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Abstract: The paper investigates the properties of reduced order models obtained by
projection of a high order system. It answers questions such as are any two models of
different orders related by a projection? Is it possible to obtain the same reduced order
model using different projections? Etc. It is shown that in cases where not all models of a
certain reduced order can be obtained by a projection, the optimal L2 reduced order
model is obtained by a unique projection, and it resides on the boundary of the set of
attainable models. Copyright © 2002 IFAC
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 1. INTRODUCTION
The problem of model order reduction for continuous
time systems has received a considerable amount of
interest over the years, and many methods for
obtaining the reduced order model have been
suggested. Most of them include the following two
steps. First a state transformation into a state space
realization in which the state variables can be ranked
according to some measure of importance. The
second step is truncation of the least important state
variables. The two operations together constitute a
projection into a lower dimension. We will therefore
call such operation Projection Order Reduction
(POR).

The various POR methods differ in the criterion
which is used for ranking the state variables. In
partial fraction expansion, known for lightly damped
mechanical systems as ‘modal truncation’, the state
space model is transformed into a diagonal
realization. Another POR method is truncated
balanced realization (Moore, 1981; Kabamba, 1985;
Halevi, 1999), where in the new realization the
controllability and observability gramians are
diagonal and equal. State variables that correspond to
larger diagonal elements are more controllable and
observable, and are therefore retained in the reduced
order model. Yet another POR method is component
cost analysis (Skelton and Yousuff, 1983) where the
contribution of each state variable to a certain cost is
investigated.

In the methods that have been described so far the
projection is an intentional part of a heuristic
algorithm. Wilson (1970) used the same structure and
derived the optimal L2 reduced order model. Later,
Hyland and Bernstein (1985) have solved the
problem by direct optimization, without imposing
any structure on the reduced  order  model. It turned
out that it is given in terms of a projection into a

lower order subspace and therefore is sometimes
referred to as the ‘optimal projection’.

The first part of this paper is concerned with
problems, which apply to POR in its general form.
For example, given two models of different orders, is
it always possible to obtain the one with the lower
dimension by POR of the other? Following this line
of investigation, we present unique properties of the
optimal L2 reduced order model.

 2. ORDER REDUCTION VIA PROJECTION
The model order reduction problem for linear
systems is usually defined as follows. Given the n-th
order, linear, time invariant, system G(s), find an r-th
order (r<n) system Gr(s), with the same number of
inputs and outputs, which is an approximation of it.
POR methods start with a state space realization

)t(Bu)t(Ax)t(x +=& (1a)

)t(Du)t(Cx)t(y += (1b)

where x∈ Rn, u∈ Rm, and y∈ Rp. Let the nonsingular
matrix T, and its inverse, be partitioned as
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with R∈ Rn×r , L∈ Rr×n. The state transformation
x=Tx’ leads to the following realization.

)t(u
BL

LB

)t('x

)t('x

RALARL

RLALAR

)t('x

)t('x

2

1

2

1












+
























=













&

&
(3a)

[ ] )t(Du)t('xRCCR)t(y += (3b)

Suppose that, using any criterion, x’1 is more
important than x’2. It is assumed that x’2≈0 and the
reduced order approximation of the system (1) is

)t(LBu)t(LARx)t(x rr +=& (4a)
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)t(Du)t(CRx)t(y r += (4b)

It is evident from (4) that the direct transmission term
Du(t) plays no role in this order reduction procedure.
For convenience, it will therefore be assumed from
now on that D=0. Since L and R are sub-blocks of T
and its inverse they satisfy LR=Ir. A model (4), with
any L and R satisfying LR=Ir is a Projection Reduced
Order Model (PROM). To see the origin of this
name, we define the matrix

RLP = (5)

It follows immediately that P2=P, hence P is a
projection matrix. We also define the pseudo full
order state vector
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(6)

which is xr expressed in the coordinates of the n-th
order space of x. Multiplying eq. (4a) by R, the
reduced order model can be written as

))t(Bu)t(x̂A(P)t(x̂ +=& (7a)

)t(x̂C)t(y = (7b)

Hence P projects the time derivative of the state
vector into its image, and the ‘angle’ is determined
by its null space. The PROM is therefore a minimal
realization of the system (PA, PB, C). Assuming zero
initial conditions, )t(x̂ is confined to the image of P,
hence  )t(x̂)t(x̂P =  and the reduced order model is
also a minimal realization of (PAP, PB, C). This later
form is sometimes preferred since it resembles the
familiar similarity transformation.

