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Abstract:  This paper presents the concept and formulation of a signed real measure of 
regular languages for analysis of discrete-event supervisory control systems.  The 
measure is constructed based upon the principles of language theory and real analysis for 
quantitative evaluation and comparison of the controlled behavior for discrete-event 
automata.    The marked (i.e., accepted) states of finite-state automata are classified in 
different categories such that the event strings leading to good and bad marked states 
have positive and negative measures, respectively.  In this setting, a controlled language 
attempts to disable as many bad strings as possible and as few good strings as possible.  
Different supervisors may achieve this goal in different ways and generate a partially 
ordered set of controlled languages.  The language measure creates a total ordering on the 
performance of the controlled languages, which provides a precise quantitative 
comparison of the controlled plant behavior under different supervisors.  The total 
variation of this language measure induces a norm on the vector space of sublanguages of 
the given regular language over the Galois field GF(2).  Copyright © 2002 IFAC 
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1 INTRODUCTION 
An important paradigm for Discrete Event 

System (DES) control is the Supervisory Control 
Theory (SCT), originally proposed by Ramadge ‘87 
and subsequently extended by other researchers (for 
example, see the October 2000 issue of Part B of 
IEEE Transactions on Systems, Man, and 
Cybernetics).  SCT partitions the behavior of a 
physical plant into legal and illegal categories.  The 
legal behavior of the plant is modeled by a 
deterministic finite-state automaton, abbreviated as 
DFSA in the sequel.  The DFSA model is equivalent 
to a regular language.  Then, SCT synthesizes a DES 
controller as another language that guarantees 
restricted legal behavior of the controlled plant based 
on the desired specifications.  Instead of continuous 
numerical data, DES controllers process event strings 
to disable certain controllable events in the physical 
plant.  The algorithms for DES control synthesis have 
evolved based on the automata theory and formal 
languages in the discipline of Computer Science.   

The controlled behavior of a given DFSA, also 
referred to as the plant, under different supervisors 
could vary, as they are designed based on different 
control specifications.  As such the respective 
controlled sublanguages of the automaton form a 
partially ordered set that is not necessarily totally 
ordered.  Since the literature on DES control does not 
apparently provide a language measure, it may not be 
possible to quantitatively evaluate the performance of 
a DES controller.  Therefore, it is necessary to 
formulate a mathematically rigorous concept of 
language measure(s) to quantify performance of 
individual supervisors such that the measures of 
controlled plant behavior, described by a partially 
ordered set of controlled sublanguages, can be 
structured to form a totally ordered set.  From this 
perspective, the goal of this paper is to construct a 
signed real measure that can be assigned to any 
sublanguage of the uncontrolled regular language of 
the plant to achieve the following objective:   
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Given that the relation ⊆  induces a partial 
ordering on a set of controlled sublanguages 
{ }kL  of a regular plant language )(GL , the 
language measure µ  induces a total 
ordering ≤  on { })( kLµ . 

2 LANGUAGE MEASURE CONCEPT 
Let mQqQ ,,,, 1δΣ≡G  be a trim (i.e., 

accessible and co-accessible) DFSA that represents 
the discrete-event dynamics of a physical plant 
[Ramadge ‘87; Kumar ‘95] where { }nqqqQ ,,, 21 �=  
is the set of states with 1q  being the initial state; 

{ }mσσσ ,,, 21 m=Σ  is the alphabet of events; 
QQ →Σ×:δ  is the (possibly partial) function of 

state transitions; and QQm ⊆  is the (non-empty) set 
of marked (i.e., accepted) states. 

Let *Σ  be the Kleene closure of Σ , i.e., the set 
of all strings made of the events belonging to Σ  as 
well as the empty string ε  that is viewed as the 
identity element of the monoid *Σ  under the 
operation of string concatenation, i.e., εε sss ==  

*Σ∈∀ s .  Since δ  is allowed to be a partial function, 
the regular language )(GL  generated by the DFSA 

G  is given as: *)( Σ⊆GL , and *)( Σ=GL  iff 
QQ →Σ×:δ  is a total function.  Therefore, if δ  is 

a partial function, the set of states can be augmented 
with an additional non-marked dead-lock state 1+nq , 
called the dump state [Kumar ‘95], such that the 
partial function δ  can be extended to a total function 

{ }( ) { }( )11: ++ →Σ× nnext qQqQ ttδ .   

