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Abstract: Based on integrated system optimisation and parameter estimation a method is
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1. INTRODUCTION

An importart application o numercd optimisation
is the determindon ard maintenaoce d optimal
steadystae operéion o industrid processes
achievel throudn sekdion o regulatory contrdler
setpoint values The implementatio schere is d a
two-laye hierarchicstructue a show in Figue 1
Note thd the steadystak values d the ouputs ae
detemined by the contrdier setpoints assunmig, of
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Fig. 1. Two-layer hierarchical structure

course tha the regulatoy contrdlers maintan
stahlity. The setpoints ae calculatd by solving an
optimisation  problem usudly basé on tre
optimisation o a performane citerion (indeX
subged to a steadystae mathemtcd model d the
industrid process Typicd performarte citeria ae
chosa in terns d maximising proit, minimising
costs achievirg a desird quaity of produd ard
minimising energ usagelnevitably, the steadystae
modé will be an approximéon o the red industrid
process the approximéon beirg boh in structue
and parameters We cdl this the ‘modetreaity
difference poblem’.

The tetiniqee known a ‘“Integratel Systen
Optimisation ard ParameteEstimation’; ISOPE has
bee specifically designd to dea with the model
redity difference poblem The ISOFE technique ha
bee developed for an extensie range d steadystae
and dynam¢ optima control pioblens (se& Robers
(2001 ard the referencequotal therein) The man
characterigc is thd it is an iterative methd which
convergs o the cared optimum condition in spie
of modelreality differences In this paper after
deriving a generh ISOPE algoritm for online



steady-state optimisation, the main emphasis is to
demonstrate it’s gpplication to a significant and
redi stic benchmark case study.

2. STEADY-STATE PROBLEM FORMULATION

The steady-state behaviour of the regulated industrial
processin Figure 1 may be represented as:

y =f(v) D
where vOO" and y OO are the applied
controller set points and resulting process deady-

state outputs respedively, and f :0" - O"
represents the red process $eady-state input-output
mapping. In generd the mntroller set points will be
limited and the outputs will be mnsrained as
represented by:

V. _<V<V 2

min max

g(y,v) <0 3)
The steady-state performance of the process is
expressd as.

J=J(y v (4)
and thus the real optimisation probem, ROP,
expresed in terms of computing set points v to
minimise J*, while satisfying constraints defined by
Equations (2) and (3), can be expressd as.

Chind"(y ,v) O
(subjedtoy =f'(v), v, <svsv_[] (5
O . 0
- 9(y ,v)<0 :

In a given situation the real process reationship,
Equation (1), will not be known predsdaly. We then
represent the red process mapping by an
approximate modd containing parameters whose
values can be sdeded in an adaptive manner to
match the model to thereal process Also, to separate
the red situation from the model we use symbal ¢ for
the set points to be calculated from the model-based
optimisation problem and then employ the equality
vV=cC (6)
within an updating mechanism. The modd of
Equation (1) is.
y=f(ca) ()

where a 00" is the vector of model parameters,
estimated by satisfying the matching equality

f(v,a)=1(v) ()
after every appli cation of set pointsv.

In addition, instead of operating on J'(y',v) in ROP
defined by Equation Group (5), we thoose to gperate
on a different performance index J(y,v,)) where
y OO isascalar parameter which can be estimated

by satisfying the equality
I vwy)=3(y,v) 9)

By this means it is possble to replace a redlistic
practicd but, perhaps, complicated performance
index with a smpler one that is mathematicdly
tractable. Hence model -redity diff erences now occur
in the performance index J'(y',v) as well as in the
system representation '(v). Note that the aim is dill
to design an iterative scheme to determine the set-
points v which solve the red optimisation problem
ROP defined by Equation Group (5).

The key to achieving this aim is to replace Equation
Group (5) by the equivalent probdem EOP

CminJ(y,c,y) +r|v-c’
Dc,y,y

ad

(subjecttoy = f(c,a), ¢, <c<c_ U

g*(y,c)so, vV=cC @ (10)
0 y =f(v) O
S f(v,a)=f (V) E
H Iy vy =3 B

where the scalar r >0is a postive weighting

parameter introduced to improve convexity (Brdy$ et
al, 1987).

