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Abstract: The paper proposes a new development method for a Takagi-Sugeno PI-fuzzy
controller meant for a class of plants applicable to the fields of electrical drives or servo
systems. The developed fuzzy control systems are quasi-optimal in terms of some
quadratic performance indices defined in dynamic regimes with respect to the step
modifications of the reference input and of four types of disturbance inputs. The
method is validated by a case study together with digital simulation results that can
correspond to the speed control of a servo system.  Copyright © 2002 IFAC
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1. INTRODUCTION

It is well considered that nowadays more than 90 %
of control loops use conventional PI / PID controllers
due to the very good control system performance
they can offer (Ǻström and Hägglund, 1995).
Furthermore, fuzzy controllers as nonlinear elements
without dynamics can ensure control system
performance enhancement (Driankov, et al., 1993).

The introduction of dynamics in the structure of
fuzzy controllers leads to PD-, PI- or PID-fuzzy
controllers. In some well-stated conditions it is
generally acknowledged the approximate
equivalence between linear and fuzzy controllers
(Tang and Mulholland, 1987).

This is one of the reasons why there are widely
accepted development methods for fuzzy controllers
by employing the merge between the knowledge on
conventional linear PI controllers and the experience
of experts in controlling the plant.

The considered control system structure is the
conventional one, presented in Fig.1, with the
nomenclature:

Fig. 1. Control system structure.

C – controller, P – controlled plant, Fw – reference
filter, w – reference input, w~ – filtered reference
input, e – control error, u – control signal, y –
controlled output, v1, v2, v3, v4 – disturbance inputs
(generally denoted by v).

For the class of minimum phase plants characterized
by transfer functions (1):

                      HP(s) = kP/[s(1+sTΣ)] ,          (1)

with kP – gain and TΣ – small time constant or sum of
all parasitic time constants, the use of a linear PI
controller having the transfer function (2):

    HC(s)=kC[1+ 1/(sTi)]=kc(1+ sTi)/s ,  kC = kcTi ,     (2)

with kC – controller gain and Ti – integration time
constant, can ensure relatively good control system
performance (Ǻström and Hägglund, 1995).
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The class of systems with the simplified structure
from Fig.1 and transfer function (1) is specific to the
fields of electrical drives or servo systems. For these
systems, Preitl and Precup (1996) proposed a
development method based on the generalization of
the optimization relations specific to the Symmetrical
Optimum (SO) method (Ǻström and Hägglund,
1995), called the Extended Symmetrical Optimum
(ESO) method. The main results related to the ESO
method are briefly presented as follows.

The parameters of the controller are tuned on the
basis of the relations (3) that can guarantee the
desired control system performance by means of a
design parameter β:

                  kc = 1/(β β1/2kPTΣ2) ,  Ti = βTΣ .           (3)

The tuning relations (3) ensure a maximum phase
margin (φr) when there are controlled plants with
constant kP and, at the same time, a minimum
guaranteed phase margin for plants with time-varying
kP.

By the choice of the parameter β in the domain
1<β≤20, the control system performance indices can
be accordingly modified and a compromise between
these indices can be reached. The control system
performance indices (CSPIs) defined as in Fig.2, with
respect to the unit step modification of reference input,
are {σ1 – overshoot, ts – settling time, t1 – first settling
time}. The control system performance diagrams {σ1,
t1^=t1/TΣ, ts

^=ts/TΣ, φr[o]} as function of β are presented
in Fig.3.

The closed-loop transfer functions with respect to the
filtered reference input, Hw(s), will be expressed as:

Hw(s)=(βTΣs+1)/[β β1/2TΣ3s3+β β1/2TΣ2s2+βTΣs+1] .  (4)

The accordingly tuned reference filter (Fw) can further
improve control system performance. One of the two
filters proposed by Preitl and Precup (1996, 1999) has
the following transfer function:

Fig. 2. CSPIs defined in unit step modification of w.

Fig. 3. Control system performance indices versus β.

