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Abstract: The problem of identifying the parameters of the constituent local linear models
of Takagi-Sugeno fuzzy models is considered. In order to address the tradeoff between
global model accuracy and interpretability of the local models as linearizations of a nonlinear
system, two multi-objective identification algorithms are studied. Particular attention is paid
to the analysis of conflicts between objectives, and we show that such information can be
easily computed from the solution of the multi-objective optimization. This information
is useful to diagnose the model and tune the weighting/priorities of the multi-objective
optimization. Moreover, the result of the conflict analysis can be used as a constructive
tool to modify the fuzzy model structure (including membership functions) in order to meet
the multiple objectives. The methods are illustrated on an experimental lungs respiration
application.
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1. INTRODUCTION

We consider the problem of identifying the parame-
ters of the constituent local linear models of Takagi-
Sugeno fuzzy models (Takagi and Sugeno 1985). It is
well known that several tradeoffs are involved in this
problem. Models identified by minimizing the global
prediction error need not have constituent local linear
models which are interpretable as valid linearizations
of the underlying nonlinear system (Murray-Smith
and Johansen 1997, Shortenet al. 1999, Johansenet
al. 2000, Yenet al.1998, Abonyi and Babǔska 2000).
In the same references it is also shown that when iden-
tifying the local linear models by minimizing individ-
ual locally weighted prediction error criteria, the iden-
tified local linear models have locally valid interpre-
tations as linearizations, under assumptions on iden-
tifiability and persistence of excitation. On the other
hand, the global prediction performance is typically
inferior to what can be achieved with a global per-
formance criterion. The lack of local interpretability
with global identification is also closely linked to poor
identifiability and/or the choice of fuzzy membership
functions. This is partly due to the interaction between
the local models, or the “degree of orthogonality”

among them, which is related to the degree of overlap
between their associated membership functions and
the degree of smoothness of the model (Murray-Smith
and Johansen 1997). In other words, with a global
identification approach there is a tradeoff between lo-
cal interpretability and smoothness.

In this work we explicitly address the tradeoffs be-
tween local interpretability of the local models as
linearizations, and the prediction performance of the
global model. The objective is to identify smooth
Takagi-Sugeno fuzzy models with local models that
have valid interpretations as local linearizations while
minimizing the model’s global prediction perfor-
mance. The main idea is to formulate the problem as a
multi-objective optimization problem, which is a nat-
ural approach since the problem, as specified above,
consists of several conflicting objectives. Minimizing
a weighted sum of global and local prediction error
criteria was also suggested in (Yenet al. 1998) for
Takagi-Sugeno fuzzy models, and the present work
extends this in the sense that we provide tools for
analysis of the conflicts among objectives and thus
methods for selecting the weights or priorities among
conflicting objectives. Next, we suggest an alterna-
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tive two-step multi-objective identification algorithm.
The conflict between global performance and local
interpretability was also discussed in (Passaquayet
al. 2000), where a measure for consistency between
the two objectives was suggested.

2. TAKAGI-SUGENO FUZZY MODEL

The framework presented here is the identification of
dynamic Takagi-Sugeno fuzzy input/output models of
the form (Takagi and Sugeno 1985)

y(t) =
N∑

i=1

(
− a1,iy(t− 1)− · · · − any,iy(t− ny)

+b0,iu(t) + · · ·+ bnu,iu(t− nu) + di

)
wi(z(t))

+e(t) (1)

whereu(t) ∈ Rr is the input,y(t) ∈ Rm is the output,
e(t) ∈ Rm accounts for unmodelled phenomena and
z(t) ∈ Rd is a vector of premise variables derived
from the information vector

ψ̃(t) = (−y(t− 1), ...,−y(t− ny), u(t),

u(t− 1), ..., u(t− nu))T

Fuzzy models of the form (1) result from fuzzy infer-
ence on a set of fuzzy rules

IF z(t) ∈ Zi THEN

y(t) = −a1,iy(t− 1)− ...− any,iy(t− ny)

+b0,iu(t) + ... + bnu,iu(t− nu) + di

where the premise is defined by a fuzzy setZi ⊂ Rp

and the consequent is a local linear dynamic model.
The functionwi : Rp → [0, 1] is defined by the
membership functionsµi : Rp → [0, 1] of Zi

wi(z) =
µi(z)∑N

j=1 µj(z)
(2)

