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Abstract: Based on integrated system optimisation and parameter estimation a method is 
described for on-line steady state optimisation which compensates for model-plant mismatch 
and solves a non-linear optimisation problem by iterating on a linear - quadratic 
representation. The method requires real process derivatives which are estimated using a 
dynamic identification technique. The utility of the method is demonstrated using a 
simulation of the Tennessee Eastman benchmark chemical process Copyright  2002 IFAC 
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1. INTRODUCTION 
 
An important application of numerical optimisation 
is the determination and maintenance of optimal 
steady-state operation of industrial processes, 
achieved through selection of regulatory controller 
set-point values. The implementation scheme is of a 
two-layer hierarchical structure as shown in Figure 1. 
Note that the steady-state values of the outputs are 
determined by the controller set-points assuming, of 

course, that the regulatory controllers maintain 
stability . The set points are calculated by solving an 
optimisation problem, usually based on the 
optimisation of a performance criterion (index) 
subject to a steady-state mathematical model of the 
industrial process. Typical performance criteria are 
chosen in terms of maximising profit, minimising 
costs, achieving a desired quality of product and 
minimising energy usage. Inevitably, the steady-state 
model will be an approximation of the real industrial 
process, the approximation being both in structure 
and parameters. We call this the ‘model-reality 
difference problem’. 
 
The technique known as “Integrated System 
Optimisation and Parameter Estimation”, ISOPE, has 
been specifically designed to deal with the model-
realit y difference problem. The ISOPE technique has 
been developed for an extensive range of steady-state 
and dynamic optimal control problems (see Roberts 
(2001) and the references quoted therein). The main 
characteristic is that it is an iterative method which 
converges to the correct optimum condition in spite 
of model-reality differences. In this paper, after 
deriving a general ISOPE algorithm for on-line 

 
Fig. 1. Two-layer hierarchical structure 
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steady-state optimisation, the main emphasis is to 
demonstrate it’s application to a significant and 
reali stic benchmark case study. 
 
 
2. STEADY-STATE PROBLEM FORMULATION 

 
The steady-state behaviour of the regulated industrial 
process in Figure 1 may be represented as: 

 * * ( )y f v=  (1) 

where cnv ∈ ℜ  and * yn
y ∈ ℜ  are the applied 

controller set points and resulting process steady-

state outputs respectively, and *  : yc
nnf ℜ → ℜ  

represents the real process steady-state input-output 
mapping. In general the controller set points will be 
limited and the outputs will be constrained as 
represented by: 
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The steady-state performance of the process is 
expressed as: 

 * * *( , )J J y v=  (4) 
and thus the real optimisation problem, ROP, 
expressed in terms of computing set points v to 
minimise J* , while satisfying constraints defined by 
Equations (2) and (3), can be expressed as: 
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In a given situation the real process relationship, 
Equation (1), will not be known precisely. We then 
represent the real process mapping by an 
approximate model containing parameters whose 
values can be selected in an adaptive manner to 
match the model to the real process. Also, to separate 
the real situation from the model we use symbol c for 
the set points to be calculated from the model-based 
optimisation problem and then employ the equality 
 v c=  (6) 
within an updating mechanism. The model of 
Equation (1) is: 
 ( , )y f c α=  (7) 

where nαα ∈ ℜ  is the vector of model parameters, 
estimated by satisfying the matching equality 

 *( , ) ( )f v f vα =  (8) 
after every application of set points v. 
 
In addition, instead of operating on J*(y*,v) in ROP 
defined by Equation Group (5), we choose to operate 
on a different performance index J(y*,v,γ) where 
γ ∈ ℜ  is a scalar parameter which can be estimated 

by satisfying the equality 

 * * *( , , ) ( , )J y v J y vγ =  (9) 

By this means it is possible to replace a reali stic 
practical but, perhaps, complicated performance 
index with a simpler one that is mathematicall y 
tractable. Hence, model-reality differences now occur 
in the performance index J*(y*,v) as well as in the 
system representation f*(v). Note that the aim is stil l 
to design an iterative scheme to determine the set-
points v which solve the real optimisation problem 
ROP defined by Equation Group (5). 
 
