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Abstract: In this paper a new interaction measure for stable multivariable systems is
introduced. The interaction measure, the Hankel Interaction Index, is a dynamic extension
of the underlying idea in the classic Relative Gain Array (RGA) and its various extensions.
The new index is based upon the Hankel norm of the SISO elementary subsystems built
from the original MIMO system. The main advantage of the Hankel Interaction Index
is its ability to quantify frequency dependent interactions and that it can be used for
input-output pairing. Several examples are included to illustrate the new ideas presented.
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1. INTRODUCTION

In the process industry, it is important to pair inputs
and outputs to control the process and to use a set of
SISO controllers. One of the main reasons is to be
able to apply simple tuning strategies. Furthermore,
full multivariable control is required only for special
processes, since in many situations a good SISO de-
sign can strongly diminishes loop interaction.

To set the framework we consider a discrete time,
p× p MIMO process with inputs u1[k], u2[k], . . ., up[k]
and outputs y1[k], y2[k], . . ., yp[k] related by




Y1(z)

Y2(z)

...

Yp(z)




= G(z)




U1(z)

U2(z)

...

Up(z)




(1)

where

G(z) =




G11(z) G12(z) · · · G1p(z)

G21(z) G22(z) · · · G2p(z)

...
...

. . .
...

Gp1(z) Gp2(z) · · · Gpp(z)




(2)

Although the ideas presented in this paper apply to
both continuous-time and discrete-time MIMO sys-
tems, for simplicity, we will deal only with discrete-
time systems.

Assume that we design p independent SISO control
loops for G11(z), G22(z), . . . , Gpp(z). When those con-
trollers are applied to the full MIMO plant (1), then
the performance of the closed loop can be compared
to the nominal decentralized design by comparing the
nominal (diagonal) sensitivity, So(z), and the achieved
sensitivity, S(z). They are related by (see e.g. Goodwin
et al. (2000))

S(z) = So(z)[I + HT(z)]−1

where the element (i, j) of the matrix HT(z) is given
by

[HT(z)]i j =





Gi j(z)

G j j(z)
Tj(z) i 6= j,

0 i = j.

(3)

In (3), Tj(z) is the nominal complementary sensitivity
of the j:th loop. We observe that if the frequency
responses of the off-diagonal terms, [HT(z)]i j , are very
small, then the resulting loops are well decoupled
and almost behaves like p independent SISO control
loops. This is achieved if G(z) is strongly (column)
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diagonally dominant, at least in the frequency bands
of T1, T2, . . ., Tp.

In this problem it is possible to distinguish several
crucial elements, such as

• The (plant and loop) coupling characteristics, in
general, are frequency dependent

• The (loop) coupling characteristics, in general,
are dependent on the choices made for the SISO
control designs.

• If the system steady-state gain is known, steady-
state decoupling can be implemented leading to
low frequency decoupled control loops.

• Different dominance characteristics may lead to
a different pairing of inputs and outputs.

The Relative Gain Array (RGA), Bristol (1966), is a
basic tool to decide on input-output pairing in multi-
variable processes. The advantage of the RGA and, at
the same time, its disadvantage is that it only relies
on the steady-state process gain. The RGA gives in-
dications about the difficulties to control the process
with only SISO controllers and, in many cases, sug-
gests the most suitable input-output pairings. Different
modifications have been proposed, see e.g. Niederlin-
ski (1971) and Chiu and Arkun (1991). Also, attempts
have been made to take the frequency response of the
process into account, such as those reported in Gagnon
et al. (1999), Zhu (1996), and Yang et al. (1999).
Moore (1986) uses the singular values of K = G(1) =
UΣV T and the vectors of U and V to make the pair-
ing. Structured singular values are used in Grosdi-
dier and Morari (1986) to analyze interaction. In Stan-
ley et al. (1985) the Relative Disturbance Gain is in-
troduced, which includes the influence of the distur-
bances of the process. Witcher and McAvoy (1977)
proposed a dynamic RGA (DRGA) as a natural ex-
tension of Bristol’s RGA, namely

DRGA(G) = G(e jω)×G(e jω)−T

where the operation symbol × denotes element by
element multiplication. Although this measure may
reveal some hidden interaction features, it can be hard
for the designer to make decisions regarding input-
output pairing based upon the comparative analysis of
p× p frequency responses. A good survey on input-
output pairing can be found in Kinnaert (1995).

