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Abstract: The concept of energy based Lyapunov control is extended to marine vessels
with a nonsymmetric system inertia matrix. Acceleration feedback is used as the main
tool to symmetrize the nonsymmetric part of the system inertia matrix. The main
reason for a nonsymmetric mass distribution is hydrodynamic added mass which
depend on the forward speed of the vessel and the frequency of the incoming waves.
This is a well known phenomenon for marine vessels moving at positive speed in
waves while low-speed applications like dynamic positioning systems are fairly well
described with a symmetric system inertia matrix. The main contribution of the
paper is a new Lyapunov-based design technique incorporating acceleration feedback
to shape the kinetic energy of the system. Acceleration feedback is implemented in
conjuncture with a nonlinear PID-controller derived from vectorial backstepping. The
result is a uniformly globally asymptotically stable (UGAS) closed-loop control system
applicable to marine vessels with nonsymmetric system inertia matrices. Typical
applications are ships in maneuvering situations, vessels in transit and high speed
craft where nonsymmetric added mass e¤ects must be compensated for. Copyright
c°2002 IFAC
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1. INTRODUCTION

The main idea of this paper is to modify the
system inertia matrix of a marine vessel through
acceleration feedback. By doing this it is possi-
ble to construct energy-based Lyapunov functions
for marine vessels operating in di¤erent speed
regimes, see Figure 1.

This is a non-trivial problem since the system in-
ertia matrix M will be nonsymmetrical for marine
vessels moving at high speed while it is symmetric
at zero speed (station-keeping). The problem has
not been addressed previously in the literature.
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Fig. 1. Low and high speed regimes for a ship. The
speed U =

p
u2 + v2 where u and v are the

velocity in surge and sway.

The problem of applying the kinetic energy of
a system with nonsymmetric inertia matrix as a
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Lyapunov function candidate is easiest explained
by considering the following case study:

Case Study: Nonsymmetric Inertia Matrix

Consider the problem of energy-based control
when the system inertia M is nonsymmetrical
due to hydrodynamic added mass. Moreover, for
marine vessels in transit (non-zero speed) it can
be shown that:

M = MRB + MA (1)

where the rigid-body system inertia matrix MRB
and hydrodynamic added inertia matrix MA sat-
isfy (Fossen, 1994):

MRB = MT
RB > 0 (2)

MA 6= MT
A > 0 (3)

Notice that MA is non-symmetrical due to for-
ward speed e¤ects and wave-induced disturbances.
This implies that the kinetic energy can be written

V =
1
2
ºTMº

=
1
2
ºT

µ
1
2
(M + MT )+

1
2
(M ¡ MT )

¶
º

=
1
4
ºT (M + MT )º (4)

since M + MT is symmetric and M ¡ MT is
skewsymmetric. Hence, time di¤erentiation along
the tra jectories of º yields:

_V =
1
2
ºT (M + MT ) _º

This approach fails for vessel models in the form:

M _º + n(º) = ¿ (5)

where n(º) is a vector of nonlinear Coriolis, damp-
ing and restoring terms and ¿ is the control input.
The main reason for this is that only M_º in the
expression for _V can be be substituted with the
system model (5) while the expression MT _º is not
available from (5).

The main contribution of this paper is a solution
to this problem where acceleration feedback is
used to shape the system inertia matrix in such
a manner that conventional Lyapunov techniques
can be applied for systems with nonsymmetrical
inertia matrices. Acceleration feedback is com-
bined with nonlinear vectorial backstepping in or-
der to obtain PID feedback control.