                      HFw(s) = 1/(βTΣs + 1) ,          (5)

and it compensated the zero from (4).

By taking into account the fact that all coefficients of
Hw(s) depend on the parameter β and that the PI
controller development is reduced to the choice of this
single parameter, β, it results that, with respect to this
parameter, the optimization based on the minimization
of integral quadratic criteria will have a unique
solution. The following quadratic performance indices
(integral quadratic optimization criteria) are widely
used in the controller parameter tuning:
 - the Integral of Square Error (ISE) – I2e:
                                  ∞
                        I2e = ∫0 e2(t)dt ,          (6)

 - the generalized ISE – I2g:
                 ∞                                             ∞
       I2g = ∫0 [e2(t) + τ2ė2(t)]dt = I2e + τ2 ∫0 ė2(t)dt ,       (7)

 - the cross-optimization index – I2c:
                 ∞                                              ∞
       I2c = ∫0 [e2(t) + ρ2u2(t)]dt = I2e + ρ2 ∫0 u2(t)dt ,      (8)

where τ and ρ are weighting coefficients.

By considering the dynamic regimes with respect to
the step modification of the reference input w, it is
shown in (Preitl and Precup, 2000) that the use of the
integral quadratic optimization criteria {I2e, I2g, I2c} is
no more necessary because there can be derived direct
connections between the weighting coefficients τ and
ρ and the design parameter β.

The PI controller development with respect to w is
also performed in (Voda and Landau, 1995; Loron,
1997), where the behavior with respect to the
disturbance input is only reported. Therefore, the
minimization of the three mentioned quadratic
performance indices (QPIs) will be done in this paper
by deriving connections of type τ(β) and ρ(β).

The development of fuzzy controllers for the linear
plant (1) must not be viewed as a goal in itself, but as a
first step in the development of more complex control
structures. These structures can involve from one
application to another either variable parameters of
controlled plant or the plant placed at the lower
hierarchical level of large-scale systems. There was
presented in (Precup and Preitl, 1999) a development
method for Mamdani-type PI-fuzzy controllers meant
for controlling the plant (1).

The paper proposes a development method for a
Takagi-Sygeno PI-fuzzy controller (TS-PI-FC). The
considered TS-PI-FC is a type III fuzzy system
according to (Koczy, 1996; Sugeno, 1999), and it
combines the optimal PI controllers with respect to the
reference input w and with respect to four possible
types of disturbance inputs {v1, v2, v3, v4}.

Within the paper there will be addressed the following
aspects. The connections between the ESO method
and the optimization with respect to the minimization



of I2e, I2g and I2c will be discussed in the following
Section. Then, Section 3 is dedicated to the
presentation of the TS-PI-FC structure and of the
proposed development method. In Section 4 there is
applied the method to a case study that can correspond
to the speed control of a servo system, and there are
presented some digital simulation results. The final
part of the paper highlights the conclusions.

2. CONNECTIONS BETWEEN ESO METHOD
AND MINIMIZATION OF QUADRATIC

PERFORMANCE INDICES

For the sake of expressing the three QPIs I2e, I2g and
I2c as function of β, there are computed the Laplace
transforms of the time functions of the square factors
appearing in the integrals from (6) … (8) resulting in
the general expressions (9):

    m(s) = (b2s2 + b1s + b0)/(a3s3 + a2s2 + a1s + a0) ,    (9)

where m stands for e, ė or  u. Then, the use of Parseval
relations leads to:
     ∞
   ∫0 m2(t)dt = [b2

2a0a1 + (b1
2–2b0b2)a0a3 + b0

2a2a3] /
                       / [2a0a1(a1a2–a0a3)] .        (10)

The dynamic regimes taken into consideration are: the
unit step modification of the reference input w, called
“w regime” (wr), and four types of unit step
modifications of the disturbance inputs v1, …, v4,
called “v1 regime” (v1r), …, “v4 regime” (v4r)
(generally speaking, vr). Depending on the place of
feeding the disturbance inputs to the plant and on the P
structure, the types of disturbance inputs are defined in
terms of Fig.4. It can be seen that v4r is identical to wr
from the point of view of the optimization.