In Conley and Salgado (2000) a new gramian based
interaction measure is introduced. This new measure
is based upon the sum of the squared Hankel singular
values for the elementary subsystems of the process. In
this paper, a modification to that approach is proposed
where we only use the Hankel norm of the subsystems.
With this modification, we achieve further physical
insight in terms of the controllability and observability
of the different subsystems. The new measure deals
with the full frequency range of the plant. However, it

can also be used to investigate suitable bandwidths for
the different control loops.

The idea of using gramians has already been used
in some methods to solve the input/output selection
problem, as reported, for instance, in van de Wal and
de Jager (2001). However, in those cases the gramians
serve to determine which inputs and outputs are to be
used to control a process. In this paper, we assume that
the input/output selection has already been made and
we deal with how to pair those inputs and outputs to
build a decentralized controller.

2. PROCESS DESCRIPTION AND PROBLEM
FORMULATION

Assume that the (completely controllable and com-
pletely observable) process is described by its square
pulse transfer function matrix G(z) given by (2) where
Gi j(z) ∈ C denotes the transfer function from the j:th
input to the i:th output. It is further assumed that the
process is stable.

We note that Gi j(z) describes the completely control-
lable and completely observable part of the elemen-
tary subsystem (i, j). The (minimal) realization for the
whole process is given by the 4-tuple (A, B, C, D)
while the (not necessarily minimal) realization asso-
ciated to the elementary subsystem (i, j) is given by
the 4-tuple (A, Bj, Ci, Di j), where Bj is the j:th col-
umn of B, Ci is the i:th row of C and where Di j is the
(i, j) element of matrix D.

The main issue addressed in this paper is how to
find the most suitable pairing of inputs and outputs.
We also want to consider the dynamic properties of
the system, which implies that we are looking for a
more sophisticated measure than the RGA, since this
only considers the zero frequency characteristics of the
process, i.e. deals only with G(1) or at some other
predefined frequency related to the desired closed loop
bandwidth. Our goal naturally implies that we must be
prepared to perform more elaborate computations to
determine the new interaction index.

When the above defined goal is satisfactorily achieved,
a sensible input-output pairing is found. This defines a
controller structure, which can be used to design and
to tune a decentralized controller. With some abuse
of language this will be called a diagonal structure,
since the controller structure can be made diagonal
by permutations of the inputs and/or the outputs. We
also want to have indications if a diagonal structure is
insufficient to provide a good control.

3. HANKEL SINGULAR VALUES

The controllability gramian, ΓΓΓc, and the observability
gramian, ΓΓΓo, associated to system (1) satisfy the Lya-
punov equations

ΓΓΓc−AΓΓΓc AT −B BT = 0



ΓΓΓo−AT ΓΓΓo A−CT C = 0

Furthermore the corresponding gramians, ΓΓΓ( j)
c and

ΓΓΓ(i)
o , associated to the elementary subsystem (i, j)

satisfy

ΓΓΓ( j)
c −AΓΓΓ( j)

c AT −Bj Bj
T = 0 (4)

ΓΓΓ(i)
o −AT ΓΓΓ(i)

o A−Ci
T Ci = 0 (5)

The controllability and observability gramians of a
system quantify the difficulty to control and to observe
the system state. For instance, the ranks of matrices
ΓΓΓc and ΓΓΓo are the dimensions of the controllable and
the observable subspaces, respectively. Gramians vary
with state similarity transformations. However, the
eigenvalues of the product of the gramians ΓΓΓc and
ΓΓΓo are invariant with respect to those transformations
(see, e.g. Glover (1984)).

If λ1, λ2, . . ., λn are the eigenvalues of ΓΓΓcΓΓΓo, then the
system Hankel singular values σ H

i are

σH
i (G(z)) =

√
λi i = 1,2, . . . ,n

where, by convention, σ H
i ≥σ H

i+1≥ 0. The Hankel sin-
gular values (HSV) are fundamental invariants that are
related to both the gain and the dynamic complexity of
the system. The number r (r ≤ n) of nonzero Hankel
singular values is the dimension of the controllable and
observable subspace. The HSV also play an important
role when making balanced realizations and model re-
duction. We will use the HSV for a different purpose.