Despite their wide use, PROM’s have very few
generic properties. They do not preserve stability or
instability, relative degree, and even minimality or
non-minimality.  The following results discuss the
invariance properties under state transformations.

Property 1: The projection P that relates (A,B,C)
and (Ar,Br,Cr) is invariant under state transformation
of the reduced order realization.
Proof: Under a state transformation xr=Trxr’,
(Ar,Br,Cr)→ (Tr

-1ArTr, Tr
-1Br,CrTr). This is equivalent

to (L,R) → (Tr
-1L, RTr), hence R’ L’= R L=P.

Property 2: The projection P that relates (A, B, C)
and (Ar, Br, Cr) changes under state transformation of
the full order realization into TPT-1.
Proof: Under a state transformation x=Tx’,
(A,B,C)→ (T-1AT, T-1B,CT). For the same (Ar,Br,Cr)
This is equivalent to (L,R) → (LT-1, TR), hence
R’ L’= TR LT-1=TP T-1.

Assuming that Gr(s)=(Ar,Br,Cr) is minimal, Property
1 means that P is a projection into all of its
realizations. Property 2 means that if there exists a
projection relation between certain (A,B,C) and

(Ar,Br,Cr), there exists a projection relation between
any pair of realizations of G(s) and Gr(s). However
the specific projection is not preserved. Hence for
systems, rather then realizations, the only relevant
question is whether a projective relation exists.

 3. EXISTENCE PROPERTIES
We begin this section by considering the following
questions: Given the system G(s), is any r-th order
Gr(s), with the same dimensions, a PROM of it? In
other words, is it always possible to find a projection
that relates the two models. As was shown in the
previous section, the existence of a projection is
independent of a specific realization. Let (A, B, C)
and  (Ar, Br, Cr) be any realizations of G(s) and Gr(s)
respectively, then for Gr(s) to be a PROM of G(s) the
following relationships must hold.

rALAR = (8a)

rBLB = (8b)

rCCR = (8c)

rrILR ×= (8d)

Considering L and R as the unknowns, equations (8)
are a set of (2r+m+p)r equations with 2nr unknowns.
There are three possible cases.

1. r < n-(m+p)/2 - There are more unknowns than
equations. In general any Gr(s) is a PROM of a given
G(s), and can be obtained via infinitely many
projections.
2.  r = n-(m+p)/2 – The number of equations and
unknowns is the same. Not every Gr(s) is a PROM of
a given G(s). Those who are, can be obtained by a
finite number of projections.
3. r > n - (m+p)/2 - There are more equations than
unknowns. For a given G(s), the class of models
Gr(s) that are PROM has measure zero.

The first two cases suggest that the same reduced
order model can be obtained from a specific
realization of G(s), using different projections. Case
3 is impossible in SISO systems. However models
with a large number of inputs and outputs are used in
some cases. For example, in mechanical systems it is
customary to assume external forces at all degrees of
freedom, and the output is often defined as the entire
displacement or velocity profile. Case 3 implies that
in some cases the class of reduced order models that
can be obtained by projection is very narrow. In
heuristic methods the question is whether it is
justified to look only at that narrow class.

