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Abstract: It is difficult to measure online substrate, biomass, and product concentrations, due 
to the lack of reliable sensors in the fermentation. In view of this, the pH, dissolved oxygen 
(DO) concentration, and CO2 production, among others, are usually utilized in bioprocess 
analysis. With these easily obtained online measurements, it is possible to reconstruct the 
evolution of the state variables or estimate the bioprocess parameters. Neural networks, which 
rely on the efficacious nonlinear multivariate analysis capacity and its favorable black-box 
feature, are most widely applied to bioprocess analysis and fault detection. In this study, an 
artificial autoassociative neural network (AANN) has been used online to detect deviations 
from normal antibiotic production fermentation with ordinary state variables. To improve the 
efficiency of extracting hidden information contained in multidimensional state variables, and 
finally to render the AANN adequate for fault detection, we have explored the following 
methods: preprocessing of the data that involved normalizing the training data of the AANN; 
evaluation of the data that involved assessing the output of the AANN; and selection of state 
variables. A method for fault detection for virginiamycin production by Streptomyces virginiae
was developed.  
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1. INTRODUCTION 

It is very important to detect deviations or faults in 
a bioprocess in real time. An optimization strategy 
is usually applied to industrial operations. 
However, monitoring the bioprocess (Bastin and 
Dochain, 1990, Thibault et al., 1990), for which an 
optimization strategy is applied, from the initial to 
the final stage, and predicting the process under 
normal or abnormal conditions, are major 
challenges. Many approaches have been used to 
detect various deviations from or faults in normal 
fermentations by extracting the relevant 
information from multidimensional data 
(Stephanopoulos and Han, 1996). Principal 
component analysis (PCA), one of the multivariate 
statistical projection methods, has been applied to 
fault detection (Saner and Stephanopoulos, 1992). 
Online fault detection for primary metabolite 
production using artificial auto-associative neural 
network (AANN) has been tested by Shimizu et al.
(1998). Ignova et al. (1999) used a self-organizing 
map (SOM), which is an unsupervised artificial 
neural network (ANN) and facilitates visualization 

of complex data, to analyze fermentation seed 
quality with routinely measured plant data.  

When bioprocess analysis or fault detection via a 
neural network is considered, three steps are 
usually necessary, they are: (1) selecting the 
structure of the neural network, (2) designing a 
method for preprocessing of the data before the 
neural network is applied and (3) applying the 
neural network with preprocessed data and 
evaluating the result. Once the structure of the 
neural network is fixed, the characteristics of the 
preprocessed data, such as the information density 
and validity, directly affect the analysis of the 
neural network; in other words, designing a 
method to preprocess the data relates to the 
efficiency of extracting hidden information. 
Moreover, since the results derived directly from 
the output of the neural network are difficult to 
understand, it is necessary to assess the output data. 
Consequently, when using a neural network, 
bioprocess analysis efficiency depends on 
evaluation of the output of the neural network. In 
this study, an AANN was adopted to detect faults 
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in secondary metabolite production with ordinary 
online state variables. We have developed a 
method for preprocessing of the data, evaluation of 
the output of the AANN, and selection of state 
variables. As a practical example, virginiamycin 
fermentation of Streptomyces virginiae was 
performed for this research.  

2. MATERIALS AND METHODS 

2.1 Culture Conditions  
Streptomyces virginiae MAFF10-06014 (National 
Food Research Institute, Ministry of Agriculture, 
Forestry and Fisheries, Tsukuba, Japan) was used 
as a virginiamycin M- and S-producing 
microorganism. Optimal production strategies for 
virginiamycins have previously been studied (Yang 
et al., 1996, Shioya et al., 1999). The main 
fermentations were conducted under batch mode, 
in a 5-L jar fermentor (KMJ-5A, Mitsuwa Co., 
Japan) fitted with temperature (T), dissolved 
oxygen (DO) concentration and pH sensors and a 
laser turbid meter (LA-300LT, Automatic System 
Research Ltd., Japan) for measuring the optical 
density (OD). The DO concentration was 
maintained above 50% of saturation, and DO 
control was achieved by adjusting the agitation 
speed (RPM) when the DO concentration fell 
below the desired value. The feed weights of 
hydrochloric acid (HCl) and sodium hydroxide 
(NaOH) for pH control were measured, using the 
electrical balance (FX3000, A&D Ltd., Japan). 
The concentrations of CO2 (CO2%) and O2 (O2%)
in the exhaust gas were measured online with a 
CO2 analyzer (ZFD, Fuji Electric Ltd., Japan) and 
an O2 analyzer (PMA200, Horiba Ltd., Japan). The 
sampling interval was 1 min. 