The Hankel norm of a system with transfer function
G(z) is defined as

‖G(z)‖H =
√

λmax (ΓΓΓcΓΓΓo) = σ H
1

The Hankel norm is thus the maximum HSV. The
Hankel norm can also be interpreted in the following
way. Consider a system input u[k] = 0 ∀k > 0 and a
system output y[k], then

‖G(z)‖H = sup
u∈`2(−∞,0)

‖y‖`2(0,∞)

‖u‖
`2(−∞,0)

(6)

where `2(0,∞) is the space of square summable vector
sequences in the interval [0,∞). An analogous defini-
tion applies to `2(−∞,0).

The Hankel norm gives the `2 gain from past inputs
to future outputs. Equation (6) can be interpreted as
a measure of how significant is the effect of an input
on the state and how much that effect is reflected in
the output. The Hankel norm can thus be interpreted
as a controllability and observability measure of the
system. Summarizing, the Hankel norm has two fun-
damental properties: is a controllability-observability
measure and, secondly is independent of the state
space representation of the system.

4. HANKEL INTERACTION INDEX

We will next use the Hankel norm to build an inter-
action index. For each elementary subsystem (A, Bj,
Ci, Di j), we use the Hankel norm to quantify the abil-
ity of input u j to control output yi. These norms are

collected into a matrix Σ̄̄Σ̄ΣH , where the element (i, j),
[Σ̄̄Σ̄ΣH ]i j, is defined by

[Σ̄̄Σ̄ΣH ]i j = ‖Gi j (z)‖H

The Σ̄̄Σ̄ΣH array is very similar to the Participation Ma-
trix, ΦΦΦ, proposed in Conley and Salgado (2000), where
the elements of the matrix are the trace of ΓΓΓ ( j)

c ΓΓΓ (i)
o .

The elements in ΦΦΦ can easily be bounded using the
Hankel norm for the corresponding elementary sub-
system. Furthermore, the Σ̄̄Σ̄ΣH has a structure which is
the transpose of the structure of the Participation Ma-
trix. This and equation (6) allow us to interpret Σ̄̄Σ̄ΣH as
a gain matrix and we may then write the relation

yH = Σ̄̄Σ̄ΣH uH

which provides an easy way to visualize different
connections between inputs and outputs. The Σ̄H array
is thus a gain measure in the same way as the RGA.

To get rid of difficulties arising from scaling we can
normalize the matrix in different ways. One idea to
introduce a scaling is to use the same method as for
the RGA, i.e. to use an index

Σ̄̄Σ̄ΣH ×
(
Σ̄̄Σ̄ΣT

H

)−1
(7)

where the operator × denotes the element-by-element
multiplication of the two matrices. This normalization
results in a matrix where the sum of all elements in
a row or column is equal to one, although (7) does
not have the same nice physical interpretation as for
the RGA. Another way of making the normalization is
to express every input and every output in percentage
of full scale. This normalization supports the idea of
scaling all elements in Σ̄H so that their sum is equal
to one. The latter normalization is preferred and we
choose the following normalized Hankel Interaction
Index Array

[ΣΣΣH ]i j =
‖Gi j (z)‖H

∑i, j ‖Gi j (z)‖H
(8)

Using the same methodology as for the RGA we
determine the input-output pairing by finding in each
row i the largest element (i, j). Input j is then selected
to control output i.

To compute the Hankel Interaction Array we have
to solve the 2p Lyapunov equations (4) and (5) and
compute the eigenvalues of the p2 products ΓΓΓ( j)

c ΓΓΓ(i)
o to

obtain the Hankel norm.

If Gi j(z) = 0 for a given pair (i, j), then ΓΓΓ ( j)
c ΓΓΓ (i)

o =
0, leading to [ΣΣΣH ]i j = 0. This implies that a block



diagonal G(z) gives a block diagonal ΣΣΣH matrix, with
the same structure. This is consistent with intuition,
since, in those cases, the ΣΣΣH matrix will suggest the
right controller structure. It is important to observe that
the ΣΣΣH takes the full dynamic effects of the system into
account and not only the steady-state performance as
the RGA or the behavior at a single frequency.