Definition 1: A −σ algebra M  of a nonempty 
language *)( Σ⊆GL  is a non-empty collection of 
subsets of )(GL  which satisfies the following three 
conditions: 
 (i)   ;)( MGL ∈  
 (ii)  If M∈L , then ( ) MGL ∈− L)( ; 

(iii) t
∞

=
∈

1k
kL M  if M∈kL  .k∀   

Definition 2: An at most countable collection { }kL  
of members of a −σ algebra M  is a partition of a 
member M∈L  if t

k
kLL =  and ∅=jk LL h  

jk ≠∀ .  
Definition 3: Given a −σ algebra M  of the 
language )(GL , the set function 

( )∞∞−≡ℜ→ ,: Mµ , is called a signed real 
measure if the following two conditions are satisfied: 
 (i) ;0)( =∅µ  

 (ii) ( )∑=






 ∞

=

∞

= 11 k
k

k
k LL µµ t  for every partition 

{ }kL  of any member M∈L . 

 Note that, unlike a positive measure (e.g., the 
Lebesgue measure), µ  is finite (but not bounded) 
such that the series in part (ii) of Definition 3 
converges absolutely in ℜ  and the result is 
independent of any permutation of the terms under 
union. 

Definition 4: Total variation measure µ  on a 
−σ algebra M  is defined as: 
( ) M⊆∀∑= LLSupL

k
k )(µµ  where the 

supremum is taken over all partitions { }kL  of L . 

Definition 5:  Relative to the signed real measure µ , 
a sublanguage M∈L  is defined to be: 
(i)  null, denoted as 0=L , if 0)( =JL hµ  

M∈∀ J ; 

(ii)  positive, denoted as 0>L , if 0)( ≥JL hµ  
M∈∀ J ; 

(iii) negative, denoted as 0<L , if 
0)( ≤JL hµ M∈∀ J . 

Proposition 1:  Total variation measure µ  of any 
regular language )(GL  is non-negative and finite, i.e., 

( ) ),0[)( ∞∈GLµ .  Hence, ( ) ),0[ ∞∈Lµ  M∈∀ L .  

Proof of Proposition 1:  The proof follows standard 
theorems on complex measures [Rudin ‘88].  ■  

Proposition 2:  Every sublanguage M∈L  can be 
partitioned as: −+= LLLL ��

0  where mutually 

exclusive sublanguages 0L , +L , and −L  are null, 
positive, and negative, respectively, relative to a 
signed real measure µ . 

Proof of Proposition 2:  The proof is based on the 
Hahn Decomposition Theorem [Rudin ‘88]. ■  

3 LANGUAGE MEASURE FORMULATION 
For a given DFSA mQqQ ,,,, 1δΣ≡G , we now 

construct a −σ algebra M  of the regular language 
)(GL  as the power set )(2 GL .  Based on the facts that 

*)( Σ⊆GL  is at most countable and that every 

singleton legal string set belongs to )(2 GL , Definition 
4 is modified as follows. 

Definition 6: Total variation measure µ  on )(2 GL  

is defined as: ( ) )(})({ GL⊆∀∑=
∈

LsL
Ls

µµ . 

The accepted or marked language )(GLm  of a 
trim DFSA G  has the following properties: 



  

)()( GG LLm ⊆⊂∅ ; and )()( GLGL =m  iff 
QQm = .  Let the marked states be designated as:  

QqqqQ mmmm ⊆≡ },,,{ 21 �
m  where jkm qq =  for 

some { }nj ,,2,1 m∈ .   

Definition 7: For a state Qq ∈  of a given DFSA 

mQqQ ,,,, 1δΣ≡G , the regular language )(qL  is 
defined to be the set of all strings that terminate at q  
starting from the initial state 1q .  Equivalently, )(qL  
is the sublanguage of all legal event strings 
terminating at q  starting from the initial state 1q .   

The Myhill-Nerode Theorem is now applied to 
construct the following state-based partitions 
[Hopcroft ’01; Kumar ‘95; Martin ‘97]: 

( )�
Qq

qLL
∈

=)(G ; and ( )�

mQq
m qL

∈
=)(GL  

where the sublanguage ( )kqL  is uniquely labeled by 
the state { }nkqk ,,2,1 �∈∀ . 

In order to obtain a quantitative measure of the 
marked language )(GLm , the set of marked states is 

partitioned as: −+= mmm QQQ t  and ∅=−+
mm QQ h .  

The positive set +
mQ  contains good marked states that 

we desire to reach, and the negative set −
mQ  contains 

bad marked states that we want to avoid, although it 
may not always be possible to completely avoid the 
bad states while attempting to reach the good states.  
In general, the marked language )(GLm  consists of 
both good and bad event strings that, starting from the 
initial state 1q , respectively lead to +

mQ  and −
mQ .  