 4. THE INVERSE PROBLEM –
PROJECTION CALCULATION

As was explained in section 3, eqs (8) are a set of
(2r+m+p)r equations with 2nr unknowns. Focusing
on the case where r=n-(m+ p)/2, the first question is
how many solutions exist, which is not obvious. Eqs



(8b-c) are linear, while (8a) and (8d) are quadratic
but with a distinct structure, i.e. only cross terms
between two groups of unknowns (L and R) appear.
Another question is how to solve these equations.
Using numerical methods, such as Newton-Raphson
methods, one is not guaranteed to find all the
solutions. Generic solvers for polynomial equations
do get all the solutions, but the required
computational effort increases rapidly. Instead, we
develop in this section an analytical solution for the
problem. The linear equations can be replaced by

⊥
+ += XBBBL r (9) 

YCCCR r ⊥
+ += (10)

where B+(m×n) is a left inverse of B, and
B⊥ ((n-m)×n) is a basis for the left null-space of B.
Similarly, C+( n×p) is a right inverse of C, and
C⊥ (n×(n-p)) is a basis for the left null-space of C.
X(r×(n-m)) and Y ((n-p)×r) are the new unknown
matrices. Substituting them into (8a,d) and
rearranging, the equivalent equations are
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At this point we make two assumptions.

A4.1: m=p, i.e. H1, H2 are square.
A4.2: The matrix pencil λH1-H2 is regular (Kailath,
1980), i.e. there exist a scalar λ0 such that λ0H1-H is
nonsingular.

From A4.2 we can assume, without loss of generality
that H1 is nonsingular, because if it is not, it can be
replaced by λ0H1-H2 , which is then labeled as H1. S
and V are square real matrices given as
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and Jk is a real Jordan block, corresponding to the
eigenvalue λk of the generalized eigenvalue problem

0v)HH( 21 =−λ (17)

This result is a degenerate form of the Kronecker
canonical form (Kailath, 1980), for the case of
nonsingular H1.

Lemma 4.1: Let si and vj be a row of S and a column
of V respectively. Then 0vHsvHs j2ij1i ==  if
1) ll ≠∈∈ k,Vv,Ss jki , or
2) si is the ik row of Sk, vj is the jk column of Vk,

Jk(ik, jk)=0.

 Proof: Immediate from (15)-(16).

Corollary: Let
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consist of rows of S and columns of V that mutually
satisfy the conditions of Lemma 1.  If SII and VII are
nonsingular, then

1
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is a solution of (8).

Lemma 4.2: If r=n-m, then
1) All the solutions of (11) are of the form (18)-(19).
2) The maximum number of real solutions to (8) is
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Proof: S and V are nonsingular, therefore any
solution can be written as [X Ir]=X1S, [YT Ir]T=VY1.
Substituting into (11) we have X1Y1=0 and X1JY1=0.
Since in this case the dimension of H1 and H2 is
2(m-n), and since X1, Y1 have full rank, it follows
that the columns of Y1 form a basis for the nullspace
of X1, and therefore there exists a matrix T such that.

TYJY 11 = (20)

Hence Y1 is a linear combination of n-m vectors
which are generalized eigenvectors of J. For an
eigenvalue λk with multiplicity Nk, those vectors
includes only strings of successive generalized
eigenvectors starting from the true eigenvector. From
the structure of J it follows that Vr consists of n-m
columns of V. The result for Sr follows similarly.

Maximum freedom in selecting the rows for Sr and
the columns for Vr is obtained where all the
eigenvalues of (H1, H2) are real and distinct. In that
case the problem is selecting n-m numbers out of
2(n-m), hence part 2.

Suppose now that one solution to (8) is known. It
satisfies (9)-(10), with certain X0, Y0.

0r00r0 YCCCR,BXBBL ⊥
+

⊥
+ +=+= (21)

Any other solution can be written as



YCRR,BXLL 00 ⊥⊥ +=+= (22)

where 0XXX −= , 0YYY −= . Substituting these
expressions into (12)-(13) and rearranging, we obtain
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Notice that 0X = , 0Y = is always a solution, which
corresponds to the basis solution in (22). To see the
relationship between (23) and (11), notice that
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Since the eigenvalues of  (H1, H2) and of (T1H1T2,
T1H2T2) are the same, (23) and (11) are equivalent in
case a solution exists. The simpler structure enables
further insight into the problem. Assuming again that
m=p, it follows that

)ACL,CL()ARB,RB()H,H( 000021 ⊥⊥⊥⊥ λ⊕λ=λ (24)

Furthermore, the right eigenvectors corresponding to
the n-m eigenvalues of the first group are of the form
[0 vi

 T]T, and the left eigenvectors of the second group
are [0 mj]. Dividing the eigenvalues along those
groups, in the solutions described in Lemma 4.2,
yields the basis solution 0X = , 0Y = .