2.2 Selecting State Variables 
In the fermentation used in this study, the ordinary 
state variables were detected online, including T, 
DO concentration, pH, OD, the CO2% and O2%, 
the HCl and NaOH addition, and the RPM. The 
virginiamycin production, dry cell mass, and 
glycerol concentration were measured offline. 
Based on virginiamycin production, fermentations 
can be divided into two groups of high and low 
production (shown in Figure 1). Here, the 
virginiamycin quantum was represented by 
virginiamycin M because the amount of 
virginiamycin S produced was very low compared 
with virginiamycin M. 

Among the nine online state variables mentioned 

above, T, pH and DO concentration were used as 
process control variables. For utilizing limited 
online state variables as fully as possible, the six 
remaining variables were all subjected to 
multivariate analysis at first. The problem caused 
by selecting the NaOH addition as an analyzing 
variable is discussed in the text.

2.3 Wavelet Filter Bank (WFB)
In general, online raw fermentation data that is 
obtained directly includes a lot of noise. Noise 
results in low efficiency and a longer time to train 
the AANN. In this study, online raw data were 
smoothed via a wavelet filter bank (WFB) before 
the AANN was implemented. The filter bank was 
composed of a set of high-pass filters, low-pass 
filters, and sampling operators (Strang and Nguyen, 
1996). Daubechies second-order wavelet function 
was combined with the WFB that was utilized in 
this study, because it is considered the simplest and 
most useful function for multiresolution analysis 
and noise filtering (Daubechies, 1988). 

2.4 Artificial Autoassociative Neural Network
Kramer (1991) developed an AANN using a 
nonlinear statistical approach for multivariate 
analysis of chemical processes. The AANN 
operates by training a feed-forward neural network 
(FFNN) to identify the mapping from where the 
network inputs are reproduced at the output layer. 
The AANN consists of five layers of input, 
mapping, bottleneck, demapping and output. The 
number of nodes in the output layer is the same as 
that in the input layer. The number of nodes in the 
bottleneck layer should be lower than that in the 
input and output layers. This means that the 
mapping layer compresses the system data while 
the demapping layer works to restore the data. The 
AANN was termed nonlinear principal component 
analysis by Kramer (1991), because it is similar in 
concept to linear principal component analysis 
(PCA) but it uses nonlinear functions as the base 
functions. In this study, two nonlinear sigmoid 
functions were used (equations 1 and 2).  
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Equation 1 with a wider output interval of (-1, 1) 
was employed as a transfer function of the 
mapping, bottleneck, demapping layers since it 
supplies a wider space for mapping and demapping. 
Equation 2 with an output interval of (0, 1) was 



only used in the output layer for transforming.  
Firstly, the six variables of OD, the CO2% and 
O2% in the exhaust gas, the weight of HCl and 
NaOH fed into the fermentor for pH control, and 
the RPM for DO concentration control were 
selected as the input variables of the AANN. As a 
concise and efficient structure is desired in the 
construction of an AANN, here, the mapping and 
demapping layers contained seven nodes each, and 
the bottleneck layer contained two nodes, with the 
AANN being termed AANN-67276. AANN- 
56265 was also constructed (exclude NaOH 
addition rate), which is explained mainly in this 
report. The AANN was trained only using data 
from a normal fermentation process. The training 
calculation for the AANN was performed by a 
commercial software package, Skill Tran (Chiyoda 
Kako Co. Ltd., Tokyo), on a Sun Classic 
workstation (Sun Microsystems, U.S.) 