Any event string belonging to the language 
)()( GLGL m−  leads to one of the non-marked states 

belonging to ( )mQQ −  and does not contain any one 
of the good or bad strings. 

 The objective is to construct a performance 
measure of sublanguages of a regular language for 
discrete-event control and to define quantitative 
metrics of the controlled plant performance.  To this 
end, the following definitions are introduced to 
construct a signed real measure of sublanguages of 
the regular language.  This measure is not restricted to 
regular sublanguages of the original regular language 
based on which the measure is constructed. 

In view of Definition 5, we proceed to construct 
a signed real measure ( )∞∞−≡ℜ→ ,2: )(GLµ  to 
allow state-based decomposition of )(GL  into null, 
positive, and negative sublanguages such that:  

(i) ( )( ) 0=qLµ  mQq ∉∀ , i.e., the sublanguage 
corresponding to every non-marked state has 
zero measure; 

(ii) Partitioning of mQ  into +
mQ  and −

mQ  yields 

the following properties: ( ) +∈∀> mQqqL 0)(µ  

and ( ) −∈∀< mQqqL 0)(µ , which is in agreement 
with Proposition 2 in the sense that 

�

mQq
qLL

∉
= )(0 ; �

+∈

+ =
mQq

qLL )( ; and 

�
−∈

− =
mQq

qLL )( . 

 Partitioning the marked language )(GLm  into 
a positive language s

+∈ mQq
qL )(  and a negative 

language s
−∈ mQq

qL )(  is equivalent to partitioning mQ  

into the positive set +
mQ  and the negative set −

mQ .  

Each state belonging to +
mQ  is characterized by a 

positive weight and each state belonging to −
mQ  by a 

negative weight.  These weights are chosen by the 
designer based on his/her perception of each marked 
state’s role in the system performance.   

Definition 8: The characteristic function 
( ) { }{ } ]1,1[,,2,1:: −→∈ nkqL k �χ  that assigns a 

signed real weight to state-partitioned sublanguages 
is defined as: 

( )









∈
∉
∈−

∈
+

−

m

m

m

Qqif
Qqif
Qqif

qL
]1,0(

}0{
)0,1[

)(χ  

 The implication of the characteristic function is 
that a string belonging to a sublanguage ( )kqL , 
which is labeled by the state kq , has a zero measure 
if kq  is not a marked state; a positive measure if kq  
is a good marked state; and a negative measure if kq  
is a bad marked state.  For any accessible DFSA G , 

( )kqL  is a nonempty language { }nk ,,2,1 m∈∀ . 

We now introduce the cost of event strings 
belonging to )(GL .  The cost assignment procedure is 
conceptually similar to that for conditional probability 
to events of a string.  Since the consecutive events in 
a string may not be statistically independent, it is 
necessary to find the joint probability mass functions 
of arbitrarily large order.  This makes the probability 
space of *Σ  ever expanding as there is no finite 
upper bound on the length of strings in *Σ .  This 
problem is circumvented by using the state transition 
function δ  of G , which has finitely many Markov 
states. 

Definition 9: The event cost generated at a DFSA 
state is defined as )1,0[*:~ →×Σ Qπ  such that 

,Qq j ∈∀ Σ∈∀ kσσ , , *Σ∈∀ s ,  



  

• Σ∈∀ kσ , [ )1,0~][~ ∈≡ jkjk q πσπ ; 1~
1

<∑
=

m

j
jkπ ; 

• 0][~ =jqσπ  if ),( σδ jq  is undefined; 1][~ =kqεπ ;   

• )],([~][~][~ σδπσπσπ jjj qsqqs = . 

The event cost function π~  for an event string 
)( kqLs ∈  starting from the initial state 1q  and 

terminating at kq  as the product of the respective 
conditional probabilities.  For example, if 

kjis σσσ= , then kbjaiqss πππππ ~~~)(~)(~
11 =≡  where 

the state transition function δ  of the DFSA 

mQqQ ,,,, 1δΣ≡G  defines ),( 1 ia qq σδ=  and 
),( jab qq σδ=  that are Markov states.  

Definition 10: The state transition cost of the DFSA 
is defined as a function )1,0[: →×QQπ  such that 

,, Qqq kj ∈∀  jk
kqjq

kjk qqq πσππ
σδσ

∑ ≡=
=Σ∈ ),(:

)(~)(  

and 0=jkπ  if ∅=Σ∈ )},(:{ σδσ jq .   