 5. GEOMETRICAL STUDY OF ORDER
REDUCTION FROM SECOND TO FIRST

In this section we consider the simplest case of order
reduction, i.e. second order to first order.
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The characteristic polynomial of the eigenvalue
equation is of second order. From its coefficients it
can be shown that a real solution exists if and only if
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Eq. (26), with equality sign, is a conic sector in the
 α-β plane. Generically it can be written as

0cc2c2c2cc 0
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Its shape depends on the two parameters, δ and ∆,
given by
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Direct calculation and some algebraic manipulations
lead to the following expressions
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Out of the six possible cases in general, only three
are possible in our case.

Case 1: δ>0, ∆<0. α and β that satisfy the inequality
(27), hence representing attainable PROM’s, reside
in an area on and outside an ellipse in the  α-β plane.
Case 2: δ<0, ∆<0. α and β that satisfy the inequality
(27), are located in the  α-β plane between the two
branches of a hyperbola.
Case 3: δ=0, ∆=0. The conic sector reduces in that
case to a single straight line. Outside that line there
exists a single solution while on it no solution exists,
except for one point that has infinitely many
solutions. An interesting observations is that δ=0 if
and only if G(s) is non-minimal, and that the point
with infinitely many solutions corresponds to a
minimal realization of G(s).

The three cases are summarized in figures 1a-c. The
circled point in each plot represents the optimal L2
reduced order model. Its position on the borderline is
not coincidental, and its meaning is discussed in
section 6.

 6. PROPERTIES OF THE OPTIMAL L2
REDUCED ORDER MODEL

The L2 optimal reduced order model (OROM) is the
r-th order Gr(s) which minimizes

2r )s(G)s(GJ −= (30)

In (Wilson, 1970), it was assumed that the OROM is
a PROM, and equations defining the optimal L and R
were given. Later, in (Hyland and Bernstein, 1985),
no assumptions regarding Gr(s) were made, and the
matrices (Ar, Br, Cr) were sought using direct
optimization. The starting point is the augmented
system
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[ ] )t(x~CC)t(y~ r−= (31b)

whose output is the error between the two systems.
Its controllability and observability gramians are
given by

0B~B~A~Q~Q~A~ TT =++ (32)

0C~C~P~A~A~P~ TT =++ (33)



Where )~,~,~( CBA  denote the augmented matrices.
The gramians are partitioned as
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The following Theorem is the main result in (Hyland
and Bernstein, 1985), given in a slightly different
form.
 Theorem 6.1: The reduced order model
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minimizes J in (30).

-0.5 0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

ALFA

B
E

TA

PROM Zone 

No PROM Zone 

-2 -1 0 1 2 3
-2

-1

0

1

2

3

ALFA

B
E

TA PROM Zone 

No PROM Zone 

No PROM Zone 

-1 0 1 2
-1

0

1

2

ALFA

B
E

TA

PROM Zone PROM Zone 

No PROM Zone 

Infinitely many
solutions 

Figure 1: Zones of achievable 1st order PROM’s for
G(s)=(s+1)/(s2+3s+1) (top), (s+1)/(s2+s+1) (middle)
and (s+1)/(s2+2s+1) (bottom).

