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Abstract: The missile pitch-axis autopilot design is revisited using a new and recently
available LPV control technique. The missile plant model is characterized by an LFT
representation. The synthesis task is conducted by exploiting new capabilities of the LPV
method: a set of H2/H∞ criteria is considered and different Lyapunov and scaling variables are
used for each channel/specification. The method is shown to provide additional flexibility to
tradeoff conflicting and demanding performance and robustness specifications for the missile
while preserving the practical advantage of previous single-objective LPV methods.
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1. INTRODUCTION

Gain-scheduling techniques and Linear Parameter-
Varying (LPV) control theory have been used exten-
sively for the synthesis of non-linear controllers and
especially in designing missile autopilots (Reichert,
1992; Shamma and Cloutier, 1993; Wu et al., 1995a;
Schumacher and Khargonekar, 1998; Tan et al., 2000).
Despite this popularity, missile autopilot design re-
mains a challenging control problem since it operates
over a wide range of flight conditions and tight design
specifications are generally prescribed.

The LPV framework provides elegant and solidly
founded methodologies to meet design specifications
over wide operating ranges. Control problems are for-
mulated as Linear Matrix Inequalities (LMI) optimiza-
tion problems (Boyd et al., 1994; Gahinet et al., 1994),
which are then solved very efficiently using currently
available semi-definite programming codes. In Refer-
ence (Apkarian et al., 2000) a technique for solving
mixed H2/H∞ multi-channel Linear Fractional Trans-
formation (LFT)/LPV control problem in discrete-
time has been derived. It can be viewed as an ex-
tension of LFT/LPV single-objective results in Ref-
erences (Packard, 1994; Apkarian and Gahinet, 1995)
and of nominal multi-objective techniques in Refer-
ences (Scherer et al., 1997; de Oliveira et al., 1999).
A practically interesting capability of this method is

to offer additional flexibility to tradeoff various per-
formance and robustness specifications. Similarly to
the LTI case, different Lyapunov and scaling vari-
ables are used for each channel/specification to reduce
conservatism as compared to earlier methods. In this
paper, we discuss its applicability to a realistic LPV
missile autopilot design. We show how the method
can be used for discrete- or continuous-time LPV
systems. We paid a special attention to the controller
construction and implementation which are of prior
importance in missile problems.

2. MULTI-OBJECTIVE LFT/LPV RESULT

In this section, we state the multi-objective LPV con-
trol problem and give a brief overview of the synthesis
method in (Apkarian et al., 2000).

Consider a discrete-time LPV plant P with LFT struc-
ture
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where A ∈ Rn×n, ∆(k) ∈ RN×N , D12 ∈ Rp1×m2 and
D21 ∈ Rp2×m1 define the problem dimension. The no-
tation for signals is standard: x for the state vector, w
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Fig. 1. Mixed H2/H∞ multi-channel LPV interconnec-
tion

for exogenous inputs, z for controlled or performance
variables, u for the control signal, and y for the mea-
surement signal. ∆(k) is a time-varying matrix-valued
parameter evolving in a polytopic set P∆, with

P∆ := co
{

∆1, . . . ,∆i, . . . ,∆L

}

3 0 , (2)

where co stands for the convex hull and the ∆i’s denote
the vertices of P∆. That is,

∆ :=
L

∑
i=1

αi∆i,
L

∑
i=1

αi = 1, (3)

where αi ≥ 0 are the polytopic coordinates of ∆.
Polytopic coordinates are computed in real time as
functions of the scheduling variables (Section 4) and
can be exploited by the controller. According to our
definitions, the pair (w∆,z∆) is the gain-scheduling
channel.