2. VESSEL MODELLING

2.1 Review of hydrodynamic inertia

In Lamb (1932) the concept of hydrodynamic
inertia is de…ned in terms of ‡uid kinetic energy

TA which can be written as a quadratic form of
the body axis velocity vector components, that is

TA =
1
2
ºT MAº (6)

Here the body-…xed velocity vector in 6 degrees-
of-freedom (DOF) is:

º =[u; v; w; p;q; r]T 2 <6 (7)

and MA is a 6 £ 6 system inertia matrix de…ned
in terms of added mass terms as:

MA =
·

A11 A12
A21 A22

¸
; Aij 2 <3£3

= ¡

2
6666664

X _u X _v X _w X _p X _q X _r
Y _u Y _v Y _w Y _p Y _q Y _r
Z _u Z _v Z _w Z _p Z _q Z _r
K _u K _v K _w K _p K _q K _r
M _u M _v M _w M _p M _q M _r
N _u N _v N _w N _p N _q N _r

3
7777775

(8)

The notation of SNAME (1950) is used in this
expression; for instance the hydrodynamic added
mass force Y along the y-axis due to an accelera-
tion _u in the x-direction is written as:

Y = ¡Y _u _u where Y _u :=
@Y
@ _u

Since any motion of a vessel in water will induce a
motion in the otherwise stationary ‡uid, the ‡uid
must move aside and then close behind the vehicle
in order to allow the vessel to pass through the
‡uid. As a consequence, the ‡uid passage possesses
kinetic energy TA that it would lack if the vehicle
was not in motion.

2.2 Properties

The low and high speed properties of the hydro-
dynamic inertia matrix can be summarized as:

Low Speed Property: For a rigid-body at rest
(U ¼ 0) under the assumption of an ideal ‡uid,
no incident waves, no sea currents, and zero
frequency, the added mass system inertia matrix
is positive de…nite (Newman, 1977):

MA = MT
A > 0

This is a good assumption for low-speed maneu-
vers like station-keeping (dynamic positioning).

Remark: In a real ‡uid (not ideal) the 36 ele-
ments of MA may all be distinct but still MA > 0.
Experience has shown that the numerical values of
the added mass derivatives in a real ‡uid are usu-
ally in good agreement with those obtained from
ideal theory (see Wendel, 1956). Hence, MA =
MT

A > 0 is a good approximation for low speed.

High Speed Property: For surface ships mov-
ing at forward speed U > 0 in waves, Salvesen et



al. (1970) have shown by applying strip theory
that MA 6= MT

A. Consequently, the hydrody-
namic system inertia matrix will depend on the
forward speed U of the vessel and the wave
frequency of the incoming waves.

Lyapunov based control of marine vessels have so
far only addressed low-speed applications under
the assumption that M = MT ; see Fossen and
Berge (1997), Fossen and Grøvlen (1998), Fossen
and Strand (2001),Fossen and Strand (1999) for
instance. In the next sections this will be relaxed
to M 6= MT (high speed) by introducing acceler-
ation feedback.

3. VESSEL DYNAMICS

The dynamic equations of a ship or a ‡oating rig
can be described by the following model (Fossen
1994):

M _º + n(º) = ¿ (9)
with

M = MRB + MA (10)

MRB =
·

mI3£3 ¡mS(rg)
mS(rg) Io

¸

where rg = [xg; yg; zg]T is the coordinates of
the center of gravity, m is the mass and Io is
the inertia tensor at the body-…xed origin. The
skewsymmetric matrix S(a) = ¡ST (a) 2SS(3) is
de…ned such that S(a)b = a £ b: This yields:

MRB=

2
6666664

m 0 0 0 mzg ¡myg
0 m 0 ¡mzg 0 mxg
0 0 m myg ¡mxg 0
0 ¡mzg myg Ix ¡Ixy ¡Ixz

mzg 0 ¡mxg ¡Iyx Iy ¡Iyz
¡myg mxg 0 ¡Izx ¡Izy Iz

3
7777775

The added inertia matrix MA is de…ned in (8)
while the nonlinear term:

n(º ; ´) = C(º)º + D(º)º + g(´) (12)

is a vector of Coriolis, C(º)º , damping, D(º)º ;
and restoring terms, g(´): The control input vec-
tor is denoted by ¿ :

4. PID AND ACCELERATION FEEDBACK

Consider the body-…xed velocity vector in 6 DOF:

º = [u; v; w; p; q; r ]T 2 <6 (13)

The main idea is to exploit the linear accelerations
_u; _v; _w in feedback since they are easily measured
by using a conventional 3-axes accelerometer unit.
Angular accelerations are, however, not available
since a 3-axes gyro measures the angular rates
p; q; r instead of _p; _q; _r: Hence, angular accelera-
tions must be estimated in an observer in order to
implement acceleration feedback in 6 DOF.