It can be shown that if (Ar, Br, Cr) are as in (34), it
follows that

r
1

21212
1

2 IQQPP =− −− (35)

Hence the OROM is a PROM with L= -P2
-1P12

T,
R=Q12Q2

-1. This fact was never emphasized in
(Hyland and Bernstein, 1985), or in other works on
optimal order reduction, and was considered as
‘natural’. However the analysis in the section 3
indicates that in certain cases being a PROM is the
exception rather than the obvious possibility. The
definition of the OROM in Theorem 1 is not
constructive since the calculation of the gramians
requires (Ar, Br, Cr). Furthermore, as was explained
in section 2, L and R are realization dependent. A
more explicit form of the result appears in (Hyland
and Bernstein, 1985), where the generalized
Lyapunov equations that have to be solved consist of
realization invariant quantities. However (34) is very
convenient from the PROM analysis point of view. In
the remainder of this section an interesting PROM
related result of OROM is discussed. As for notation,
superscript * will be used to denote all quantities of
the OROM. Before stating the main result of this
section, we make two technical assumptions.
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Both assumptions are satisfied generically. A6.1 does
not hold when (A, B, C) is non-minimal, and indeed
in those cases there are infinitely many projections
leading to the same lower order realization. A6.2 will
be used in the proof of the following Theorem.

Theorem 6.2: For r=n-m, the system (A,B,C) and
the OROM (Ar, Br, Cr) are related by a unique
projection .
Proof: the upper left sub-block of eq.(32) is given by
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Pre-multiplying eq. (36) by B⊥ , and post-multiplying
it by Q2

-1, recalling that B⊥ B=0 and the definition of
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1
2

T
r2

** QAQRBARB −
⊥⊥ −= (37)
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with the definition of L*, lead to
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Substituting these relationships into eq. (24) yields
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Hence every eigenvalue has multiplicity two. Notice
that assumption A6.1 enables the move from the
second line to the third one. Assumption A6.2 rules
out the possibility of having two eigenvectors for
each eigenvalue (this technical part of the proof is
omitted due to space limitations). Hence all the
eigenvalues have geometric multiplicity one. From
Lemma 4.2 It follows that there is only one choice of
Y~ , and it includes all the eigenvectors. Therefore

0X = , 0Y = is the only solution in that case.

The same phenomenon has some other implications.
Denoting the LHS of eqs. (23a-b), which are
nominally zero, by Fi, define
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where the operator Vec stacks the columns of a
matrix into a single vector. Then we have the
following result.

Theorem 6.3: Let ρ be the number of eigenvalues of
Ar, counted by geometrical multiplicity. Then the
Jacobean matrix w/f ∂∂ , evaluated at w=w*=0, has
row rank deficiency ρ.
Proof: The differentials of eqs. (23a-b), evaluated at
the solution 0X = , 0Y = are given as
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The Jacobian matrix is given by
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The translation the result in (42) to this matrix is that

[ ] 0
w
fsvsv TT =

∂
∂⊗λ⊗ (44)

Since there are ρ eigenvalues, there are ρ linear
combinations of the rows which are zero. Hence the
rank deficiency is ρ. 

Remark 6.1 : Since eqs. (11) and (23) are related by
a constant linear transformation, the Jacobian of  (11)
has the same rank.

Rank deficiency of the Jacobian matrix is a necessary
condition for Gr*(s) to be on the boundary of the set
of reduced order systems which are attainable
OROM’s of a given G(s). In the second order to first
order case, it can be shown that the singularity of the
Jacobian is also a sufficient condition. Therefore the
OROM is always on the boundary, as is shown in
Figures 1a-c. To avoid any confusion, we stress that
if the OROM were just the optimal PROM, its
location on the boundary of the set to which it is
confined would not have been surprising. However
the OROM is the optimum of all models, PROM’s or
not, yet it is located on the boundary between the two
sets.

 7. CONCLUTIONS
The properties of the projection relationship between
two models of different orders have been
investigated. An algorithm to calculate all the
projections that relate the two models, as well as
conditions for the existence and uniqueness, have
been presented. It was shown that in case there is a
finite number of projections that lead to the same
reduced order model, the optimal L2 model is
obtained by a single projection. Furthermore, in such
cases the solution has a singular Jacobian matrix,
indicating that the model is on the boundary of the
attainable models zone.
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