The key to achieving this aim is to replace Equation 
Group (5) by the equivalent problem EOP 

 

2

, ,

min max

**

*

* * *

min ( , , )

subject to ( , ),  

                ( , ) 0,   

                ( )

                ( , ) ( )

               ( , , ) ( , )

c y

J y c r v c

y f c c c c

g y c v c

y f v

f v f v

J y v J y v

γ
γ

α

α

γ

+ −

= ≤ ≤

≤ =

=

=

=

 
 
 
  
 
 
 
 
  

 (10) 

where the scalar 0r ≥ is a positive weighting 
�����������
	����
� ��	 ��������������	������������������������������ 	 � ��!"����� # et 
al, 1987).  
 
The solution of EOP given by Equation Group (10) is 
determined from optimality conditions corresponding 
to the Lagrangian 
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where cnλ ∈ ℜ , ynµ ∈ ℜ , ynη ∈ ℜ , ζ ∈ ℜ  and 

ynβ ∈ ℜ  are Lagrange multipliers, ynσ ∈ ℜ , 

cnσ − ∈ ℜ  and cnσ + ∈ ℜ  are Kuhn-Tucker multipliers. 
Investigating the first order necessary optimality 
conditions (Roberts, 2001) shows that they can be 
satisfied by solving the following modified model-
based optimisation problem MMOP: 
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under given v, λ, α and γ , where α and γ are model 
parameters which can be obtained from Equations 
(1), (8) and (9) at a given v. The Lagrange multiplier 
λ, henceforth termed the modifier, is determined 
from 
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at a given v. Note that the Kuhn-Tucker multiplier σ 
is also required when Equation (13) is employed to 
compute λ. 
 
 

3. ISOPE ALGORITHM 
 
The modified model-based optimisation problem 
MMOP, given by Equation Group (12), and modifier 
computation, given by Equation (13), are important 
constituents of an iterative scheme designed to satisfy 
the above optimality conditions. An appropriate 
algorithm is given as follows 
 
Data:- model relationship f(c,α), model 

performance index J(y,c,γ), real performance 
index J*(y*,v), and coefficients r, kv and kσ. 

Step 0 Initialisation:-Select an initial vector of set-
points v(0) and Kuhn-Tucker multiplier 
vector σ(0). Set iteration counter i = 0. 

Step 1 Parameter estimation:- Apply set-point 
vector v(i) to the real process. Wait a 
sufficient time for dynamic transients to 
decay and then measure the real steady-state 
outputs y*(i), thus effectively implementing 
Equation (1). Then compute the parameters 
α�
�
i) and γ(i) to satisfy Equations (8) and (9). 

Step 2 Modifier Computation:- Use Equation (13) 
to compute the modifier vector λ�

�
i). 

Step 3 Modified Optimisation:- Determine model 
set-point vector c�

�
i)�  and Kuhn-Tucker 

multiplier estimate ( )ˆ iσ  by solving the 
modified model-based optimisation problem 
MMOP given by Equation Group (12). 

Step 4 Update:- Use the following relaxation 

scheme to update v(i), and ( )iσ . 
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 Then repeat from Step 1 until convergence is 
achieved. 

 
This algorithm is also known as the modified two-
step approach where the modification consists of the 

additional l inear term T cλ−  in the performance 
index of the modified model-based optimisation 
problem. The two steps refer to repeated solution of 
the modified optimisation problem followed by 
parameter estimation. This additional term 
compensates for inevitable model-reality differences 
and is essential i f the iterations are to converge to a 
correct solution of the real optimisation problem, 
ROP, defined by Equation Group (5). 

3.1 Convergence considerations 
 
A full analytical analysis of the convergence properties 
of the ISOPE algorithm in its full form described 
above has not yet been performed. However, by 
comparison with previous analysis of more basic 
ISOPE algorithms without performance index model-
reali ty differences, it is expected that convergence 
performance will be enhanced if the overall problem is 
at least locally convex ( �����
	�� et al., 1987). In the 
practical implementation of the algorithm relaxation 
gains, kv and kσ and convexification term coeff icient r 
are provided in order to regulate stabili ty and 
convergence.  
 