The optimization results regarding the minimization
of the QPIs I2e, I2g and I2c with respect to β are
gathered in Table 1.

There can be derived direct connections between the
values of weighting coefficients τ and ρ, and the
values of β for which the indices I2g and I2c reach their
minimum. These connections are presented in Table 2
for the dynamic regimes {wr, v1r, v2r, v3r, v4r}.

Two aspects result from the analysis of Table 1 and
Table 2.

Firstly, the optimization procedures based on
minimizing the three considered QPIs can be reduced
to the proper choice of the design parameter β.
Therefore, the use of the indices I2e, I2g and I2c
becomes no more necessary.

Fig. 4. Definition of disturbance input types.

Table 1 Optimization results of minimizing I2e(β),
I2g(β) and I2c(β)

Regime Expression of I2+ Value of β for
I2emin, I2gmin, I2cmin

I2e
wr or
v4r

βTΣ/[2(β1/2–1)] 4 (Kessler’s case)

v1r β3kP
2TΣ3/[2(β–1)] 1.5

v2r ββ1/2(β–
β1/2+1)TΣ3/[2(β1/2–1)]

β=x2, x∈  (1, 2) –
solution of 4x3 –
8x2 + 6x – 3 = 0

v3r ββ1/2kP
2TΣ/[2(β–1)] 3

I2g
wr or
v4r

[βTΣ2+τ2]/[2TΣ(β1/2–1)] {1+[1+(τ/TΣ)2]1/2}2

v1r β[β2 +(τ/TΣ)2β1/2]
kP

2TΣ3/[2(β–1)]
β=x2, x∈  (1.51/2,
31/2) – solution of
4x5 – 6x3 +
(τ/TΣ)2(x2–3) = 0

v2r β[β1/2(β–β1/2+1)+
(τ/TΣ)2]TΣ3/[2(β1/2–1)]

β=x2, x∈  (1, 2) –
solution of 4x4 –
8x3 + 6x2 – 3x +
(τ/TΣ)2(x–2) = 0

v3r β[β1/2+(τ/TΣ)2]kP
2TΣ/[2(β

–1)]
β=x2, x>3 –
solution of x3– 3x–
2(τ/TΣ)2 = 0

I2c
[β5/2TΣ2+(ρ/kP)2ββ1/2+β–
β1/2+1)]/[2TΣββ1/2(β1/2–
1)]

β=x2, x>2 –
solution of TΣ2(x6–
2x5)–(ρ/ kP)2(x4+
2x3–4x2+ 6x–3)= 0

v1r impossible application of Parseval
relations

v2r impossible application of Parseval
relations

v3r [ββ1/2TΣ2+(ρ/
kP)2(β1/2+1)]/[2TΣ(β–1)]

β=x2,x>3–solution
of TΣ2(x4–3x2)–
(ρ/kP)2(x+1)2=0

Secondly, as it has been expected, there can be
observed quite different behaviors of the linear control
systems with respect to the reference input w and the
disturbance input v ∈  {v1, v2, v3, v4}. This fact will
require the use of two values of the parameter β: βw for
the optimization in the case of the dynamic regime
caused by the step modification of w (wr), and βv for
the optimization in the case of the dynamic regimes
caused by the step modifications of several types of
disturbance inputs (vr). The result will be, after
applying the tuning relation (3) specific to the ESO
method, in two sets of controller tuning parameters, of
two linear PI controllers, {kc

w, Ti
w} for the PI-C-w

(corresponding to wr) and {kc
v, Ti

v} for the PI-C-v
(corresponding to vr), computed as:

         kc
w = 1/[βw(βw)1/2kPTΣ2] ,  Ti

w = βwTΣ ,
          kc

v = 1/[βv(βv)1/2kPTΣ2] ,   Ti
v=βvTΣ .        (11)

The existence of two PI controllers, PI-C-w and PI-
C-v, leads to the idea of a TS-PI-FC that should
observe the dynamic regime (wr or vr) and should
blend these linear controllers resulting in quasi-
optimal behaviors with respect to both w and v.



