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Abstract: A backlash compensator is designed for nonlinear systems using the fuzzy logic. 
The classification property of fuzzy logic systems makes them a natural candidate for the 
rejection of errors induced by the backlash, which has regions in which it behaves 
differently. A tuning algorithm is given for the fuzzy logic parameters, so that the 
backlash compensation scheme becomes adaptive, guaranteeing small tracking errors and 
bounded parameter estimates. Formal nonlinear stability proofs are given to show that the 
tracking error is small. The fuzzy logic backlash compensator is simulated on a nonlinear 
system to show its efficacy.  Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
Very accurate control is required in mechanical 
devices such as xy  positioning tables (Li and Cheng, 

1994), overhead crane mechanisms (Mahfouf, et al., 
2000), robot manipulators (Jang and Jeon, 1999), etc. 
For many of these devices, the performance is 
limited by deadzone, friction, and backlash. Precise 
positioning, in particular, control of very small 
displacement is an especially difficult problem for 
micro positioning devices. Due to the nonanalytic 
nature of the actuator nonlinearities and the fact that 
their exact parameters are unknown such systems 
present a challenge for the control design engineer. A 
number of control strategies have been developed to 
overcome the problems caused by the backlash 
effects. Backlash characteristics are common in 
control system components such as mechanical 
connections and electromagnetic devices with 
hysteresis (Krasnoselskii and Pokrovskii, 1989). 
They are non differentiable nonlinearities and have 
been among the factors severely limiting the 

performance of feedback systems. A backlash 
element is itself a dynamic system with memory and 
characterized by parameters. The key feature of a 
backlash control scheme is to use a dynamic backlash 
inverse to cancel the effect of the backlash 
characteristic so that a linear controller structure can 
be employed to achieve the control objective.  

  Recently, in seminal work several rigorously 
derived adaptive schemes have been given for 
actuator nonlinearity compensation (Tao and 
Kokotovic, 1996). Backlash compensation using 
adaptive inverse method is considered in (Tao and 
Kokotovic, 1995a). Dynamic inversion using a neural 
network is presented in (Selmic and Lewis, 1999) 
and (Campos, et al., 2000) for discrete time, where 
the neural network is used for cancellation of the 
inversion error. Backlash compensation of systems 
using fuzzy logic is presented in (Jang, et al., 2001).    

 The use of fuzzy logic systems has accelerated in 
recent years in many areas, including feedback 
control (Jamshidi, et al., 1993). Fuzzy logic deadzone 
compensation schemes are provided in (Kim, et al., 
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1994; Lewis, et al., 1999; Jang, 2001). Particularly 
important in fuzzy logic control are the universal 
function approximation capabilities of fuzzy logic 
systems (Kosko, 1994; Wang and Mendel, 1992).  
The fuzzy logic systems offer significant advantages 
over adaptive control, including no requirement for 
linearity in the parameters assumptions and no need 
to compute a regression matrix for each specific 
system.  Actuator nonlinearities are typically defined 
in terms of piecewise linear functions according to 
the region to which the argument belongs. The fuzzy 
logic function approximation properties and ability 
of fuzzy logic systems to discriminate information 
based on regions of the input variables, makes them 
an ideal candidate for compensation of non-analytic 
actuator nonlinearities.  

In this paper, authors present the backlash com- 
pensation method of nonlinear systems using fuzzy 
logic. A rigorous design procedure with proofs is 
given that results in a PD tracking loop with an 
adaptive fuzzy logic system in the feedforward loop 
for backlash compensation. Authors derive a 
practical bound on tracking error from the analysis of 
the tracking error dynamics and investigate the 
performance of the fuzzy logic backlash compensator 
in a nonlinear system through the computer 
simulations. 

 
 

2. FUZZY LOGIC COMPENSATION OF 
BACKLASH NONLINEARITY 

 
In this section a fuzzy logic precompensator is 
designed for the non-symmetric backlash 
nonlinearity. It is shown that the fuzzy logic 
approach includes and subsumes approaches based 
on switching logic and indicator functions (Tao and 
Kokotovic, 1995b; Recker, et al., 1991). This brings 
these references very close to fuzzy logic work in 
(Kim, et al., 1994), and potentially allows for more 
exotic compensation schemes for actuator 
nonlinearities using more complex decision (e. g. 
membership) functions. This section provides a 
rigorous framework for fuzzy logic applications in 
backlash compensation for a broad class of systems.        