3. RESULTS AND DISCUSSION 
3.1 Virginiamycin Fermentation Process  
Batch cultures of antibiotic-producing filamentous 
microorganisms (actinomyces and fungi) usually 
undergo two phases of development, the growth 
phase and the production phase (Yang et al., 1996). 
The growth phase lasted for about 800 min from 
the start of culture. Figure 1 shows the starting 
time and the amounts of virginiamycin produced 
for all of the twelve runs. The energy was supplied 
by yeast extract and Bacto-casitione in the growth 
phase, whereas glycerol was used predominantly 
in the production phase (Yang et al., 1996). The 
arrow shown in Figure 2A indicates that the CO2
concentration in the exhaust gas decreased 
suddenly and formed a characteristic peak at about 
600 min from the start of culture. Correspondingly, 
the other state variables (O2 concentration, DO 
concentration and so forth) also gave rise to a 
similar peak at the same time. This characteristic 
feature might be related not only to the change in 
the energy source, but also to the initiation of the 
biosynthesis of autoregulators of S. virginiae,
virginiae butanolides (VBs) (Yang et al., 1996). 
Generally, autoregulators are synthesized by the 
microorganism itself during culture and 
subsequently induce antibiotic biosynthesis. Thus, 
this characteristic peak related to VB biosynthesis 
and virginiamycin production level is very 
important and it was associated with a novel 
preprocessing of data to normalize the training data 
of the AANN in this study.  In addition, another 
characteristic which should be noted is that NaOH 
which was added for pH control at the late stage of 
the production phase in all of the abnormal 

fermentations (Figure 2D), did not need to be 
added in any of the normal fermentations (data not 
shown). The addition of NaOH at the late stage of 
the production phase could possibly be used as an 
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Fig. 1 Time courses of virginiamycin M production 
 in normal and abnormal fermentations.  

Solid symbols show optimal VM production, and blank 
symbols show that maximum production was not attained. 
Runs 1, 2, 3, 4 and 12 are normal fermentations. In runs 5 
to 11 the DO concentration and pH were not controlled, the 
fermentation was contaminated, the culture temperature 
diverged from the optimal of 28 ºC to 29.5 ºC, the 
concentration of the autoregulators of S. virginiae, virginiae 
butanolides (VBs), was abnormal from the start of culture, 
the DO concentration was controlled at a low level of 25% 
of saturation, the low quality yeast extract was used and the 
inoculum was of low cell activity with serially transferred 
culture, respectively. 

0
1
2
3
4

growth phase growth phaseproduction phase production phase

the character istic pea k 16
18
20
22

6.5

6.6

6.7

0

50

100

40

60
80

100

400

800

1200

0 400 800 1200

40

50

0 400 800 1200

0
0.5
1
1.5

T ime (min)

pH
C

O 2
 (%

)
A

ci
d 

ta
nk

 (g
)

N
aO

H
 ta

nk
 (g

)

O
2 

(%
)

D
O

 (%
)

A
gi

ta
tio

n 
(rp

m
)

O
D

A

B

C

D

E

F

G

H

Fig. 2 Time courses of online state variables in an 
abnormal fermentation.

The DO concentration, pH, OD, CO2% and O2% in the 
exhaust gas, the feed weight of HCl and NaOH for pH 
control, and the RPM for DO control are shown. The arrow 
indicates the characteristic peak of CO2 concentration in the 
fermentation process of Streptomyces virginiae.



indicator for distinguishing normal or abnormal 
fermentations, though this signal came too late for 
detecting faults for an industrial plant. 