The solution of EOP given by Equation Group (10) is
determined from optimality conditions corresponding
to the Lagrangian

L() =3(y,c,y)+2r|v—c| +A"(v-c)

W (y-fem)+ag(y,9+0 (c, -0
+0./c~c )+ (- fva)
(V=36 )+ B (v - W) @
wheee AO0O, p0OO", nO0O%, ¢OO0 and
goo®

o_ 00" and g, 00" are Kuhn-Tucker multipliers.
Investigating the first order necessary optimality
conditions (Roberts, 2001) shows that they can be
satisfied by solving the following modified mode-
based optimisation problem MMOP:

Chind(y,c,y)+r|v-¢ -A"c O
cy

ae Lagrange multipliers, o O0O",

[(subjecttoy = f(c,a), c, <c<c_[] (12

E a(y,c)<0 E

under given v, A, a and y, where a and y are model
parameters which can be obtained from Equations
(1), (8) and (9) a agiven v. The Lagrange multiplier
A, henceforth termed the modifier, is determined
from

_ W o (v

e 0 (0,9 v.y)




@a(y,v) 0

O
+ 0,37 (y,v)-0,J(Y,V,
HTEUE( (Y. V) -0,y v.)
ot (v) O

“Ba E (0,9 (v v-030y.vy) @3

at a given v. Note that the Kuhn-Tucker multiplier o
is also required when Equation (13) is employed to
compute A.

3. ISOPE ALGORITHM

The modified model-based optimisation problem
MMORP, given by Equation Group (12), and modifier
computation, given by Equation (13), are important
congtituents of an iterative scheme designed to satisfy
the above optimdity conditions. An appropriate
algorithm is given as follows

Data:- modée relationship  f(c,a), model
performance index J(Y,c,)), real performance
index J'(y',v), and coefficientsr, k, and K.
Initialisation:-Select an initial vector of set-
points V@ and Kuhn-Tucker multiplier
vector 0. Set iteration counter i = 0.
Parameter edimation:- Apply set-point
vector V¥ to the red process. Wait a
sufficient time for dynamic transents to
decay and then measure the real steady-state
outputs y'®, thus effectively implementing
Equation (1). Then compute the parameters
a® and Y to satisfy Equations (8) and (9).
Modifier Computation:- Use Equation (13)
to compute the modifier vector A®.

Modified Optimisation:- Determine model
set-point  vector €” and Kuhn-Tucker
multiplier estimate ¢ by solving the
modified model-based optimisation problem
MM OP given by Equation Group (12).
Update:- Use the fallowing relaxation
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scheme to update V), and 0.

g VD =y 4k (C(i) —v“)) g
TN & B ¢ )
Ej(l D= g0 +kg (U(') _a(l))E

Then repeat from Step 1 until convergenceis
achieved.

This algorithm is also known as the modified two-
step approach where the modification consists of the

additional linea teem —A'c in the performance
index of the modified model-based optimisation
problem. The two steps refer to repeated solution of
the modified optimisation problem followed by
parameter estimation. This additional term
compensates for inevitable mode -redlity differences
and is esential if the iterations are to converge to a
corred solution of the real optimisation prodem,
ROP, defined by Equation Group (5).

3.1 Convergence considerations

A full analytical andysis of the mnvergence properties
of the ISOPE dgorithm in its full form described
above has not yet been performed. However, by
comparison with previous analysis of more basc
| SOPE agorithms without performance index modd-
redity differences, it is expeded that convergence
performancewill be enhanced if the overall problem is
a least locdly convex (Brdy$ et al., 1987. In the
practical implementation of the algorithm relaxation
gains, k, and k,; and convexification term coefficient r
are provided in order to regulate stability and
convergence.

3.2 Derivative acquisition

It is observed from Equation (13) that several
derivative information sets need to be computed in
order to compute the modifier vedor A. All except
one are mode based, or are aalytic in terms of
known constraints and performance indices, and can
readily be cmputed. The exception is af*(v)/av,
which requires real process derivative information.
Clealy there will be practical difficultiesin olbtaining
reliable estimates of the red process derivatives and
this is a dgnificant limitation to the on-line ISOPE
technique. Early versions of the ISOPE technique
used finite difference techniques to obtain the redal
derivatives by applying perturbationstoy’. The finite
difference method is particularly costly because it
requires an additional steady-state detedion for each
controller set point at each iteration, significantly
dowing down the rate at which the iterations
progress towards the optimum. However, employing
results of conseautive gplicaions of set-points to
estimate the required derivatives can reducethis cost.
This has been formulated rigoroudy within a
spedally designed ISOPE technique employing a
dual optimising algorithm, resulting in a powerful
method for on-line steady-state optimisation (Brdy$
and Tatjewski, 1994). The Broyden technique
(Broyden, 1965) also offers a method for estimating
the required derivatives and has been incorporated
successfully within both steady-state and dynamic
| SOPE dgorithms (Raberts, 2000).