 The backlash model and a simple backlash 
example are shown in Fig. 1. The backlash 
characteristic )(⋅B  with input )(tu  and output )(tT  : 

))(()( tuBtT =  is described by two parallel straight 

lines, upward and downword sides of )(⋅B , connected 
with horizontal line segments. Mathematically, the 
backlash is modeled as  
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(1) 
One can see that backlash is a first order velocity 
driven dynamic system, with inputs u  and u& , and 
state T . It contains its own dynamics, therefore its 
compensation  requires  the  design  of   the  dynamic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Backlash Nonlinearity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Backlash inverse. 
 
 
compensator.  Whenever the motion )(tu  changes its 

direction, the motion )(tT  is delayed from motion of 

)(tu . The objective of a backlash compensator is to 
make this delay as small as possible, i.e. to make the 

)(tT  to closely follow )(tu . In order to cancel the 
effect of backlash in the system, the backlash 
precompensator needs to generate inverse of the 
backlash nonlinearity. The backlash inverse function 
is shown in Fig. 2.  The dynamics of the backlash 
inverse is given by  
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where ))((),( −+ −−= ddttg τδτ with )(tδ being the 

Dirac δ function.  In this definition the inverse of a 
horizontal segment of the backlash characteristic is a 
vertical jump of a distance −+ − dd . 

 To offset the deleterious effects of backlash, one 
may place a precompensator as illustrated in Fig. 3.   
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Fig. 3. Fuzzy backlash compensation of a nonlinear 

system. 
 
 
There, the desired function of the precompensator is 
to cause the composite throughput from w  to T  to 
be unity. The power of fuzzy logic systems is to that 
they allow one to use intuition based on experience 
to design control systems, then provide the 
mathematical machinery for rigorous analysis and 
modification of the intuitive knowledge, for example 
through learning or adaptation, to give guaranteed 
performance, as will be shown in Section 3.  Due to 
the fuzzy logic classification property, they are 
particularly powerful when the nonlinearity depends 
on the region in which the argument u  of the 
nonlinearity is located, as in the non-symmetric 
backlash.  

A backlash precompensator using dynamic 
inversion would be discontinuous and depend on the 
region within which )/( dtdww =&  occurs. It would 
be naturally described using the rules     

If ( w&  is positive ) then ( ++= dwu ˆ )     

If ( w&  is zero ) then ( 0d̂wu += )                    (3) 

If ( w&  is negative) then ( −+= dwu ˆ )                             

where Tdddd ]ˆˆˆ[ˆ
0 −+=  is an estimate of the 

backlash width parameter vector Tdddd ][ 0 −+= . 
To make this intuitive notion mathematically precise 
for analysis define the membership function’s 
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One may write the precompensator as  

Fwwu +=                                      (5) 

where Fw  is given by the rule base  

               If ( )(wXw && +∈ ) then ( += dwF
ˆ ) 

If ( )(0 wXw && ∈ ) then ( 0d̂wF = )               (6) 

       If ( )(wXw && −∈ ) then ( −= dwF
ˆ ).                               

The output of the fuzzy logic system with this rule 
base is given by  

)()()(

)(ˆ)(ˆ)(ˆ
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The estimates +d̂ , 0d̂ , −d̂  are, respectively, the 

control representive value of )(wX &+ , )(0 wX & , and 

)(wX &− . This may be written (note 

1)()()( 0 =++ −+ wXwXwX &&& ) as  

)(ˆ wXdw T
F &=                                   (8) 

where the fuzzy logic basis function vector given by  
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is easily computed given any value of w& . It should 
be noted that the membership functions (4) are the 
indicator functions and )(wX &  is similar to the 
regressor (Tao and Kokotovic, 1995b; Recker, et al., 
1991). The fuzzy logic compensator may be 
expressed as follows 

)(ˆ wXdw

wwu
T

F

&+=

+=
                       (10) 

where d̂ is estimated backlash widths. 
Given the fuzzy logic compensator with rulebase 

(6), the throughput of the compensator plus backlash 
is given by  

δTT dwXdwT
~

)(
~

−+= &                      (11) 
where the backlash width estimation error is given by  

ddd ˆ~
−=                                       (12) 

and the modeling mismatch term δ  is bounded so 
that Mδδ <||  for some scalar Mδ . 