Fig. 2. The Litton LN-200 IMU.

Alternatively, _p; _q; _r can be obtained by numerical
di¤erentiation of the gyro e.g. by using the …lter:

h(s) =
Ts

T s + 1
; T > 0

This can be done at high rate e.g. 100 Hz if
an IMU (inertial measurement unit) is used to
measure linear accelerations _u; _v; _w and angular
rates p; q;r: Several commercial IMUs are available
for this purpose, e.g. the Litton LN-200 shown in
Figure 2.

In the forthcoming it is assumed that all accelera-
tions _u; _v; _w; _p; _q; _r are available signals. The PID-
controller with acceleration feedback is written
(see Figure 3):

¿ = ¿P ID¡Ka _º (14)

where
Ka =

·
Ka11 Ka12
Ka21 Ka22

¸
(15)

is a design matrix. The control law (14) applied to
the system model (9), yields:

H_º + n(º) = ¿ PID (16)

where

H=MRB+MA + Ka

=
·

mI3£3+A11+Ka11 ¡mS(rg)+A12+Ka12
mS(rg )+A21+Ka21 Io+A22+Ka22

¸

The PID controller ¿ PID can be designed by
using di¤erent methods. In Section 5 vectorial
backstepping will be applied to shape the energy
of the system.

4.1 Inertia Symmetrization

Two design techniques for inertia symmetrization
are discussed:

Positive acceleration feedback (decreasing
the system inertia)

A symmetric system inertia matrix is obtained by
positive acceleration feedback:

Ka = ¡MA < 0

which yields

H= MRB =
·

mI3£3 ¡mS(rg )
mS(rg) Io

¸
(17)
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Fig. 3. Acceleration feedback and PID-controller.

Positive feedback in the inner acceleration loop
will not destabilize the system since MRB > 0:
However, if MA is uncertain, positive feedback
Ka = ¡MA might destabilize the system if the
uncertainty is in the same magnitude as the norm
of MRB since this can lead to H <0: In this case
negative acceleration feedback should be applied
to avoid robustness problems.

Negative acceleration feedback (increasing
the system inertia)

The system inertia can be increased by applying
negative acceleration feedback:

Ka = MT
a + ¢K >0

where ¢K=¢KT ¸ 0

and with ¢K = 0; this results in:

H=
·

mI3£3 + A11 + AT
11 ¡mS(rg) + A12 + AT

21
mS(rg) + AT

12 + A21 Io + A22 + AT
22

¸

The gain matrix ¢K can be used to increase the
system inertia further since the feedback term
MT

a _º ensures symmetrization. It is well known
that if the inertia is increased by acceleration feed-
back the closed loop system will be less sensitive to
external disturbances, see Lindegaard (2002) for
instance.

A special solution exists for the horizontal mo-
tion of a vessel (surge, sway and yaw) since only
two linear accelerometers (surge and sway) are
required to symmetrize the inertia matrix. This
solution is attractive both in dynamic positioning
and in particular in maneuvering situations where
A12 6= AT

21: The design philosophy is demon-
strated by considering a ‡oating marine vessel, a
ship or a semi-submersible.

5. ENERGY SHAPING USING
ACCELERATION FEEDBACK AND

BACKSTEPPING DESIGNS

In this section we will demonstrate how an energy-
based nonlinear controller can be designed for a
‡oating vessel.

Fig. 4. Maneuvering of ships.