The only assumption we make on the set of fuzzy
rules is that it is complete such that for allz,
µj(z) > 0 for some j, and (2) is well defined.
Eq. (1) can be reformulated into a form that is more
convenient for system identification by introducing
the definitionsψ(t) = (ψ̃T (t), 1)T and θi(t) =
(a1,i, ..., any,i, b0,i, ..., bnu,i, di)T , whereψ(t) is the
information vector augmented with a constant ele-
ment, andθi are the possibly unknown parameters
associated with the local linear model of thei-th rule.
With these definitions

y(t) =
N∑

i=1

ψT (t)θiwi(z(t)) + e(t) (3)

Furthermore, defining

ϕ(t) =




ψ(t)w1(z(t))
...

ψ(t)wN (z(t))


 , θ(t) =




θ1
...

θN


 (4)

the linear regression form follows:

y(t) = ϕT (t)θ + e(t) (5)

2.1 Global identification algorithm

The objective of this algorithm is to identify the lo-
cal model parametersθ1, ..., θN that give a global
model with the best prediction performance (Takagi
and Sugeno 1985). Consider the global least squares
prediction error criterion

V (θ) =
1
n

n∑
t=1

(y(t)− ϕT (t)θ)2 (6)

subject to equality and inequality constraints on the
parameters

Hi(θi) = 0, Fi(θi) ≤ 0, i = 1, 2, ..., N (7)

whereHi andFi are affine functions ofθi. The use-
fulness of such constraints in order to improve the
accuracy and robustness of the estimate is shown in
(Johansenet al. 2000, Abonyiet al. 2000) and the
references therein.

2.2 Locally weighted identification algorithm

The objective of this algorithm is to identify local
model parametersθ1, ..., θN that give local models
which are close local approximations to the under-
lying nonlinear system (Johansen and Foss 1993,
Murray-Smith and Johansen 1997). Consider a locally
weighted least squares prediction error criterion asso-
ciated with each local model

Vi(θ) =
1
n

n∑
t=1

(y(t)− ψT (t)θi)2wi(z(t)) (8)

subject to the constraints (7). The weighting factor
wi(z(t)) ensures that the parametersθi are influenced
only by the data points within the fuzzy setZi that
defines the region of validity of thei-th local model.

3. MULTI-OBJECTIVE IDENTIFICATION
ALGORITHM I

It was suggested in (Yenet al. 1998) to minimize the
weighted sum of the global and local identification
criteria (6) and (8). Here we apply a slight extension,
including the constraints (7) and individual weighting
parameters for each of the individual local models.
The algorithm solves the optimization problem

min
θ

(
V (θ) +

N∑

i=1

βiVi(θi)

)
(9)

subject to (7). The weighting parametersβi ≥ 0 pa-
rameterize the set of Pareto-optimal solutions of the
underlying multi-objective optimization problem, and



essentially determine the tradeoff between the possi-
bly conflicting objectives of global model accuracy
and local model interpretability.

The selectionβi = 1 in the multi-objective criterion
(9) will in general give a fairly balanced tradeoff, due
to the use ofwi (which forms a partition of unity)
for weighting in (8). It is still of interest to study in
detail how the choice ofβ influences the tradeoff. This
problem is not discussed in detail in (Yenet al.1998).
In particular, it is of interest to analyze the degree of
conflict between the different objectives in (9) for a
given data sequence and different values ofβ.

In this section, let the minimum of (9) be denotedθ̂(β)
for a given data sequence and a vector of weightsβ.
The minimum of (9) satisfies the Karush-Kuhn-Tucker
(KKT) conditions (Luenberger 1984)

0 =
∂V

∂θ
(θ̂(β)) +

N∑

i=1

βi
∂Vi

∂θ
(θ̂(β)) (10)

+
N∑

i=1

µ̂T
i (β)

∂Fi

∂θ
(θ̂(β)) +

N∑

i=1

λ̂T
i (β)

∂Hi

∂θ
(θ̂(β))

whereµ̂i(β) ≥ 0 andλ̂i(β) are the Lagrange multipli-
ers (vectors) associated with the estimateθ̂i(β) of the
local model parameter vector. If there are no conflicts
among the objectives and constraints, i.e.θ̂(β) mini-
mizes all of the individual objectives simultaneously
and none of the inequality constraints are active, then
each of the terms in (10) will be zero. If there are
conflicts, on the other hand, the directions and lengths
of each of the (vector) terms of (10) will indicate the
degree of conflict and which constraints and objectives
are actually in conflict with each other. For the uncon-
strained case, eq. (10) reduces to