Remark 1: Definition 10 implies that, for an 
accessable language: 

 { }( )








∈∈<
∈∈>
∉∈=

<
−

+

m

m

m

QqqLs
QqqLs
QqqLs

s
for)(if0
for)(if0
for)(if0

µ  

Now we assign a signed measure µ  to each 
string belonging to )(GL  that is partitioned by the 
sublanguages ( ) { }nkqL k ,,2,1: m∈  in terms of the 
signed weight of the characteristic function χ  and 
the non-negative cost π~ . 

Definition 11: The signed measure µ  of every 

singleton string set in )(2 GL  is defined as: 
( ) ( ) )(~)(}{ sqLs πχµ ≡ , where )(qLs ∈ .  

From the perspective of performance evaluation 
of controlled automata under different DES 
supervisors, the role of the language measure is 
explained below: 

A discrete-event non-marking supervisor S  
restricts the marked behavior of an 
uncontrolled plant automaton G  such that 

( ) ( )GLS/GL mm ⊆ .  The uncontrolled marked 
language ( )GLm  consists of good strings 

leading to +
mQ  and bad strings leading to 

−
mQ .  A controlled language ( )S/GLm  should 

disable as many bad strings as possible and as 
few good strings as possible.  Different 
supervisors may achieve this goal in different 
ways and generate a partially ordered set of 
controlled languages, 

( ) { }{ }sjm nj ,,2,1: m∈/GSL .  The real 

signed measure µ  provides a precise 
quantitative comparison of the controlled 
plant behavior under different supervisors 
because the set  

( )( ) { }{ }sjm nj ,,2,1: l∈/GSLµ  is totally 
ordered. 

4 LANGUAGE MEASURE COMPUTATION 

 The previous section formulated the real signed 
measure µ  based on Definitions 8, 9 and 11.  This 
section validates the construction of the measure µ  
in view of Proposition 1 by showing that 

( ) ∞<)(qLµ  mQq ∈∀ . This implies that the total 

variation ( ) ∞<)(GLµ .  Next, the measure of the 
marked language is quantified.  To this end, we 
introduce several definitions and propositions.  

Definition 12: Given Qqq ki ∈, , a string of events 
starting from iq  and terminating at kq  is called a 
path.  A path v  from iq  to kq  is said to pass 
through jq  if ∃  strings ε≠s  and ε≠t  such that 

tsv = ; ji qsq =),(*δ  and kj qtq =),(*δ  where 

QQ →Σ× ** :δ . 

Definition 13: A path language j
ikp  is defined to be 

the set of all paths from iq  to kq , which do not pass 
through any state rq  for jr > .  The path language 

ikp  is defined to be the set of all paths from iq  to 

kq . 

 Based on the above definitions, we present the 
following propositions and lemmas to validate and 
quantify the language measure µ .   

Proposition 3:  Let mQqQ ,,,, 1δΣ≡G  be a DFSA 

with },,2,1{ nQ l= .  Then, jk
i
jk pp =  ni ≥∀ . 

Proof of Proposition 3:  The proof relies on the fact 
that no string can pass through a state numbered 
higher than n . ■  

Proposition 4:  For a DFSA, every path language is 
regular. 
Proof of Proposition 4:  Since 0

jkp  is a finite 
language and hence regular, it follows from the proof 
of Kleene’s Theorem [Martin ‘97, p. 123] by the 
induction hypothesis that 1+i

jkp  is regular if i
jkp  is 

regular for all .0 ni ≤≤    ■  
Proposition 5: Let u  and v  be two known regular 
expressions and let r  be an unknown regular 
expression that is governed by the implicit equation: 

vrur += .  Then, ∃  solutions θ+= vur *  where 
θ  satisfies the condition: vvu +=+ θθ ; and the 
solution vur *=  is unique if u∉ε . 