Table 2 Expressions of τ(β) and ρ(β)

Regime Expression of τ Expression of ρ
I2g
wr or
v4r

(β–2β1/2)1/2TΣ for β > 4 it is not the case

v1r [2β2β1/2(3–2 β)/(β–3)]1/2

TΣ for β∈ (1.5, 3)
it is not the case

v2r [(4β2–8ββ1/2+ 6β–
3β1/2)/(2– β1/2)]1/2TΣ for
β ∈  (1, 4)

it is not the case

v3r [(β1/2(β–3)/2 ]1/2TΣ for
β>3

it is not the case

I2c
wr or
v4r

it is not the case β[β1/2(β1/2–2)/(β2

+2ββ1/2–4β+ 6β1/2–
3)]1/2kPTΣ for β > 4

v1r impossible application of Parseval
relations

v2r impossible application of Parseval
relations

v3r it is not the case (β2–3β)1/2/(β1/2+
1)kPTΣ for β>3

3. OUTLINE OF DEVELOPMENT METHOD FOR
TAKAGI-SUGENO FUZZY CONTROLLER

For the development of the TS-PI-FC it is necessary
to discretize the continuous linear PI controllers with
the parameters from (11). The use of Tustin’s
discretization method results in two quasi-continuous
digital PI controllers in their incremental versions:

              Δuk = Δuk
w = KP

wΔek + KI
wek ,

               Δuk = Δuk
v = KP

vΔek + KI
vek ,        (12)

where k – current sampling interval, Δek=ek–ek-1 –
increment of control error, and Δuk=uk–uk-1 –
increment of control signal. The parameters of the two
incremental digital PI controllers, {KP

w, KI
w} and

{KP
v, KI

v}, are computed in terms of (13):

             KP
w = kc

w(Ti
w–h/2) ,  KI

w = kc
wh ,

              KP
v = kc

v(Ti
v–h/2) ,  KI

v = kc
vh ,        (13)

where h represents the sampling period.

The fuzzy control system structure is the
conventional one from Fig.1, where the block C is
replaced by the Takagi-Sugeno PI-type fuzzy
controller (TS-PI-FC).

The structure of the proposed TS-PI-FC is presented
in Fig.5, and it consists of: the strictly speaking PI-
fuzzy controller (PI-FC), the fuzzy block FB1 for
computing the current regime rk, the fuzzy block FB2
for computing the current status sk, and the linear
blocks with dynamics.

All three fuzzy blocks {PI-FC, FB1, FB2} are
Takagi-Sugeno fuzzy systems (Takagi and Sugeno,
1985), use the max and min operators in the
inference engine and employ the weighted average
method for defuzzification (Babuska and
Verbruggen, 1996).

Fig. 5. Structure of TS-PI-FC.

The fuzzification is done by using the membership
functions presented in Fig.6 (Δwk=wk–wk-1 –
increment of reference input). Fig.6 points out the
strictly speaking positive parameters of the TS-PI-FC
to be determined by the development method: {Be,
BΔe, BΔw, Bs, Bw, Bv}.

The fuzzy block FB1 has the role of observing the
dynamic regime by computing the variable rk. The
linguistic terms “WR” and “VR” correspond to the
dynamic regimes caused by the modification of w
(wr) and v (vr), respectively. The inference engine of
FB1 is assisted by the rule base presented as decision
table in Table 3.

The fuzzy block FB2, which operates in parallel with
PI-FC, computes the variable sk characterizing the
current status of the fuzzy control system. The
linguistic term “ZE” corresponds to an accepted
steady-state regime with almost zero ek and Δek, and
the linguistic term “P” corresponds to the situations
when either ek is non-zero or ek is zero but it has the
tendency to modify. The rule base of FB2 is illustrated
by the decision table presented in Table 4.