5. CLOSED LOOP BANDWIDTH EFFECT

When a measure of dynamic interaction is built, atten-
tion should be paid to the relevant frequency range.
This has, for instance, been proposed in Witcher and
McAvoy (1977) and Gagnepain and Seborg (1982).
Specifically, interactions are meaningful in control de-
sign only in a frequency band where the plant in-
put has significant energy. One way to introduce this
element into the building of the interaction index is
to observe that the (vector) plant input, u[k] is con-
nected to the reference signals and to the output distur-
bances through the control sensitivity Su(z), see Good-
win et al. (2000), through the expression

Su(z) = (G(z))−1 T(z)

The frequency response of Su(z) depends on the re-
lationship between the plant bandwidth and the closed
loop bandwidth. To gain insight, we consider the SISO
case with a biproper controller. In that simpler situa-
tion, we observe that, when the closed loop bandwidth
is larger than the plant bandwidth, the control sensi-
tivity has larger magnitude at high frequencies than
at low frequencies. In the reverse situation, the con-
trol sensitivity has a low-pass characteristic. This also
applies to MIMO systems. However, it has to be ap-
plied with caution since there may be a non-unique
closed loop bandwidth. Even with this caution, there
are many cases when this approach will provide a use-
ful information if we apply the Hankel Interaction In-
dex to a modified system, G̃(z), obtained by filtering
the plant through a (scalar) case-dependent filter, F(z),
i.e.

G̃(z) = G(z)F(z)

The effect of this filtering will be illustrated in the
following section.

6. EXAMPLES

Some examples are used to illustrate the usefulness of
the Hankel Interaction Index.

EXAMPLE 1
Consider the system with the pulse transfer function

G(z) =




0.1
(z−0.8)(z−0.5)

0.08
z−0.8

−0.24
z−0.5

0.1(z−0.1)

(z−0.8)(z−0.5)



(9)

The Hankel Interaction Index Array (8) is

ΣΣΣH =




0.3755 0.1872

0.1300 0.3073




This result suggests that a diagonal controller should
be chosen with the pairs (u1,y1) and (u2,y2), since the
largest elements are the elements (1,1) and (2,2).

For the MIMO process (9), the RGA is

RGA(G) =




0.8242 0.1758

0.1758 0.8242




In this example the RGA leads to the same conclusion
regarding the pairing of inputs and outputs.

EXAMPLE 2
The system in this case has a transfer function G(z)
given by




0.1021
z−0.9048

0.3707z−0.3535
z2−1.724z + 0.7408

−0.192z + 0.1826
z2−1.869z + 0.8781

0.09516
z−0.9048



(10)

If the RGA is computed we obtain

RGA(G) =




0.5033 0.4967

0.4967 0.5033




We observe that the RGA suggests, very weakly, that
the pairing should be (u1,y1) and (u2,y2). On the other
hand, the Hankel Interaction Index Array is

ΣΣΣH =




0.1936 0.3281

0.2978 0.1805


 (11)

The Hankel Interaction Index provides a clear sugges-
tion. It directs the designer to pair (u1,y2) and (u2,y1).
The reason for this difference is that the Hankel In-
teraction Index Array takes into account the dynamic
features of the interaction.

A deeper insight can be gained with a simple control
design. Assume that we want that y1[k] tracks a step
reference signal, r1[k] = µ [k], and that y2[k] tracks
another step reference signal, r2[k] = −µ [k− 5]. We
want to synthesize a dead-beat control which drives
the error to zero after two time units. The synthesis
method is the Youla parameterization of all stabilizing
controllers (Goodwin et al. (2000)), i.e. the controller
has a transfer function, C(z), given by

C(z) = (I−Go(z)Q(z))−1Q(z)

where Q(z) is any stable transfer function matrix, and
where Go(z) is the nominal model. The dead-beat
performance is nominally achieved if

Q(z) =
1
z2 (Go(z))−1
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Fig. 1 Closed loop response to reference signals r1[k] = µ [k] and
r2[k] =−µ [k−5] in Example 2.

provided that Go(z) has all its zeros inside the open
unit disk (as it does happen in this example).

If we abide by the RGA (weak) indication, the nominal
model is Go(s) = diag(G11(z),G22(z)); if, instead, we
follow the Hankel Interaction Index suggestion, then
the nominal model is Go(s) = adiag(G12(z),G21(z))
where adiag stands for anti-diagonal.