For the LPV plant (1) the gain-scheduling control
problem consists in seeking an LPV controller K with
LFT structure

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AK ∈ Rn×n and ∆K ∈ RN×N , such that H2 and/or H∞
specifications are achieved for a family of channels
(w j,z j), j = 1,2, · · ·, where the w j and z j are sub-
vectors of w and z, respectively (Figure 1). In other
words, bounds ν j on the variance of the outputs z j
and/or bounds γ j on the L2-induced gain of the op-
erator mapping w j into z j are guaranteed for all pa-
rameter trajectories ∆(k) ∈ P∆. The notation ∆K is
used for the controller gain-scheduling function which
is a function of the plant’s parameter ∆, that is, ∆K :=
∆K(∆).

In this application, we consider the special situation in
which ∆ has a block-diagonal structure determined by
a vector of parameters θ := (θ1, · · · ,θr)

T with

∆ = diag(θ1Is1
, · · · ,θrIsr) (5)

Also, we assume that θ evolves in a box defined as

θl ∈ [θ l , θ̄l ], θ l < θ̄l , ∀t ≥ 0 (6)

The assumptions (5) and (6) mean that:
• the time-varying parameter θ is valued in a

hyper-rectangle PΘ of Rr, with

PΘ := co
{

Θ1, . . . ,ΘL
}

, (7)

where the Θi are the vertices of PΘ;
• ∆ and θ have the same polytopic coordinates

{αi};
• L = 2r and N = ∑r

l=1 sl .

Hereafter, i (= 1, · · · ,L) indexes the vertices Θi and ∆i,
j (= 1,2, · · ·) indexes the channels and specifications,
and l (= 1, · · · ,r) indexes the parameters.

It is shown in Reference (Apkarian et al., 2000) that
sufficient conditions for the existence of a solution
to the multi-objective LPV control problem can be
written as an LMI program. The general synthesis
scheme is described below.

Algorithm 2.1. Controller synthesis

Step 1: Define the following general non symmetric
decision variables which are common to all specifi-
cations and channels (Table 1):
• the set Sv of general slack variables; the set

Kv of transformed controller variables, whose
dimensions must be defined in according to
the controller dimensions; and the set ∆Kv of
scheduling function coefficients.

Step 2: For each H2-channel, define the set H2v of the
following symmetric decision variables:
• Lyapunov variables (X2 j and Z j); scaling vari-

ables (Q1 j, Q2 j, R1 j and R2 j); and a perfor-
mance variable (ν j).

Step 3: For each H∞-channel, define the set H∞v of
the following symmetric decision variables:
• a Lyapunov variable (X∞ j); scaling variables

(Q∞ j and R∞ j ); and a performance variable
(γ j).

Step 4: For each channel/specification, construct the
LMI constraint system derived in Appendix A of
(Apkarian et al., 2000) and represented here by the
simple notations below:
• H2 performance:

LH2
(Sv,Kv,∆Kv,H2v,∆i,Pj) < 0 (8)

• H∞ performance:

LH∞
(Sv,Kv,∆Kv,H∞v,∆i,Pj) < 0 (9)

where Pj is the set of state-space matrices rep-
resenting the LPV plant (1) with only the chan-
nel/specification (w j,z j) under consideration.

Step 5: (LMI optimization problem) - Minimize a
specific performance variable γ j or ν j subject to the
LMI constraints (8)-(9), fixing the remaining per-
formance variables at some adequate set of values;
or simply compute a feasible solution to the LMI
constraints (8)-(9).

Step 6: As described in (Apkarian et al., 2000), com-
pute the LPV controller data (4) as functions of



the decision variables (Table 1) obtained in Step
5. Note that the set Kv (bold notation) does not
represent the set of controller data. The controller
gain-scheduling function is determined by

∆K(∆) :=
L

∑
i=1

αiΦi, (10)

where the Φi can be computed off line as functions
of the decision variables.

3. DISCRETIZATION

While genuine extensions of the foregoing method to
the continuous-time case remain challenging, it can be
indirectly applied to continuous plants with the help of
a formal bilinear transformation.