 
 

3. ADAPTIVE FUZZY LOGIC BACKLASH 
COMPENSATION OF NONLINEA SYSTEMS 

 
In this section authors show how to provide the fuzzy 
logic backlash compensation for backlash in 
nonlinear systems. The fuzzy logic backlash 
compensator is given by (10). Authors show to tune 

or learn the backlash width estimates d̂ on-line so 
that the tracking error is guaranteed small and all 
internal states are bound. This turns the backlash 
compensator into an adaptive fuzzy logic backlash 
compensator. It is assumed, of course, that the 
backlash output )(tT  is not measurable.  

The dynamics of a large class of single input 
nonlinear systems can be written in the Brunovsky 
form  

21 xx =&              

32 xx =&                                            
… 

)()()( kTkTxfx dn ++=&                   (13) 

1xy =  

where the output is )(ty , the state is 
T

nxxxx ]...[ 21= , dT is the bounded unknown 

disturbance, and T is the actuator output, and )(xf  



 

     

presents system nonlinearities like friction etc. The 
actuator output )(tT is related to the control input 

)(tu through the backlash nonlinearity (1). Therefore 
overall dynamics of the system consists of (13) and 
backlash dynamics (1).  

It is assumed that ddT τ<|| , with dτ , a known 

positive constant.  The unknown backlash widths are 
bound so that  Mdd <||  for some scalar Md  and are 

constant so that 0=d& .  The nonlinear function 
)(xf is assumed to be unknown, but a fixed 

estimate )(ˆ xf is assumed known such that the 

functional estimation error, )(ˆ)()(
~

xfxfxf −= , 

satisfies )(||)(
~

|| xfxf M≤ , for some known 

bounding )(xfM .  
To design a motion controller that causes the 

system output, )(ty , to track a smooth prescribed 

trajectory, )(tyd , authors define the desired state as 
Tn

dddd yyytx ][)( )1( −⋅⋅⋅= &                      (14) 

with )1( −n
dy the (n-1)st derivative. Authors define the 

error by  

dxxe −=                                          (15) 
and the tracking error by  

eeer TT
n ]1[]1...[ 121 Λ≡Λ≡= −λλλ ,  (16) 

with Λ a gain parameter vector selected so that 
0)( →te  exponentially as 0)( →tr . Then (16) is 

stable system so )(te  is bounded as long as 

controller guaranties that the tracking error )(tr is 
bounded. 

Differentiating tracking error and using (13), the 
dynamics may be written in terms of the tracking 
error as:  

TTYxfr dd +++= )(& ,                           (17) 
where  

eyY Tn
dd ]0[)( Λ+−=                              (18)   

is known function of the desired trajectory and actual 
states. The desired trajectory is bounded so that 

dd Xtx ≤||)(|| , where dX  is a known constant.  
   A robust compensation scheme for unknown terms 
in )(xf  is provided by selecting the tracking 
controller 

vYrKxfw df +−−−= )(ˆ                      (19) 

with )(ˆ xf , an estimate for the nonlinear terms )(xf , 

)(tv  a robustifying term. The feeedback gain 

0>fK is often selected diagonal.  Backlash 

compensation is provided using 

)(ˆ wXdwu T
&+=                                  (20) 

with )(wX &  given by (9), which gives the overall 
feedfordward throughout (11). The control structure 
implied by this scheme is shown in Fig. 3. The 
controller has a Proportional-Derivative(PD) tracking 
loop where the backlash effect is ameliorated by a 

feedfordward compensator. The estimate )(ˆ xf  is 

computed by an inner nonlinear control loop (Jang 
and Jeon, 2000; Jang and Lee, 2000).        
   Substituting (19) and (11) into (17) yields the 
closed-loop error dynamics  
 

]
~

[
~

)(
~

vTfdwXdrKr d
TT

f +++−+−= δ&&        (21) 

where the nonlinear functional estimation error is 

given by )(ˆ)(
~

xfxff −= .   
The next theorem provides an algorithm for tuning 

the backlash precompensator. 
Theorem 1: Given the system (17), select the 
tracking control (19) plus backlash compensator (20), 
where )(wX & is given by (9). Choose the robustifying 

signal  

||||
))(()(

r

r
xftv dM τ+−= .                     (22) 

   Let the estimated backlash widths be provided by 
the fuzzy logic system tuning algorithm 

||||ˆ)(ˆ rdkrwXd T −= &

&

                           (23)  

where the scalar 0>k .  Then the tracking error r  
evolves with a practical bound, 

kK

c
r

f ⋅⋅
≤

min

2
0

4
|||| .                                 (24) 

   Proof : Define a Lyapunov function candidate for 
the error dynamics (17) as: 

        ddrrL TT ~~

2

1

2

1 += .                                (25)  

   Differentiating (25) yields: 

ddrrL TT &

&

&

~~
+=                                       (26) 

hence substitution of (21) yields 

]
~

[)
~

)((
~

vTfrdrrwXdrKrL d
TTTT

f
T ++++−+−= &

&

& δ .               