3.2 Standard Data-Preprocessing 
In this study, online raw data were filtered and 
compressed by the WFB at a resolution scale of 
three before the AANN was implemented. 
Furthermore, it was necessary to scale state 
variable data into an appropriate unified interval 
before the AANN was implemented since state 
variable units differ. An ordinary normalization is 
adopted by dividing each state variable datum by 
its maximum value simply to scale data into the 
range of (0, 1). Figure 3a shows the normalized 
data of CO2(%) for a normal process and run 11, 
which was an example of an abnormal 
fermentation process. In addition to this ordinary 
normalization, a novel standardizing method, 
related to the characteristic peak of the 
virginiamycin fermentation process, will be 
described later in this paper. 

3.3 Fault Detection by the AANN 
The normal fermentation data of runs 1, 2, 3, 
which had been filtered by the WFB and 
standardized by ordinary normalization, were used 
to train the AANN-67276. It is also expected that 
the error between the input and output values will 
be very small because the AANN was trained only 
using the data pattern from the normal 
fermentation state variables. Based on this concept, 
a statistical index, J, was introduced to detect 
deviations from the normal process operation. J is 
defined in Equation 3. 

{ }∑ −= 2)( outputinputJ ,  (3) 

where J is the summation of the squared error 
between input and output for the state variables of 
OD, CO2%, O2% , HCl, NaOH and RPM, and it 
was evaluated at each sampling time. As 
mentioned above, the J of a normal fermentation 
should be low during fermentation, and will rise in 
an abnormal fermentation. The deviation from 
normality can be detected in real time by setting an 
appropriate threshold value, ε, to evaluate J. When 
J≤ε , the fermentation process is considered 
normal, and when J>ε , the corresponding process 
is judged abnormal. Using AANN-67276, fault 
operation or low product operation was detected 
but the time to detect was lather late, which 
resulted in that the virginiamycin production had 
already started (data not shown). So, the 

improvement of AANN was tried to by changing 
the data preprocessing.  

3.4 A Novel Preprocessing Method 
As previously mentioned, this characteristic peak 
should be related not only to the change in the 
energy source utilized, but also to the initiation of 
VB biosynthesis, and is associated with the start of 
virginiamycin production (Yang et al.,1995, 
1996a). In the proposed normalization, the 
characteristic peak was regarded as a unified 
criterion, and various minimum values at the time 
of the sudden decrease in the CO2 concentration 
were set at the unified level by multiplying their 
respective factors. Then, these factors were 
multiplied as an influence element while 
normalizing the other state variables, such as OD 
and the amount of HCl added. To differentiate an 
ordinary normalization, we arbitrarily named the 
proposed normalization a concrete preprocess 
(CPP). Figure 3b shows the CO2(%) data in normal 
fermentation processes and in run 11 normalized 
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Fig. 3 Training data of the AANN for CO2 (%) 
Normalized by ordinary preprocessing, namely, generating 
an interval of (0, 1) for original data by dividing by the 
maximum value of this state variable (a); normalized by the 
CPP, in which various minimum value of a sudden decrease 
in the CO2 concentration were set at the unified level by 
multiplying their respective factors (b).  



by the CPP. Compared with Figs. 3a and 3b, it is 
apparent that the curves for the normal 
fermentation process clustered while the curve for 
run 11 separated from those for the normal runs 
(Fig. 3b). This indicated that the characteristics of 
the normal fermentation process had been 
pre-extracted.

3.5 AANN-56265 and Evaluation of Output
In this study, the five variables of OD, CO2(%),
O2(%), HCl addition and RPM were selected as the 
input variables of the AANN. Correspondingly, the 
most concise AANN, AANN-56265 was 
constructed, in which the mapping and demapping 
layers contained six nodes each, and the bottleneck 
layer contained two nodes. This AANN-56265 was 
trained using training data obtained via the CPP. 
Figure 4A shows two-dimensional plots of normal 
and abnormal data with respect to the Z1 and Z2 at 
this AANN-56265, where the variables, Z1 and Z2, 
are ones at the bottle neck layer. It is obvious that 
the data for the normal and abnormal fermentation 
process plots were clustered in different groups, 
and the dashed line in Fig.4A indicates the 
boundary between the two groups. Similarly, the 
Z1 data of normal runs were not only clustered but 
also clearly separated from the data for run 11 (Fig. 
4B). This indicated that different information 
hidden in the state variables of normal and 
abnormal fermentation processes had been 
extracted and classified efficiently. 