∂V

∂θi
(θ̂(β)) + βi

∂Vi

∂θi
(θ̂(β)) = 0 (11)

Define the following sensitivity measures associated
with each parameterθi,j , which is thej-th parameter
in thei-th local model:

πg
i,j(β) =− ∂V

∂θi,j
(θ̂(β)) (12)

πl
i,j(β) =− ∂Vi

∂θi,j
(θ̂(β)) =

1
βi

∂V

∂θi,j
(θ̂(β)) (13)

The quantityπg
i,j(β) can be interpreted as the small

decrease in the global identification criterionV that
can be achieved by a small increase inθ̂i,j(β). Like-
wise, the quantityπl

i,j(β) can be interpreted as the
small decrease in the local identification criterionVi

that can be achieved by a small increase inθ̂i,j(β).
Hence, large values ofπg

i,j(β) and πl
i,j(β) indicate

conflicts between global and local performance. No-
tice that due to (11)

πg
i,j(β) + βiπ

l
i,j(β) = 0 (14)

An analysis ofπg
i,j(β) and πl

i,j(β) can provide the
user with significant information about the model and
data, as illustrated in the example below.

4. MULTI-OBJECTIVE IDENTIFICATION
ALGORITHM II

The idea is to first compute the locally weighted esti-
mates̃θi as described in section 2.2. In the second step
of the algorithm the global least squares prediction
error is minimized subject to small deviations of the
relevant parameters from the locally identified param-
eters, i.e.

min
θ

V (θ) (15)

subject to (7) and

θ̃i −∆θi ≤ θi ≤ θ̃i + ∆θi (16)

for i = 1, 2, ..., N . The allowed deviation∆θi from
the locally identified parameters̃θi might be specified
by the user and/or might be generated from some un-
certainty estimate (e.g. standard deviation) of the lo-
cally weighted estimatẽθi. Hence, it is guaranteed that
the local model parameters retain their interpretability
as local linearizations (within a user-specified toler-
ance) when they are tuned for global model perfor-
mance in the second step of the algorithm. Notice
that the interpretability of the local model parameters
as linearizations may or may not involve the offset
parametersdi. Hence, depending on the application,
the offset parametersdi may in some cases be allowed
to vary freely in the global optimization (15).

Also with this algorithm, a study of the KKT condi-
tions contains information on conflicts between the
objectives. In particular, it is useful to study the La-
grange multipliers associated with the deviation con-
straints (16). A zero Lagrange multiplier associated
with some constraintθi,j ≤ θ̃i,j + ∆θi,j (or θ̃i,j −
∆θi,j ≤ θi,j) means that the global prediction per-
formance cannot be improved by increasing the al-
lowed deviation∆θi,j alone since the Lagrange mul-
tiplier λ̂i,j has the following sensitivity interpretation
(Luenberger 1984):

λ̂i,j =− ∂V

∂∆θi,j
(θ̂) (17)

On the other hand, the non-negative value of the La-
grange multiplierλ̂i,j tells us how much the global
prediction error criterionV (θ) might be reduced by a
small increase in the allowed deviation∆θi,j . Thus,
it is straightforward to determine those local model
parameters that contribute to the conflict between ob-
jectives; they have non-zero Lagrange multipliers for
some associated constraint.

5. EXPERIMENTAL RESULTS: ESTIMATION OF
LUNGS RESPIRATION DYNAMICS

In order to further illustrate the suggested methods,
we consider the problem of estimation of respira-
tion dynamics parameters described in (Babuška et
al. 2001). This is important for monitoring respi-
ratory mechanics in patients on ventilatory support,
for example to assess patients’ pulmonary conditions
(for which the interpretability of the local model pa-
rameters is of vital importance) and to automatically
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Fig. 1. Subset of a typical data sequence with respira-
tory data.

control or optimize the ventilator settings (for which
the global model accuracy may be more important).
Consider the following dynamic relationship (Peslin
et al.1992, Lauzon and Bates 1991)

P = EV + R
dV

dt
+ P0 (18)

where V (`) is the lungs volume,V̇ (`/s) is the
flow rate through the ventilation tube, andP (hPa) is
the pressure. We consider identification of the three
parameters of this equation, namely the respiratory
elestanceE (hPa/̀ ), the resistanceR (hPa· s/̀ ) and
the elastic recoil pressureP0 (hPa). This problem is
viewed as a regression problem where Takagi-Sugeno
fuzzy models consisting of multiple linear models of
the form

P = EiV + Ri
dV

dt
+ P0,i (19)

are identified. In other words, the models predictP as
a function ofV andV̇ . Consider three different fuzzy
model structures, each with 4 local models of the form
(19).