(27) 

Note that ddd ˆ~
−= , and by (12) , dd

&& ˆ~
−= . 

Therefore, substituting the tuning algorithm (23), 
robustifying term (22) gives 
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(28) 
where Mδδ <||  for some scalar Mδ , 

)(
minmin ff KK σ= , minimum singular value of fK , 

and the bounding properties were used.  Therefore    

]||
~

||||
~

||||||[(|||| 2
0min dkdcrKrL f +−−≤&      (29) 

with MM kdc +≡ δ0 . 

 This is negative as long as the quantity in the 
brace is positive. To determine conditions for this, 

complete the square to see that L&  is negative as long 
as either  

kK

c
r

f min

2
0

4
||||

⋅
>                             (30) 

or  

k

c
d 0||
~

|| > .                                  (31) 
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According to the standard Lyapunov theorem, the 
tracking error decreases as long as the error is bigger 
than the right-hand side of Eq. (30). This implies Eq. 
(32) gives a practical bound on the tracking error      

kK

c
r

f ⋅⋅
≤

min

2
0

4
|||| .                         (32) 

◊  
Also, Lyapunov extension shows that the backlash 

width bound, ||
~

|| d , is bounded to a neighborhood of 
the right hand side of (31).  Since a PD controller, 

fK , is determined according to the design of a PD 

controller, fK  cannot be increased arbitrarily. 

However, large fK  may decrease the tracking error 

bound as long as the PD controller and the robust 
term maintain the stability of a control system.    
 

 
4. SIMULATION RESULTS 

 
In this section, authors illustrate the effectiveness of 
a fuzzy logic backlash compensator by computer 
simulations. One considers the nonlinear system:  

21 xx =&   

TxMgaxMaxx
T

x
M

+++−= )cos()sin(
1

11
2
222& (33) 

which represents a mechanical motion of robot like 
system with one link. The motor time constant is MT , 
M is a net effective load mass, a  a length, g  the 

gravitational constant.  Authors select sec1=MT ; 
KgM 1= ; ma 5.2= . The input T  is passed through 

the additional backlash nonlinearity given by (1). The  
backlash set at   20=+d  and   25−=−d .   The 

controller parameters are chosen as 15=Λ , 10=fK . 

Fig. 4 shows the PD controller response without 
backlash.     Authors simulate the system dynamics with  
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← )(2 tx   
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Fig. 4. State )(1 tx  and )(2 tx without backlash. 

backlash nonlinearity using a PD controller.  The 
simulation result of a PD controller with backlash is 
shown in Fig. 5.  The performance is degreaded by 
the backlash. Therefore authors use the PD controller  
with a backlash  compensator  in order to compensate 
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Fig. 5. State )(1 tx and )(2 tx with backlash.  
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Fig. 6. State )(1 tx and  )(2 tx  with backlash compen-

sation. 
 
 

i) without backlash  
ii) with backlash 
iii) with backlash compensation 

 
← ii) 

iii) →  
← i) 

 
 
 
 
 
Fig. 7. Control inputs.  



 

     

for backlash effects. The simulation result of the PD 
controller with a backlash compensator is shown in 
Fig. 6. The initial estimates for the backlash widths 
were selected as 0== −+ dd . The proposed method 
exhibits an improvement in its response compared 
with the PD controller. The tracking is as good as it 
was without backlash after 7 seconds.  Fig. 7 shows 
the control inputs with/without backlash compen-
sation. The control input with backlash compensation 
converge to the control input without backlash, 
which means the desired function of the backlash 
compensator.  
 

 
5. CONCLUSIONS 

 
A fuzzy logic backlash compensator has been 
proposed for nonlinear systems. The classification 
property of fuzzy logic systems makes them a natural 
candidate for offsetting this sort of actuator 
nonlinearity having a strong dependence on the 
region in which the arguments occurs. It was shown 
how to tune the fuzzy logic parameters so that the 
unknown backlash parameters are learned on line, 
resulting an adaptive backlash compensator. Using 
nonlinear stability techniques, the bound on tracking 
error is derived from the tracking error dynamics. 
Simulation results show that significantly improved 
system performance can be achieved by the proposed  
adaptive fuzzy logic control schemes. 
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