  

Proof of Proposition 5:  Existence is established by 
substituting θ+= vur *  in vrur +=  and then using 
the identity vvu +=+ θθ : 

 
rvuvuuvvuu

vuvuuvvuuvru
=+=++=++=

++=++=+
θθεθ

θθ
*)*()(*

)(*)*(
 

If u∉ε , then ε+= uuu **  is a partition of *u , 
which implies rruuru += **  is a partition of 

ru * .  It follows from vrur +=  that 

vuruuru *** +=  ⇒  vur *⊆ .   
Suppose vur *⊂ .  Partitioning of vu *  yields 

ϕ+= rvu *  for some ∅≠ϕ .  It follows from 
vrur +=  that vvuuvur +==+ **ϕ .  Therefore, 

ϕϕ urvru +=++ )(  ⇒  ϕϕ u⊆  which is a 
contradiction because u∉ε .  Hence, the solution 

vur *=  is unique if u∉ε .  An alternative proof is 
given in [Drobot ‘89]. ■  

Proposition 6:  For a given DFSA 
mQqQ ,,,, 1δΣ≡G , the following recursive relation 

holds for 10 −≤≤ ni :  

}),(:{0
kjjk qqp =Σ∈= σδσ  and 

i
ki

i
ii

i
ij

i
jk

i
jk ppppp ,1

*
1,11,

1 )( ++++
+ = �  

Proof of Proposition 6:  Since the states are numbered 
from 1  to n  in increasing order, 

}),(:{0
kjjk qqp =Σ∈= σδσ  follows directly from 

the state transition map QQ →Σ×:δ  that is allowed 

to be a partial function.  Given 1+⊆ i
jk

i
jk pp , let us 

consider the set i
jk

i
jk pp −+1  in which each string 

passes through 1+iq  in the path from jq  to kq  and 

no string must pass through �q  for ).1( +> i�  Then, 

it follows that 1
,11,

1 +
++

+ =− i
ki

i
ij

i
jk

i
jk pppp  where 

1
,1

+
+

i
kip  can be further expanded as:  

i
ki

i
ki

i
ii

i
ki pppp ,1

1
,11,1

1
,1 )( +

+
+++

+
+ = �  that has a unique 

solution by Proposition 5 because i
iip 1,1 ++∉ε .  

Therefore, i
ki

i
ii

i
ij

i
jk

i
jk ppppp ,1

*
1,11,

1 )( ++++
+ = � . ■  

Lemma 1:  )1,0[)( 0*0 ∈














≠
�

kj
kjkk ppπ . 

Proof of Lemma 1:  Following Definition 9, 
( ) )1,0[0 ∈kkpπ .  Therefore, by convergence of a 

geometric series, 

 )1,0[
)(1

)(
)( 0

0

0*0 ∈
−

∑

=












 ≠

≠ kk

kj
kj

kj
kjkk

p

p
pp

π

π
π s   

because 1)( 0 <∑
j

kjpπ )(1)( 00
kk

kj
kj pp ππ −<∑⇒

≠
. ■  

Lemma 2:  ( ) )1,0[)( 1,1 ∈++
i

iipπ . 

Proof of Lemma 2:  The path i
iip 1,1 ++  may contain at 

most i  loops, one around the states iqqq ,,, 21 � .  If 

the path i
iip 1,1 ++  does not contain any loop, then 

)1,0[)( 1,1 ∈++
i

iipπ  because it is a product of jkπ ’s, 
each of which is a non-negative fraction.  Next 
suppose there is a loop around jq  that does not 
contain any other loop; this loop must be followed by 
one or more events kσ  generated at jq  and leading 

to some other states �q  where }1,,1{ +∈ im�  and 

j≠� .  By Lemma 1, )1,0[)( 1,1 ∈++
i

iipπ .  Proof 
follows by starting from the innermost loop and 
ending with all loops at iq . ■  

Corollary to Lemma 2:  ( ) ),1[)( *
1,1 ∞∈++

i
iipπ  

Proof of Corollary to Lemma 2:  
Since )1,0[)( 1,1 ∈++

i
iipπ  from Lemma 2, 

( ) ),1[
)(1

1)(
1,1

*
1,1 ∞∈

−
=

++
++ i

ii

i
ii

p
p

π
π  ■  

Proposition 7:  For a given DFSA 
mQqQ ,,,, 1δΣ≡G , the following recursive relations 

hold for 10 −≤≤ ni :  
 

),0[
)(1

)()(
)()(

1,1

,11,1 ∞∈
−

+=
++

+++
i

ii

i
ki

i
iji

jk
i
jk

p

pp
pp

π

ππ
ππ  

Proof of Proposition 7 :  It follows from Definition 9 
that ( ) ( )i

ki
i

ii
i

ij
i
jk

i
jk ppppp ,1

*
1,11,

1 )( ++++
+ =− ππ .  

Since the languages i
ii

i
ij pp 1,11, , +++  and i

kip ,1+  are 

mutually disjoint and 1+⊆ i
jk

i
jk pp , it follows that: 

( ) )()()()()( ,1
*

1,11,
1 i

ki
i

ii
i

ij
i
jk

i
jk ppppp ++++
+ += πππππ .   