 
3.2 Derivative acquisition 
 
It is observed from Equation (13) that several 
derivative information sets need to be computed in 
order to compute the modifier vector λ. All except 
one are model based, or are analytic in terms of 
known constraints and performance indices, and can 

readily be computed. The exception is ∂ ∂f v v* ( ) , 
which requires real process derivative information. 
Clearly there wil l be practical diff iculties in obtaining 
reliable estimates of the real process derivatives and 
this is a significant limitation to the on-line ISOPE 
technique. Early versions of the ISOPE technique 
used finite difference techniques to obtain the real 
derivatives by applying perturbations to y*. The finite 
difference method is particularly costly because it 
requires an additional steady-state detection for each 
controller set point at each iteration, significantly 
slowing down the rate at which the iterations 
progress towards the optimum. However, employing 
results of consecutive applications of set-points to 
estimate the required derivatives can reduce this cost. 
This has been formulated rigorously within a 
speciall y designed ISOPE technique employing a 
dual optimising algorithm, resulting in a powerful 
method for on-line steady-state op
�����������
��������������
�� 
and Tatjewski, 1994). The Broyden technique 
(Broyden, 1965) also offers a method for estimating 
the required derivatives and has been incorporated 
successfully within both steady-state and dynamic 
ISOPE algorithms (Roberts, 2000). 
 
Some ISOPE algorithms, based on work by 
Bamberger and Isermann (1978), use dynamic 
perturbation and linear system identification methods 
to estimate the derivatives (Zhang and Roberts, 1990) 
and this has been applied in an industrial application 
of the ISOPE method (Griffiths, et al, 1994). This 
method estimates the derivatives of the real process 
mapping with respect to the manipulated variables by 
identifying a dynamic model on-line and reducing it 
to a steady state model. In this work, a multivariable 
ARMAX model with the following structure is 
identified: 
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where ynε ∈ ℜ  is assumed to be zero mean white 
noise, k is a discrete time index, Ai, Bi, Ci are matrix 
coefficients of the appropriate dimensions, and 

yn
c ∈ ℜ  is an off-set vector. 
 
The identification algorithm used in this work is a 
multivariable moving horizon least squares based 
method (Becerra et al, 1998). Note that it is often 
necessary to add small perturbation signals to the 
manipulated variables, such that the inputs are 
sufficiently exciting and a model can be estimated 
from the measured data. Also notice that it is possible 
to enhance the model fit at low frequencies by 
filtering the data using a low pass filter (Ljung, 
1987). 
 
A static model is obtained by assuming that outputs y 
and inputs v are at steady state, and that the noise ε is 
zero. This gives the following linear input-output 
relationship: 
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and thus G is the estimate of ∂ ∂y v v* ( ) . 
 
 
3.3 Case with linear-quadratic model based 

optimisation 
 
A particular case arises when the model relationship 
f(.), constraints g(.) are both linear, and the 
performance index J(.) is quadratic, all as defined in 
Equation Group (12). Then the modified model-
based optimisation problem MMOP is a quadratic 
programming problem for which standard procedures 
are available (Gill et al, 1984). For instance, if 
 ( , )y f c Acα α= = +  (17) 
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where A, Q R q and s are matrices or vectors of 
appropriate dimensions ( 0,  0Q R≥ > ), and yd is a 

reference steady-state output vector, the 
unconstrained solution of MMOP is analytic, given 
by 
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The solution of the parameter estimation problem 
defined by Equation (8) then becomes 

 * ( )f v Avα = −  (21) 
and there is no requirement to determine parameter 
vector γ. Furthermore, when the equality constraints 
are output-independent, the expression for the 
modifier defined by Equation (13) becomes 
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Since, after parameter estimation, y* = Av + α, 
Equation (22) further simplifies to 
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4. APPLICATION TO THE TENNESSEE 
EASTMAN PROCESS 

 
The Tennessee Eastman process model consists of a 
reactor, condenser, separator, compressor and 
stripper with a gas recycle stream. This model was 
proposed as a plant-wide control test problem 
(Downs and Vogal, 1993). The process produces two 
products from four reactants. There are two main 
exothermic reactions: 

 A C D G+ + →
��� ��

 (24) 

 A C E H+ + →
��� � �

 (25) 
Two additional irreversible and exothermic side 

reactions produce by-product F
�

. The reactor, which 
is open loop unstable, has both liquid and vapour 
phases, but only a gas stream leaves the reactor. The 
vapour stream from the reactor passes through a 
partial condenser and then into a separator drum. 
Liquid from the drum is fed to the stripping column. 
A small proportion of the vapour stream, which 
leaves the separator drum, is purged and the rest is 
compressed and recycled back to the reactor. The 
reactor has an internal cooling bundle for removing 
the heat of reaction. The stripper has two sources of 

vapour: a reboiler and the C
�

 feed stream. Further 
details listing 41 measured variables and 12 
manipulated variables are given in Becerra and 
Roberts (2000).  
 