5.1 3 DOF model for ships and ‡oating rigs

Consider the motion in surge (x-direction), sway
(y-direction) and yaw (rotation about the z-axis)
The 3 DOF model becomes:

_́ = Rz;Ãº

M _º + C(º)º + D(º)º = ¿

where ´ =[x; y;Ã ]T is a vector of positions and
heading angle, º = [u; v; r]T is a vector of body-
…xed velocities, and Rz;Ã2SO(3) is the rotation
matrix in yaw, see Fossen (1994) for details. The
system inertia matrix in surge, sway, and yaw
(including the hydrodynamic added inertia terms
X _u; Y _v; Y _r ; N _v ; N _r) is:

M =

2
4

m ¡ X _u 0 0
0 m ¡ Y _v mxg ¡Y _r
0 mxg¡N _v Iz¡N _r

3
5 (18)

where M23 6= M32 (nonsymmetric). Acceleration
feedback from only _u and _v; implies that:

Ka =

2
4

K11 K12 0
K21 K22 0
K31 K32 0

3
5

Hence, the system inertia matrix after acceleration
feedback becomes:

H = M + Ka (19)

=

2
4

m ¡ X _u+K 11 K12 0
K21 m ¡ Y _v +K22 mxg¡Y _r
K31 mxg ¡N _v+K32 Iz¡N _r

3
5

This gives us some ‡exibility since the accelera-
tion feedback terms K11;K12; K21; K22; K31; K32
can be chosen such that H = HT > 0: Moreover,
a symmetric expression independent of hydrody-
namic added mass terms is obtained by choosing
the gains as:



Ka =

2
4

K11 K12 0
K21 K22 0
K31 K32 0

3
5

=

2
4

X _u + ¢K11 0 0
0 Y _v + ¢K22 0
0 N _v ¡ Y _r 0

3
5

where ¢K11 and ¢K22 can be treated as addi-
tional design parameters for the mass in the x-
and y-directions. The resulting expression is:

H =

2
4

m + ¢K11 0 0
0 m + ¢K22 mxg¡Y _r
0 mxg ¡Y _r Iz¡N _r

3
5 (20)

If ¢K11 = ¢K22 (the mass in the x- and y-
directions is equal) the PID controller will be in-
dependent of the heading angle which, for instance
is advantageous when tuning a ship dynamic po-
sitioning system.

The resulting model after acceleration feedback is

_́ = Rz;Ãº (21)
H_º + C(º)º + D(º)º = ¿PID (22)

Notice that H replaces M: The system (21)–(22)
satis…es the following properties:

(i) H = HT > 0 ) xTHx >0; 8x 6= 0
(ii) C(º) = ¡CT (º) ) xTC(º)x = 0; 8x
(iii) D(º) >0; 8kºk > "

) xTD(º)x >0; 8 kºk > "; x 6= 0
(iv) Rz;Ã is the rotation matrix in yaw

) R¡1
z;Ã= RT

z;Ã

5.2 Energy shaping using backstepping design

Energy-based control using backstepping design
suggests that the control law is derived in two
successive steps by using vectorial backstepping
(see Fossen and Berge, 1997; Fossen and Grøvlen,
1998). For simplicity, a PD control law will be
designed. Integral action can easily be included
by using adaptive backstepping (see Fossen et
al., 2001).

Consider:

V1 =
1
2
zT
1 Kpz1 (23)

V2 = V1 +
1
2
ºTHº (24)

where V1 and V2 represent the ”pseudo” potential
and kinetic energy, respectively. The state z1 is
de…ned as the tracking error:

z1 = ´d ¡ ´

New State Variables

Assume that the reference trajectory, ´(3)
d , Ä́d ; _́ d

and ´d; is smooth and bounded. A virtual refer-
ence trajectory is de…ned as:

_́ r : = _́ d ¡ ¤~́ (25)

º r : = RT
z;Ã _́ r (26)

where ~́ = ´ ¡ ´d is the tracking error and ¤ > 0
is a diagonal design matrix. Furthermore let:

s := _́ ¡ _́ r = _~́ + ¤~́ (27)

be a surface in <3: The vessel dynamics (21)–(22)
can be transformed to (Fossen, 1993):

H¤(Ã)Ä́ + C¤(º;Ã) _́ + D¤(º;Ã) _́ = Rz;Ã¿P D

where:

H¤(Ã) = Rz;ÃHRT
z;Ã

C¤(º;Ã) = Rz;Ã [C(º) ¡ HR¡1
z;Ã

_Rz;Ã ]RT
z;Ã

D¤(º;Ã) = Rz;ÃD(º)RT
z;Ã

Hence, the vessel dynamics can be written in the
following form:

H¤(Ã)_s = ¡C¤(º ;Ã)s ¡ D¤(º ;Ã)s + Rz;Ã¿ PD

¡H¤(Ã)Ä́r ¡ C¤(º;Ã) _́ r ¡ D¤ (º;Ã) _́ r

or equivalently:

H¤ (Ã)_s = ¡C¤(º ;Ã)s ¡ D¤(º ;Ã )s (28)

+Rz;Ã [¿P D¡H_ºr ¡ C(º)º r ¡ D(º)ºr ]

Step 1:

Consider the error dynamics:

_́ ¡ _́ d= Rz;Ã(º ¡ ºd ) (29)

Let º be the virtual control vector:

º := s + ®1 (30)

The position error dynamics can therefore be
written:

_~́ = Rz;Ã(º ¡ ºd)

= Rz;Ã(s + ®1¡ºd); f®1= º r = RT
z;Ã( _́ d¡¤~́)g

= Rz;Ã(s + RT
z;Ã _́ d¡RT

z;Ã¤~́ ¡ ºd)

= ¡¤~́ + Rz;Ãs (31)

Hence:

V1 =
1
2
~́TKp ~́; Kp = KT

p > 0 (32)

and

_V1 = ~́T Kp _~́

= ~́T Kp(¡¤~́ + Rz;Ãs)

= ¡~́TKp¤~́ + sTRT
z;ÃKp ~́ (33)



Step 2:

In the second step we choose a Lyapunov function
motivated by ”pseudo” kinetic energy, that is:

V2=
1
2
sTH¤(Ã)s+V1 (34)

_V2 = sT H¤(Ã)_s+
1
2
sT _H¤(Ã)s+ _V1

= sT
¡
¡C¤ (º;Ã)s ¡ D¤(º;Ã)s

+ Rz;Ã [¿PD¡H _º r¡C(º)º r¡D(º)ºr ])

+
1
2
sT _H¤(Ã)s¡ ~́T Kp¤~́ + sT RT

z;ÃKp~́

Since _H¤(Ã) = _M
¤
(Ã) (recall that _Ka = 0); we

can use the skew-symmetric property:

sT [ _H¤(Ã)¡2C¤(º ;Ã)]s=0 (35)

which yields:

_V2 = sTRz;Ã [¿ PD¡H_ºr¡C(º)º r¡D(º)ºr

+RT
z;ÃKp ~́] ¡ sTD¤(º ;Ã)s ¡ ~́T Kp¤~́

Hence, we are ready to propose the control law:

¿ PD = H_º r + C(º)º r + D(º)º r

¡RT
z;Ã(Kp ~́ + Kds) (36)

which results in:
_V2= ¡sT (D¤(º;Ã)+Kd )s ¡ ~́TKp¤~́

where the gain matrix Kd must be selected such
that D¤(º ;Ã )+Kd > 0 8º ;Ã . Since V2 is positive
de…nite and _V2 is negative de…nite it follows that
the equilibrium point (~́; s) = (0;0) is uniformly
globally exponentially stable (UGES). Moreover,
convergence of s ! 0 and ~́ ! 0 ) ~v ! 0:

The resulting control law including acceleration
feedback then becomes:

¿ = ¿ PD¡Ka _º

For backstepping techniques with integral action,
see Fossen et al. (2001). For the integral controller
only uniform global asymtotic stability (UGAS) is
proven.

6. CONCLUSIONS

Acceleration feedback in conjuncture with non-
linear PID-control has been applied to control
marine vessels with nonsymmetric inertia matri-
ces. This is an important design problem since
hydrodynamic added inertia is nonsymmetric for
marine vessels moving at forward speed in waves.
The proposed solution has been referred to as
inertia shaping using acceleration feedback, and to
the authors knowledge this is the …rst paper ad-
dressing this problem. An energy based Lyapunov

design technique has been used to prove that the
resulting system is UGAS under PID-control and
UGES under PD-control.
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