Consider a continuous-time system
ẋ(t) = Ãx(t)+ B̃ξ (t)
ψ(t) = C̃x(t)+ D̃ξ (t)

(11)

A corresponding discrete-time state-space realization
is obtained as

[

A B
C D

]

= Fu

([

Ã B̃
C̃ D̃

]

,

[

I
√

2I√
2I I

])

(12)

where Fu is the customary notation for upper LFT. A
transformation from the discrete-time domain to the
continuous-time domain can be obtained similarly:

[

Ã B̃
C̃ D̃

]

= Fu

([

A B
C D

]

,

[

−I
√

2I√
2I −I

])

(13)

Supposing that ξ (t) := [wT
∆(t), wT (t), uT (t)]T and

ψ(t) := [zT
∆(t), zT (t), yT (t)]T in Equation (11), a cor-

responding discrete-time system in the form (1) is
readily obtained by applying the bilinear transforma-
tion (12). Since H2 problems are properly posed in
continuous time, the methodology described in the
previous section can be applied without restrictions
to the transformed system. For the H2 performance
index ν j to be well defined in continuous time, the
state-space data must be such that the closed-loop
feedthrough term of the channel/specification j is
zero. Without imposing restrictions to the controller,
this is achieved with D̃11 j = 0 and either D̃1∆ j = 0 and
D̃12 j = 0 or D̃∆1 j = 0 and D̃21 j = 0.

Once the LFT discrete-time controller has been com-
puted, one can use the transformation (13) to re-
cover the corresponding continuous-time controller. It
is worth mentioning that only the LTI components of
the LFT plant and of the LFT controller are modified
by bilinear transformations, whereas the ∆- and ∆K-
blocks remain unchanged.

4. POLYTOPIC COORDINATES

Modern flight control systems undergo highly ma-
neuverable trajectories which requires a fast con-
troller update. Controllers designed through general

LPV/gridding techniques (Wu et al., 1995b; Apkarian
and Adams, 1998) show little conservatism but re-
quire more complex on-line computations at the gain-
scheduling level. Contrarily, LFT/LPV controllers are
often more conservative but their favorable LFT struc-
ture offers obvious advantages in this respect. In com-
parison with the single-objective H∞ LFT/LPV con-
trol methods (Packard, 1994; Apkarian and Gahinet,
1995), the foregoing mixed H2/H∞ multi-objective
approach allows to consider a richer class of schedul-
ing functions (10), instead of replicating the parameter
block of the plant (∆K := ∆). This is another factor
which reduces conservatism and that is immediately
penalized by an increase in complexity of on-line
computations. Fast algorithms for the calculation of
polytopic coordinates should therefore be utilized in
order to overcome this difficulty.

For a parameter evolving in a hyper-rectangle, barycen-
tric coordinates can be directly and quickly computed
by ratio of hyper-volumes. The following algorithm
describes a procedure for the computation of polytopic
coordinates to general hyper-rectangles (6) with ver-
tices in Equation (7):

Algorithm 4.1. Computation of polytopic coordinates

Step 1: Given a parameter θ := (θ1, ...,θr)
T , com-

pute its normalized coordinates

ϑl :=

(

θ̄l −θl

)

(

θ̄l −θ l

) , l = 1, · · · ,r .

Step 2: For each vertex Θi, i = 1, ...,L, compute the
corresponding polytopic coordinates

αi =
r

∏
l=1

ϑ̃l , where

ϑ̃l =

{

ϑl if θ l is a coordinate of Θi
1−ϑl if θ̄l is a coordinate of Θi

Then, computing polytopic coordinates from mea-
sured rectangular coordinates is not a costly proce-
dure. It can be readily performed on line through
simple operations basically consisting in (r) scalar
normalizations and (Lr−L) scalar multiplications.

5. MISSILE CONTROL PROBLEM

In this section, we apply the technique presented in
Sections 2-4 to a realistic missile gain-scheduling au-
topilot problem. This problem consists in controlling
a missile to track commanded normal acceleration
ηc(t), by generating a commanded tail fin deflection
δc(t).