Fig. 6. Accepted input membership functions.

Table 3 Decision table of FB1

Δwk
N Z P
Δek Δek Δek
N ZE P N ZE P N ZE P

P Bw Bw Bw Bw Bw Bw Bw Bw BwW
R

sk-1

ZE Bw Bw Bw Bv Bw Bv Bw Bw Bw
P Bw Bw Bw Bv Bv Bv Bw Bw Bw

rk-1

V
R

sk-1

ZE Bw Bw Bw Bv Bw Bv Bw Bw Bw

Since FB1 and FB2 produce singleton consequents,
these fuzzy blocks can be considered as type I fuzzy
systems according to (Koczy, 1996; Sugeno, 1999).
This is the reason why rk and sk are in fact not
defuzzified as it results from the TS-PI-FC structure.



Table 4 Decision table of FB2

ek
N ZE P

P Bs Bs Bs
ZE Bs 0 BsΔek
N Bs Bs Bs

The result this approach will be in the avoidance of
supplementary fuzzification because rk and sk are fed
to FB1 input at the next sampling time.

The inference engine of the strictly speaking PI-
fuzzy controller (PI-FC) employs the rule base
gathered in the decision table from Table 5.

Such a decision table ensures a quasi-PI behavior of
the PI-FC. An additional parameter α, α ∈  (0, 1], was
introduced for the sake of performance enhancement
by alleviating the overshoot (and downshoot in the
case of non-minimum-phase systems (Precup and
Preitl, 1998)) in situations when ek and Δek have the
same sign. The cost of doing this is in a more complex
rule base of the PI-FC block; otherwise the rule base
of Table 5 can be reduced to only two rules.

Concerning the computation of controller
parameters, the simplest to choose are Bw and Bv,
which have to be different in order to create a clear
difference between the two regimes, wr and vr. There
are suggested the following values: Bw = 1, Bv = 2.

Then, the values of BΔw and Bs must be sufficiently
small to clearly point out the constant values of wk,
and of ek and Δek, respectively. If there is accepted a
unit step modification of w and a 2 % settling time, the
recommended values for these two parameters are:
BΔw = 0.02, Bs = 0.02.

For the computation of Be and BΔe the modal
equivalences principle is applied resulting in the
relation (14) used by Precup and Preitl (1998) for a
Mamdani PI-fuzzy controller:

BΔe=2hBe/(2Ti
m–h), Ti

m=(Ti
w+Ti

v)/2=(βw+βv)TΣ/2, (14)

where the parameter Be is chosen in accordance with
the experience of an expert in control systems. The
relation (14) will ensure the approximate equivalence,
mentioned in Section 1, between the TS-PI-FC and the
linear PI controllers.

By taking into consideration all presented aspeects,
the proposed development method for the TS-PI-FC
consists of the following steps to be proceeded:
 - express the simplified mathematical model of P in
the form (1);
 - choose the values of βw and βv as a compromise
between desired control system performance resulted
from Fig.3 (for σ1, t1, ts and φr) and Table 2 (for QPIs);
 - obtain the parameters {kc

w, Ti
w} and {kc

v, Ti
v} of

PI-C-w and PI-C-v, respectively, from (11);
 - choose a sufficiently small sampling period, h,
accepted by quasi-continuous digital control and take
into account the presence of a zero-order hold;

Table 5 Decision table of PI-FC

rk
WR VR

Δek / ek ek
N ZE P N ZE P

P Δuk
w Δuk

w α Δuk
w Δuk

v Δuk
v α Δuk

v

ZE Δuk
w Δuk

w Δuk
w Δuk

v Δuk
v Δuk

v

N α Δuk
w Δuk

w Δuk
w α Δuk

v Δuk
v Δuk

v

 - discretize the two continuous PI controllers and
compute the parameters of the two quasi-continuous
digital PI controllers, {KP

w, KI
w} and {KP

v, KI
v}, by

means of (13);
 - choose the values of the parameters α and Be of the
TS-PI-FC and apply (14) resulting in the value of BΔe;
 - choose the values of the rest of TS-PI-FC
parameters, {Bw, Bv, BΔw, Bs} by using the
recommended calues.