Some |ISOPE algorithms, based on work by
Bamberger and Isermann (1978), use dynamic
perturbation and linear system identification methods
to estimate the derivatives (Zhang and Roberts, 1990)
and this has been applied in an industrial application
of the ISOPE method (Griffiths, et al, 1994). This
method estimates the derivatives of the real process
mapping with respect to the manipulated variables by
identifying a dynamic model on-line and reducing it
to a steady state modd. In this work, a multivariable
ARMAX modd with the following structure is
identified:



y(k) = -Ay(k-1)—---= A y(k—n,)
+Bv(k-1) +--- + Bnﬂv(k -n,)
+£(k)+C1£(k—1)+---+Cnce(k—nc)+6 (15)

where e 00" is assumed to be zero mean white
noise, k is adiscrete time index, A, B;, C are matrix
coefficients of the appropriate dimensions, and

c 00" isan off-set vector.

The identification algorithm used in this work is a
multivariable moving horizon least squares based
method (Becerra et al, 1998). Note that it is often
necessary to add small perturbation signas to the
manipulated variables, such that the inputs are
sufficiently exciting and a model can be estimated
from the measured data. Also noticethat it ispossible
to enhance the modd fit at low frequencies by
filtering the data using a low pass filter (Ljung,
1987).

A static model is obtained by assuming that outputsy
and inputsv are at steady state, and that the noise €is
zero. This gives the following linear input-output
relationship:
y=H, *A+-+AHB+-+8 BT
=Gv+T (16)
and thus G is the etimate of dy" (v)/ov .

3.3 Case with
optimisation

linear-quadratic model based

A particular case arises when the model relationship
f(.), congtraints g(.) are both linear, and the
performance index J(.) is quadratic, al as defined in
Equation Group (12). Then the modified model-
based optimisation problem MMORP is a quadratic
programming problem for which standard procedures
are available (Gill et al, 1984). For ingtance, if

y=f(c,a)=Ac+a a7
Iv.en =:((y-v.) Qy-v,)+'Re)
+q'y+scty (18)

where A, Q R q and s are matrices or vectors of
appropriate dimensions (Q=0, R>0), and yy isa

reference steady-state  output  vector,  the
unconstrained solution of MMORP is analytic, given

by
c= R+~ QAT (AQ(y, -a)
~A'q-s+A+1v) (19)

where
R=R+rl, (20)

The solution of the parameter estimation problem
defined by Equation (8) then becomes

a=f(v)-Av (21)
and there is no requirement to determine parameter
vector y. Furthermore, when the equality constraints

are output-independent, the expression for the
modifier defined by Equation (13) becomes

A :—E%—Ag (Qav+a-y,) +aq)
~(0,9(y v -Rv-s)
0of" (v) O

o b (0.7 -y -ve)-q) @

Since, after parameter estimation, y = Av + a,
Equation (22) further smplifiesto

A=A (Qy -y)+a)-(0,9° (v v -Rv-s)
f" (v) O

_%TE Elyd]*(y*,v) (23)

4. APPLICATION TO THE TENNESSEE
EASTMAN PROCESS

The Tennessee Eastman process modd consists of a
reactor, condenser, separator, compressor and
stripper with a gas recycle stream. This model was
proposed as a plant-wide control test problem
(Downs and Vogal, 1993). The process produces two
products from four reactants. There are two main
exothermic reactions:
A+C+D - G (24)
A+C+E - H (25)

Two additional irreversible and exothermic side
reactions produce by-product F . The reactor, which
is open loop unstable, has both liquid and vapour
phases, but only a gas stream leaves the reactor. The
vapour stream from the reactor passes through a
partial condenser and then into a separator drum.
Liquid from the drum is fed to the stripping column.
A small proportion of the vapour stream, which
leaves the separator drum, is purged and the rest is
compressed and recycled back to the reactor. The
reactor has an internal cooling bundle for removing
the heat of reaction. The stripper has two sources of

vapour: a reboiler and the C feed stream. Further
details listing 41 measured variables and 12
manipulated variables are given in Becerra and
Raberts (2000).