The proof follows from Corollary to Lemma 2. ■  

Remark 2:  In view of Proposition 6, )( kqL  in 
Definition 7 is obtained in terms of the path language 

kp1  as: 

( )




>
=+

=⇒





>
=

=

1)(
11)(

)(

1
1}{

)(

1

11

1

11

kifp
kifp

qL

kifp
kifp

qL

k
k

k
k

π
π

π

ε�

 

Remark 3:  The above recursive algorithm is 
generated in polynomial time.  Specifically, an 
algorithm for numerically solving ( )kp1π  requires 
three for-loops and hence, for a n -state automaton, 
the computation time is in the order of 3n . 



  

5 NORMED SPACE FOR A REGULAR 
LANGUAGE 

 This section makes use of the language measure 
to construct a normed vector space of sublanguages 
for a given DFSA.  The norm also induces a distance 
function between any two sublanguages of the regular 
language representing the DFSA. 

Definition 14: Let ( )GL  be a regular language.  The 

distance function ( ) ( ) ),0[22: ∞→× GLGLd  is defined 
in terms of the total variation measure µ  as: 

( ) ( )( )212121 ),( KKKKKKd fs −= µ
( )GL⊆∀ 21, KK . 

Remark 4:  The above distance function ),( ••d  
satisfies the criteria for a pseudo-metric that can be 
converted to a metric by clustering of languages 
having zero distance from each other into the same 
equivalence class.  This metric determines the 
distance between two controlled languages to 
quantify the distance between two supervisors relative 
to a given DFSA model of a plant. 

Proposition 8:  Let )(GL  be the language of a DFSA 

mQqQ ,,,, 1δΣ≡G .  Let the binary operation of 

exclusive-OR )()()( 222: GLGLGL →×⊕  be defined 
as: 

 ( ) ( ) ( )212121 KKKKKK fs −≡⊕

( )GL⊆∀ 21, KK . Then, ⊕,2 )(GL  is a vector space 

over the Galois field )2(GF . 

Proof of Proposition 8:  We notice that ⊕,2 )(GL  is 

an Abelian group where ∅  is the zero element of the 
group and the unique inverse of every element 

)(2 GL∈K  is K  itself because ∅=⊕ 21 KK  if and 
only if 21 KK = .  The associative and distributive 
properties of the vector space follows by defining the 
scalar multiplication of vectors as:  ∅≡⊗ K0  and 

KK ≡⊗1 . ■  

Remark 5:  The set )(GL  is isomorphic to a basis for 

the vector space ⊕,2 )(GL  over )2(GF .  

Proposition 9:  Total variation measure 
),0[2: )( ∞→GLµ  is a seminorm on the vector space 

⊕,2 )(GL  over )2(GF . 

Proof of Proposition 9:  We notice that 0)( ≥Kµ , 

0)0( =⊗ Kµ , and )()1( KK µµ =⊗  )(2 GL∈∀ K . 

  The remaining property of the triangular inequality: 
( ) ( ) ( )2121 KKKK µµµ +≤⊕  follows from 

Definition 3 and the facts that ( ) ( )2121 KKKK t⊆⊕  
and ( ) ( )21 KK µµ ≤  21 KK ⊂∀ . ■  

Remark 6:  The above semi-norm )(•µ  can be 
converted to a norm by clustering of all languages 
having zero total variation measure into the null 
equivalence class }0)(:2{ )( =∈≡ KK µGLN  
conceptually similar to what is done for defining 
norms in the pL  spaces [Rudin ‘88].  In that case, 
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mQq
qL )(N  includes all strings leading to 

the unmarked states from the initial state.   

Remark 7:  The norm )(•µ  can be generated from 

),( ••d  as: NGL ∈∀∈∀= JKJKdK )(2),()(µ .  

Remark 8:  The normed space ⊕,2 )(GL  is 

transformed to a Banach space by completion of the 
language ( )GL  to *Σ  by augmenting the state set Q  
by the additional dump state 1+nq  that is unmarked as 
discussed earlier.  In that case, the state transition 
function δ  becomes a total function and the 
characteristic function 0)( 1 =+nqχ  following 
Definition 8.  Therefore, a Banach space of 
sublanguages can be generated for a regular language 
by extending the domain of the language measure to 

*2Σ  from )(2 GL .  Non-zero values of the measure 
remain unchanged and the null equivalence class 
becomes: 

  }0)(:2{ * =∈= Σ KK µN .  
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