Among the advantages of the presented method for
development, implementation and use, it can be
highlighted that the method can be seen also as a low
cost solution. This solution ensures also a bumpless
transfer from one linear PI controller to another and a
quasi-optimal behavior of the control system with
respect to both reference and disturbance inputs.

4. APPLICATION

A simple application of the proposed development
method is exemplified for a case study that can
correspond to the speed control of a separately
excited armature controlled DC motor. The P is
characterized in its linearized simplified form by the
transfer function (1), with kP =1 and TΣ = 1 sec. The
development steps presented in Section 3 enable the
development of the TS-PI-FC as follows.

There are chosen the two values of the design
parameter, βw = 9 and βv = 16 (the case β=4
corresponds to Kessler’s case (Ǻström and Hägglund,
1995)), for a v = v3 disturbance input. These values
correspond, in terms of Table 2, to τ = 1.7321 sec and
ρ = 2.8844 for minimizing I2g in wr and I2c in vr,
respectively. Then, the tuning parameters of the
continuous PI controllers are obtained from (11): kc

w=
0.037 and Ti

w= 9 sec for PI-C-w, and kc
v= 0.0156 and

Ti
v= 16 sec for PI-C-v. Then, for the TS-PI-FC there is

chosen the value of the sampling period as h = 0.02
sec, and the discretization of PI-C-w and PI-C-v by
using (13) results in: KP

w = 0.333, KI
w = 0.00074, KP

v

= 0.2498, KI
v = 0.00031. By choosing α= 0.9 and Be=

0.5 as in (Precup and Preitl, 1998) for Mamdani PI-
fuzzy controllers, there is applied (14): BΔe = 0.0008.
Finally, the rest of TS-PI-FC parameters take the
recommended values.

This developed TS-PI-FC is compared with two
conventional PI controllers, PI-C-w and PI-C-v. The
behavior of the three resulted control systems is
analyzed by taking into account the following
simulation scenario: a unit step modification of w
followed by a –0.5 step modification of v4 (after 7.5



sec). The three control system structures comprise
also a reference filter Fw (Fig.1) computed for the
medium value of β, β = 12.5 (see the relation (5)).

With respect to this scenario, part of the digital
simulation results are presented in Fig.7 … Fig.9. It
can be observed that the presented digital simulation
results validate the development method.

5. CONCLUSIONS

The paper proposes a new development method for a
Takagi-Sugeno PI-fuzzy controller meant for a class
of second-order plants with integral character. The
method is based on applying the modal equivalences
principle by starting from two basic linear PI
controllers obtained by minimizing three quadratic
performance indices.

There are also derived in this paper new connections
between the design parameter β specific to the ESO
method and the weighting coefficients specific to the
QPIs in case of dynamic regimes with respect to step
modifications of four types of disturbance inputs (v).

The use of a Takagi-Sugeno-type fuzzy controller is
successful in this case due to the linear dependence
of each rule on the inputs that makes the TS-PI-FC to
play the role of a bumpless interpolator between the
two linear PI controllers separately designed with
respect to w and v. Hence, the fuzzy control systems
containing the proposed TS-PI-FC can be considered
as quasi-optimal with respect to w and v.

Fig. 7. Variables y and u versus time for PI-C-w.

Fig. 8. Variables y and u versus time for PI-C-v.

Fig. 9. Variables y and u versus time for TS-PI-FC.

Another version of bumpless interpolation is to re-
compute the initial conditions (past values) of
variables from the digital PI controllers.

The simplicity of TS-PI-FC structure and the
flexibility and transparency of the development
method makes it a low cost solution that can be
extended with supplementary features to more
complex applications. Nevertheless, the rigorous
analysis in all applications must be performed.
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