X

∑
a∈A(x)

pa
x,y sx,aβx ≥ 0, ∀y ∈ X \ {x0};

βy − γ
∑
x∈X

∑
a∈A(x)

pa
x,y sx,aβx ≥ 1 for y = x0;

∑
a∈A(x)

sx,a = 1, ∀x ∈ X;

βy ≥ 0 ∀y ∈ X; sx,a ≥ 0, ∀x ∈ X, a ∈ A(x).
(15)

Using elementary transformations in this problem and
introducing the notations αx,a = sx,sβx,∀x ∈ X, a ∈ A(x)
we obtain the following linear programming problem:
Minimize

φ(s, β) =
∑
x∈X

∑
a∈A(x)

µx,a αx,a (16)

subject to

βy − γ
∑
x∈X

∑
a∈A(x)

pa
x,y αx,a ≥ 0, ∀y ∈ X \ {x0};

βy − γ
∑
x∈X

∑
a∈A(x)

pa
x,y αx,a ≥ 1 for y = x0;

∑
a∈A(x)

αx,a = βx, ∀x ∈ X;

βy ≥ 0, ∀y ∈ X; αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).
(17)

If (α∗, β∗) is an optimal basic solution of problem (16), (17)
then the optimal stationary strategy s∗ for the discounted
Markov decision problem is determined as follows:

s∗x,a =

{
1, if α∗x,a 6= 0;

0, if α∗x,a = 0.
(18)
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and α∗x,a = s∗x,aβ
∗
x, ∀x ∈ X, a ∈ A(x).

It is easy to observe that βx > 0, ∀x ∈ X if for the
considered Markov decision process there exists an action
a ∈ A(x0) such that px0,y > 0,∀x ∈ X. Without loss
of generality we may assume that such condition for our
problem holds; otherwise we can add a fictive action a′ in
the state x0 for which pa′

x,y > 0, ∀y ∈ X (
∑

y∈X

pa
x,y = 1)

and ca
′

x0,y = K, ∀y ∈ X, where K is a suitable big value.

For continuous model of discounted Markov decision prob-
lem we prove a similar properties as for average Markov
decision model.
Lemma 4. Let a Markov decision process (X,A, p, c) with
discounted factor γ, 0 < γ < 1 be given. Consider the
function

ϕx0(s) = σx0 ,

where σx for x ∈ X satisfy the condition

σx−γ
∑
y∈X

∑
a∈A(x)

sx,a p
a
x,y σy =

∑
a∈A(x)

sx,a µx,a, ∀x ∈ X.

(19)

Then the function ϕx0(s) depends only on sx,a for
x ∈ X, a ∈ A(x), and on the set S of solutions of the
system 

∑
a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

the function ϕ(s) is monotone.

The proof of this lemma is similar to the proof of Lemma 1.

The continuous game model with m players for dis-
counted Markov decision problem we formulate as follow:
on the set S = S1×S2×· · ·×Sm we consider m payoff
functions functions

ϕi
x0

(s1, s2, . . . sm) = σi
x0
, i = 1, 2, . . . , m,

where σi
x for x ∈ X satisfy the conditions

σi
x − γ

∑
y∈X

∑
a∈A(x)

sk
x,a p

a
x,yσ

i
y =

∑
a∈A(x)

sk
x,a µ

i
x,a,

∀x ∈ Xk; i, k = 1, 2, . . . ,m;
This game model possesses the same property as the
previous continuous model:

- The set of Nash equilibria situations of the continuous
model is non empty if and only if the set of Nash equilibria
situations of the game in positional form is not empty;

- If (s1, s2, . . . , sm) is an extreme point of S then
F

i

x(s1, s2, . . . , sm) = ϕ(s1, s2, . . . , sm), ∀x ∈ X, i =
1, 2. . . . , m and all Nash equilibria situations for the
continuous game model that correspond to extreme points
in S represent Nash equilibria situations for the game in
positional form.

From Lemma 4 as a corollary we obtain the following
result.
Lemma 5. For an arbitrary discounted Markov decision
process each payoff function ϕi

x0
(s1, s2, . . . , sm), i ∈

{i, 2, . . . , m} possesses the property that ϕi
x0

(s1, s2, . . . ,
si−1, si, si+1, . . . , sm) is monotone with respect to si ∈
Si for arbitrary fixed sk ∈ Sk, k = 1, 2, . . . , i− 1, i+
1, . . . , m..

Using this lemma we can prove the following theorem.
Theorem 6. Let (X, A, {Xi}i=1,m, {ci}i=1,m, p, γ, x)
be a stochastic positional game with a given starting
position x ∈ X and discounted payoff functions

F
1

x(s1, s2, . . . , sm), F
2

x(s1, s2, . . . , sm), . . . ,

F
m

x (s1, s2, . . . , sm)
of players 1, 2, . . . , m, respectively. Then in the
considered game there exists Nash equilibrium s∗ =
(s1∗, s2∗, . . . , sm∗). Moreover, in this game there exists
a situation s∗ = (s1∗, s2∗, . . . , sm∗) which is a Nash-
equilibrium for an arbitrary starting position x ∈ X.

6. CONCLUSION

In this paper a new class of stochastic positional games
that extend the well known deterministic and stochastic
positional games is studied. A new results concerned with
existence of Nash equilibria for the game models of Markov
decision problems with average and discounted costs opti-
mization criteria are obtained. Based on these results the
problem of determining the optimal stationary strategies
of players in the considered games can be reduced to
continuous similar problems for which classical numerical
methods can be applied. The described results may be
useful for elaboration of suitable iteration procedures of
determining the optimal stationary strategies in positional
games, furthermore we extend the results to general net-
work topological problems. This will be presented in the
second part of the presentation.
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