The nonlinear pitch-axis missile model and actuator
dynamics are available in References (Reichert, 1992;
Nichols et al., 1993). They involve the angle of attack
α(t), the pitch-rate q(t) and the tail deflection angle
δ (t) and its derivative δ̇ (t). Normal acceleration η(t)



Table 1. Decision variables

Set Variables Dimension Number of scalar variables

Sv U , V11, W11 n×n 3n2

M, N, E11, F11, G11, H11 N ×N 6N2

Kv
AK , BK1, BK∆, CK1, CK∆,
DK11, DK1∆, DK∆1, DK∆∆

Appropriate
n2 +N2 +2nN+

(n+N)(m2 + p2)+m2 p2
∆Kv ∆K,i, i = 1, · · · ,L N ×N LN2

X2 j 2n×2n n(2n+1)

H2v Z j p1 j × p1 j p1 j(p1 j +1)/2
Q1 j , Q2 j , R1 j , R2 j 2N ×2N 4N(2N +1)

ν j Scalar 1
X∞ j 2n×2n n(2n+1)

H∞v Q∞ j , R∞ j 2N ×2N 2N(2N +1)

γ j Scalar 1
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Fig. 2. Control and synthesis structure

and pitch-rate are measured outputs. The plant dy-
namics can be parameterized by θ(t) = [α(t), M(t)]T ,
where the Mach number M(t) is an exogenous vari-
able which is treated here as an uncertainty. We con-
sider that only the state variable α(t) is available
for scheduling purposes. In fact, the parameter chan-
nel can be split into two channels by defining z∆ :=
[zT

α , zT
M]T and w∆ := [wT

α , wT
M]T . Due to the missile

symmetry about α = 0, controllers are designed for
α ≥ 0 and scheduled on |α|.

5.1 Performance objectives and control structure

The performance and robustness specifications for the
closed-loop system are similar to those detailed in
References (Wu et al., 1995a; Nichols et al., 1993).
Our aim is to maintain robust stability over the entire
operating range, α ∈ [−30,30] degrees and M ∈ [2,4],
and to track step commands in ηc with time con-
stant no more than 0.35 s, maximum overshoot of
10%, steady-state error less than 1% and an adequate
high-frequency roll-off for noise attenuation and with-
stand neglected high frequency dynamics and flexible
modes. In order to avoid saturation of the actuator, the
maximum tail deflection rate for 1g step command in
ηc should not exceed 25 ◦/s.

We adopt the closed-loop control structure depicted
in Figure 2. The LFT missile model Fu(G(s),∆(θ))
is derived in the full version of this paper (Pellanda
et al., 2001). In order to utilize the approach dis-
cussed in this paper, we express the performance ob-
jectives by choosing appropriate weighting functions.

The precompensator Wi(s) is used to achieve the com-
mand shaping. The weighting functions W (s) and
We(s) := diag(W ′

e(s),0.01) penalize the tracking error
and Wu(s) incorporates bounds on the norm of unmod-
eled dynamics and also reflects magnitude restriction
on the control signal.

Hence, the specifications above can be met by a
controller K(s) together with its scheduling function
∆K(θα), |θα(t)| =

∣

∣

∣

|α(t)|−15
15

∣

∣

∣
≤ 1, which:

• minimize the L2-induced gain γM of the operator
mapping zM into wM ,

• maintain the variance of ze due to the disturbance
ηc below an appropriate bound νe,

• guarantee an upper bound γu on the L2-induced
gain of the operator mapping ηc into zu,

for all trajectories α(t) ∈ [−30,30] degrees.

Then, this problem can be solved by running Algo-
rithm 2.1 and consists in finding an adequate com-
promise between three conflicting objectives over the
entire operating range: one H2 and two H∞ specifi-
cations. Note that such a problem cannot be solved
by earlier LPV methodologies for plants described by
LFT representations.