When the controller is computed in each case, and
the controller is used to control the full MIMO plant
(10), we can then verify that for the RGA case, the
closed loop system is unstable. However, when using
the pairing suggested by the Hankel Interaction Index
the result is a stable closed loop system, with the step
response (for the given reference signals) shown in
Fig. 1. Naturally, the prescribed dead-beat behavior
has not been achieved, since the controller was applied
to the full MIMO process.

A key issue in this simple design is that we have speci-
fied a very high bandwidth. This makes the RGA more
likely to yield a bad control performance than other
criteria where the dynamic nature of the interactions is
accounted for. This is intimately connected to the ideas
presented in Section 5, and it can be illustrated using a
filter as suggested in that section. Consider first a low-
pass filter F(z) with transfer function 0.01/(z−0.99).
We can then re-compute the Hankel Interaction Index
Array for G̃(z). This yields

ΣΣΣH =




0.2706 0.2409

0.2362 0.2522




We observe that now the Hankel Interaction Index
Array gets closer to the RGA in the sense that no clear
conclusion can be drawn.

If we use a high pass filter F(z) with transfer function
1.5z/(z + 0.5) and re-compute the Hankel Interaction
Index Array for G̃(z), we obtain

ΣΣΣH =




0.1932 0.3269

0.2998 0.1801




This is very close to the case when no filter was used
(as seen in equation (11)). If intermediate filters were
used one could observe a transition from the RGA to
the Hankel Interaction Index Array given in (11), as
we increase the frequency response of the filter at high
frequencies.

EXAMPLE 3
In this case we deal with a 3× 3 MIMO system with
the transfer function

G(z) =

G1(z) G2(z) G3(z)




where

G1(z) =




−0.7987z + 0.7673
z2−1.575z + 0.6065

0.1813
z−0.8187
−0.1814

z−0.7408




G2(z) =




0.04758
z−0.9048

1.517z−1.457
z2−1.489z + 0.5488

0.2592
z−0.7408




G3(z) =




−0.09516
z−0.9048
0.09063

z−0.8187
2.163z−2.077

z2−1.411z + 0.4966




The Hankel Interaction Index Array is given by

ΣΣΣH =




0.1429 0.0617 0.0451

0.0295 0.2437 0.0645

0.0589 0.0309 0.3228




and the RGA index is

RGA(G) =




0.1739 0.2348 0.5913

0.5217 0.5913 −0.1130

0.3043 0.1739 0.5217




We observe that clear suggestions can be derived from
both arrays. From the RGA the suggested pairing is
anti-diagonal, e.g.(u1,y3), (u2,y2) and (u3,y1). On the
other hand the Hankel Interaction Index suggests a
diagonal pairing, e.g. (u1,y1), (u2,y2) and (u3,y3).

Again if, as in Example 2, we design a dead-beat con-
trol (in one step) we can verify that the suggested
RGA pairing leads to an unstable closed loop system.
However, a reasonable control is obtained if the pair-
ing suggested by the Hankel Interaction Index is used.
Since the dead beat control requires a high-pass con-
trol sensitivity, the result is not surprising, since we did
not use any filter. We would like to investigate what



happen if we apply the Hankel Interaction Index to a
low-pass filtered plant, where the filter is chosen as
F(z) = 0.01/(z−0.99). We then obtain

ΣΣΣH =




0.1228 0.1368 0.0946

0.0705 0.1166 0.1352

0.1411 0.0684 0.1140




It is now unclear what the pairing should be. To
compare both alternatives we can compare the trace
of the matrix ΣΣΣH with the sum of the elements in the
anti-diagonal. This yields 0.3534 against 0.3519. This
implies that for a very low bandwidth, it is not clear
how to do the pairing.

7. CONCLUSIONS

A new interaction measure has been presented. This
index is based upon the Hankel norm of the elementary
subsystems. The proposed index includes the dynamic
interaction and it is shown that it can be applied in con-
junction with available information on closed loop fre-
quency bands. The Hankel Interaction Index has been
compared with the traditional RGA index. The new in-
dex exhibits a superior performance when the multi-
variable interaction has a non-monotonic behaviour in
frequency. It is also simpler than other indices which
measure dynamic interaction, since it does not require
complex analysis of a (possibly very large) number of
frequency responses.
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