The objective for economic optimisation is to 
minimise operating costs in $/h. The equation for the 
operating cost is a linear function of the output 
measurements. 

1 2 3
( ) ( ) ( ) ( )J X J X J X J X= + +  (26) 

where X is the vector of process measurements (41 in 
total), J1(X) is the compressor and stripper steam 
costs: 



 
1 20 19
( ) 0.0536 0.0318J X X X= +  (27) 

J2(X) represents the purge losses: 

 (
2 10 29 31
( ) 0.4479 2.206 6.177J X X X X= +  

 
32 33 34

22.06 14.56 17.89X X X+ + +  

 )35 36
30.44 22.94X X+ +  (28) 

and J3(X) represents the product losses 

 (3 17 37 38
( ) 0.0921 22.06 14.56J X X X X= +  

 )39
17.89X+  (29) 

 
 
4.1 Control structure 
 
The regulatory control structure used in this work is 
based on one of the structures given in Luyben et al 
(1998), where it is assumed that the flow rate of the 
product stream leaving the base of the stripper is set 
by a downstream customer. This base control 
consists of controllers for levels (reactor, separator 
and stripper), reactor pressure, temperatures 
(reactors, separator and stripper), compositions 

(composition of B
�

 in purge and composition of A
�

 

in the reactor feed), /G H
� �

 ratio and product flow 
(see Becerra and Roberts (2000) for further details). 
The separator temperature controller provides the set 
point to the reactor temperature controller, in a 
cascade configuration. 
 
The structure of the optimising controller consists of 5 

set point variables and 6 process measured variables, 
including the operating cost. The variables and 
constraints used by the optimiser are shown in Becerra 
and Roberts (2000). Other important parameters are: 
ARMAX model orders: nA = 1, nB = 4, nC = 0; 
identifier sampling time: 6 min.; identifier data length: 
120 points; optimiser updating period: 2 hours; 
optimiser relaxation gain kv: 0.1; optimiser 
convexification factor r: 0.0; optimiser penalty factor ρ: 
100.0 (used in the treatment of output dependent 
constraints as soft constraints incorporated as a penalty 
function (Becerra and Roberts, 2000)). A pseudo 
random binary sequence was added to each 
manipulated variable to enhance input excitation and 
allow the identification of an accurate model. Since the 
cost J given in Equation (26) is included as an output of 
the identified model, then the objective function is J = 
y6, which reflects the objective of minimising the 
operational cost J. 
 
 
4.2 Results 
 
The initial value of the economic cost is 170.6 $/hour. 
Figures 2 and 3 show the simulation results for the 
dependent variables. Notice in Figure 3 how the 
economic cost decreases to around 120 $/hour after 
about 250 hours. Figure 4 shows the trajectories of the 
manipulated controller set points. Notice how the three 
level set points involved in the optimisation (reactor, 
stripper and separator) reduce their values, and how the 

reactor pressure and B
�

 purge composition set points 
both increase during the simulation. 
 
The final cost value of 120 $/hour may be compared to 
the optimum value reported by Ricker (1995) of 114 
$/hour. The value reported by Ricker may be 
considered to be the absolute optimum for this 

operating condition ( /G H
� �

ratio by mass 50/50), since, 
unlike in this work, only the noise free steady state part 
of the model was used and all manipulated variables 
were adjusted directly (no regulatory control was 
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Fig. 3. Simulation results: B
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Fig. 2. Simulation results: levels and reactor pressure 



considered). The result obtained in this work can be 
considered to be the optimum for the regulatory control 
and set point manipulated variables used. 
 
 

5. CONCLUSIONS 
 
An advantage of the ISOPE technique is that a rigorous 
model is not required within the hierarchical 
optimisation scheme. It has been shown that effective 
on-line steady-state optimisation can be achieved using 
a simple linear model and quadratic model 
performance even when the real situation is non-linear 
with a non-quadratic performance. The utility of the 
approach has been successfully demonstrated using a 
realistic simulation study of the Tennessee Eastman 
process. In particular, it has been demonstrated that real 
process derivatives required by the ISOPE technique 
can be effectively obtained using dynamic 
identification. 
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