The discrete-time synthesis plant P(z) and the final
continuous-time controller K(s) are computed through
bilinear transformations, respectively from P(s) and
the designed K(z), as indicated in Section 3. The
continuous-time synthesis plant P(s) is readily ob-
tained from the connections in Figure 2 and incorpo-
rates the missile model G(s) and the weighting func-
tions, Wi(s), W (s), We(s), and Wu(s). These frequency-
dependent weights have been tuned by performing
a few trials-and-errors of synthesis and simulations
for the nominal plant. That is, an LTI plant model
obtained from the linearization about the point θ =
[0 , 0]T , (α = 15, M = 3), and an appropriate com-
promise between νe and γu have guided our weight
selection. This has been carried out by using the same
synthesis methodology described in Section 2 with
∆ = 0. The adopted frequency shapes for the filters are
fairly standard and their numerical data are available
in the Reference (Pellanda et al., 2001).



5.2 Results and simulations

In order to put in light the potentials of our multi-
channel LPV synthesis method and to allow compar-
isons, we have considered two designs. The first LPV
controller, K1(s) and ∆K1

(θα), has been synthesized
considering M as a constant (= 3); the second one,
K2(s) and ∆K2

(θα), considers M as a bounded uncer-
tain parameter (M ∈ [2,4]). In short, we have used the
following strategy to compute these controllers:

• K1(s) and ∆K1
(θα):

· Starting with a small value νe, synthesize
controllers which minimize the H∞ perfor-
mance γu subject to a H2 constraint

√
νe.

· Through successive relaxations in νe, find a
reasonable compromise between these ob-
jectives. To check out when a good balance
has been achieved, perform non-stationary
(α(t)) and nonlinear simulations for M = 3
and evaluate the closed-loop performance in
the time domain.

• K2(s) and ∆K2
(θα):

· As mentioned in the previous subsection and
analogously to K1(s), minimize γM subject
to the constraints γu and νe.

· Starting with the final values γu and νe ob-
tained in designing K1(s), relax them alter-
nately in order to find an adequate balance
between the three objectives.

Numerical data for K2(s) and its scheduling func-
tion coefficients Φi’s are provided in the Reference
(Pellanda et al., 2001).

Nonlinear simulation results for fixed values of M
are displayed on Figure 3. Figure 4 shows nonlinear
simulations for time-varying M(t). The input is a
sequence of step commanded acceleration ηc whose
amplitudes have been chosen such that the parameter
α covers most of the scheduling range, thus inducing
significant variations in the aerodynamic coefficients.
The Mach number time trajectory has been generated
as in References (Nichols et al., 1993; Wu et al.,
1995a). As theoretically expected, all performance
objectives are met for all considered trajectories when
(K2,∆K2

) is employed for controlling the system. In
contrast, the desired closed-loop behavior is satisfied
only at the central point (M = 3) for (K1,∆K1

). We
recall that (K2,∆K2

) has been computed in order to
ensure robustness with respect to variations in the
Mach number through an extra H∞ constraint on the
Mach channel M. From the later result, the advantages
of using this multi-objective LPV synthesis method
became evident.

6. CONCLUSIONS

We have discussed a multi-objective/channel H2/H∞
LPV control technique for the design of a missile
autopilot over a broad range of operating conditions

in both the angle of attack and the Mach number.
The proposed method provides additional flexibility
to handle various and stringent specifications attached
to the missile problem while maintaining the same
operational simplicity as earlier single-objective LPV
techniques:

• the missile nonlinearities are captured through
the use of an LFT representation,

• different channels are defined to translate track-
ing performance, control limitation and robust-
ness properties,

• balancing the different design requirements is
carried out in a very natural way within the
proposed design framework and conservatism is
kept reasonable thanks to the use of different
Lyapunov and scaling variables for each chan-
nel/specification,

• besides, we describe simple schemes to con-
struct the controller scheduling function and
show how all these manipulations carry over the
continuous-time case.

The determination of a full genuine continuous-time
methodology remains, however, challenging and fu-
ture research should be oriented in this direction. Also,
we think that other practical reasons might dictate
the use of observer-based LPV controllers. This is a
delicate and seemingly untouched topic that will be
considered in a future study.
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