The objective for economic optimisation is to
minimise operating costs in $/h. The equation for the
operating cost is a linear function of the output
measurements.

J(X) =J,(X)+J,(X)+ I, (X) (26)
where X is the vector of process measurements (41 in

total), Ji(X) is the compressor and stripper steam
costs:



J,(X) =0.0536X,, +0.0318X 27)
J>(X) represents the purge | osses:
J,(X) =0.4479X | (2.206X29 +6.177X

+22.06X , +14.56X , +17.89X,

+30.44X _ +22.94X ) (29)
and Jx(X) represents the product losses
J,(X) = 00921X,, (22.06X,, +14.56X,

+17.89X,, ) (29)

4.1 Control structure

The regulatory control structure used in this work is
based on one of the structures given in Luyben et al
(1998), where it is assumed that the flow rate of the
product stream leaving the base of the stripper is set
by a downstream customer. This base control
consists of controllers for levels (reactor, separator
and dtripper), reactor pressure, temperatures
(reactors, separator and stripper), compositions
(composition of B in purge and composition of A
in the reactor feed), G/H ratio and product flow
(see Becerra and Roberts (2000) for further details).
The separator temperature controller provides the set
point to the reactor temperature controller, in a
cascade configuration.

The gtructure of the optimising controller conssts of 5
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Fig. 2. Simulation results: levels and reactor pressure

st point variables and 6 process measured variables,
including the operating cos. The variables and
congraints used by the optimiser are shown in Becerra
and Roberts (2000). Other important parameters are:
ARMAX modd ordes na = 1, ng = 4, nc = 0,
identifier sampling time 6 min.; identifier data length:
120 points, optimiser updating period: 2 hours
optimiser rdaxation gain k: 0.1; optimiser
convexification factor r: 0.0; optimiser penalty factor p:
100.0 (used in the trestment of output dependent
congraints as soft congtraints incorporated as a penaty
function (Becerra and Roberts, 2000)). A pseudo
random binary sequence was added to each
manipulated variable to enhance input excitation and
alow the identification of an accurate modd. Since the
cogt J given in Equation (26) isincluded as an output of
the identified modd, then the objective function is J =
Yo, Which reflects the objective of minimisng the
operationa cogt J.

4.2 Results

Theinitiad value of the economic cost is 170.6 $/hour.
Figures 2 and 3 show the smulation results for the
dependent variables. Notice in Figure 3 how the
economic cost decreases to around 120 $hour after
about 250 hours. Figure 4 shows the trgjectories of the
manipulated controller set points. Natice how the three
levd set points involved in the optimisation (reactor,
Sripper and separator) reduce their values, and how the
reactor pressure and B purge composition set points
both increase during the smulation.

Thefinal cost value of 120 $'hour may be compared to
the optimum value reported by Ricker (1995) of 114
$hour. The value reported by Ricker may be
consdered to be the absolute optimum for this
operating condition (G / H ratio by mass 50/50), since,
unlike in thiswork, only the noise free seady sate part
of the modd was used and all manipulated variables
were adjusted directly (no regulatory control was
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Fig. 3. Simulation results: B mole fraction in purge,

G/H ratioand cost.
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congidered). The result obtained in this work can be
consdered to be the optimum for the regulatory contral
and set point manipul ated variabl es used.

5. CONCLUSIONS

An advantage of the ISOPE techniqueisthat arigorous
modd is not required within the hierarchicd
optimisation scheme. It has been shown that effective
on-line steady-gtate optimisation can be achieved using
a gmple liner modd and quadratic modd
performance even when the real stuation is non-linear
with a non-quadratic performance. The utility of the
approach has been successfully demongrated using a
redigic amulation study of the Tennessee Eastman
process. In particular, it has been demondtrated that redl
process derivatives required by the |ISOPE technique
can be effectivdy obtaned wusing dynamic
identification.
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