The outputs at the bottleneck layer of the AANN 
are usually considered as the principal components 
in correspondence with nonlinear PCA. Here, to 
set a reasonable value of ε, the h in Fig. 4B, which 
represented the difference between normal and 
abnormal runs, was investigated in real time. As a 
new evaluation index, H was defined in, 

Hi = (Z1iZ1
~

run 1,2,3)2 , (4) 

where Z1
~

run 1,2,3 is the average of the training data 
set of the AANN, and was used as the standard of 
Z1 for normal fermentation processes. Z1i is Z1 
data for every fermentation process. Hi represents 
the difference between the standard for a normal 
operation and an actual running process, and it was 
evaluated at each sampling time. To assess the 
deviations from the standard for normal operation, 
at first the maximum distance between actual 
normal runs and the standard for a normal 
fermentation process was calculated, and termed 
hmax (normal). The hmax (normal) was selected at the 
maximum value among the training data (runs 1, 2 
and 3) by Equation 4. Then, a warning line  

Fig. 4 Two-dimensional plots of Z1 and Z2 data 
 using the trained AANN-56265.

The normal and abnormal fermentation process plots were 
clustered into different groups, and the dashed line 
indicates the boundary between the two groups (A). Time 
course of Z1 for normal runs and run 11 (B). Solid and 
blank symbols indicate normal and abnormal data, 
respectively. The AANN-56265 was trained by three 
normal data sets of runs 1, 2 and 3, and the training data 
were obtained by the CPP. 

referring to the hmax (normal) was set at 6-fold hmax 

(normal) and smoothed by polynomial curve termed 
θwarn. Similarly, 8-fold hmax (normal) was adopted as 
an emergency line and its polynomial curve was 
termed θemerg. The emergency line indicates that 
the running process is going into an abnormal state 
when its H value goes beyond this line. As 
observed in Figs. 5A and 5B, the H values of the 
normal fermentation processes of run 4 and 12 
were under the θwarn for almost the entire 
fermentation; the H value of the abnormal 
fermentation of run 11 overstepped the warning 
line and finally crossed through the gray region to 
go into the area representing an abnormal 
fermentation state. Illustrations such as in Figs. 5B 
nd 5C, referring to the intersection of the H value 
of abnormal runs with θwarn and θemerg, can be used 
to access the εwarn and εemerg at the J coordinate 
axis. The average of εwarn and εemerg was adopted as 
the threshold value of J, namely ε. In this study, 
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the ε was rounded at 0.04. 
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Fig. 5  Illustrations of fault detection via H
evaluation. 

The H values of the normal fermentation processes of run 4 
and 12 were under θwarn for almost the entire cultivation 
(A); and the H of the abnormal fermentation of run 11 
overstepped the warning line and crossed through the gray 
region into the area representing an abnormal fermentation 
state (B). Referring to the intersection of H of the abnormal 
fermentation process with θwarn and θemerg, the εwarn and 
εemerg can be accessed at the J coordinate axis (C). The 
average of εwarn and εemerg was adopted as the threshold 
value of J, namely, ε. In this study, the ε was rounded at 
0.04.

4. CONCLUSION 
Utilizing ordinary online measurable state 
variables, such CO2 concentration in the exhaust 
gas, deviations from the normality and faults have 
been detected in an antibiotic fermentation process 
before the starting time of virginiamycin 
production using a trained AANN-56265. The 
strategy developed here was proved to be used 
well for online fault detection of the primary 
metabolite production process by our previous 
study. Now the method is applicable to the online 
fault detection of other complex secondary 
metabolite productions, particularly to antibiotic 
fermentations that usually undergo two phases of 
development, the growth phase and the production 
phase. 
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