• Model Structure A : A fuzzy model where the
membership functions are identified using the al-
gorithm described in (Johansen and Foss 1995).

• Model Structure B: A fuzzy model where the
membership function are selected ”manually” to
be consistent with the experiments using fuzzy
clustering reported in (Babuškaet al.2001).
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Fig. 2. Top: Partitioning of input domain for model
structure A. Middle: Partitioning of input domain
for model structure B. Bottom: Partitioning of
input domain for model structure C. The rectan-
gles provides a simplified illustration of the fuzzy
sets.

• Model Structure C: Similar to Model Structure
B, with with somewhat different membership
functions.

In the continuation we assume the membership func-
tion of these three model structures are fixed, and
consider identification of the consequent parameters.

A single cycle from a typical data sequence is shown
in Figure 1. The respiration cycle consists of three
phases; i) inspiration phase (forced inlet flow), ii) res-
piration pause (no flow) and iii) expiration phase (free
outlet flow). Figure 2 illustrates the fuzzy partition of
the three model structures under consideration, with
the identification data sequence projected onto the
plane described by(V, V̇ ). The identification data se-
quence consists of measurements from 10 respiration
cycles for a single patient. Notice that patients may
have different respiration dynamics, so it is generally
desirable to identify a model for each patient (Babuška
et al.2001).

For each of the model structures A, B and C we
identified the local model parameters using i) locally
weighted least squares, ii) least squares, iii) multi-
objective algorithm I withβ∗ = 1, and iv) multi-
objective algorithm II with∆θ∗ = 1. The results are
given in Tables 1, 2 and 3. The average RMS residuals
for these cases are given in Table 4, and the sensitivity



measures associated with the multi-objective identifi-
cation algorithms are shown in Figure 3.

Table 1. Local parameters of model struc-
ture A, using different identification meth-
ods. Algorithm I is withβ∗ = 1 and algo-

rithm II is with ∆θ∗ = 1.

Region Param. LWLS LS Alg. I Alg. II
E 38.93 -696.5 33.93 39.88

A1 R 9.329 -12.84 6.469 8.329
P0 3.038 565.5 7.092 4.038
E 28.36 -1.364 23.57 27.36

A2 R 20.93 26.67 22.80 21.93
P0 0.9699 1.429 1.371 -0.031
E 42.47 21.20 42.14 41.47

A3 R 13.47 12.66 13.05 12.63
P0 -0.1901 10.42 0.075 0.665
E 8.346 25.53 -2.554 7.346

A4 R 23.21 24.33 24.39 24.21
P0 1.822 -1.38 2.265 2.389

Table 2. Local parameters of model struc-
ture B, using different identification meth-
ods. Algorithm I is withβ∗ = 1 and algo-

rithm II is with ∆θ∗ = 1.

Region Param. LWLS LS Alg. I Alg. II
E 12.39 8.578 10.71 11.39

B1 R 22.89 23.18 23.35 23.89
P0 2.080 2.273 2.241 2.318
E 29.86 30.18 29.76 30.48

B2 R 11.89 6.202 10.83 10.89
P0 7.325 12.63 8.100 7.852
E 53.69 60.06 54.74 54.69

B3 R 10.41 9.989 10.12 9.704
P0 -7.809 -10.95 -8.579 -8.582
E 50.85 19.10 51.31 51.36

B4 R 12.83 -1.049 12.42 11.83
P0 -5.029 -2.620 -5.485 -6.029

Table 3. Local parameters of model struc-
ture C, using different identification meth-
ods. Algorithm I is withβ∗ = 1 and algo-

rithm II is with ∆θ∗ = 1.

Region Param. LWLS LS Alg. I Alg. II
E 8.669 -19.49 -6.867 7.669

C1 R 23.15 28.94 23.75 23.50
P0 2.116 -0.381 3.295 3.116
E 29.68 21.18 29.21 29.40

C2 R 11.30 4.342 9.673 10.30
P0 7.736 18.49 9.214 8.736
E 54.37 51.76 53.26 53.92

C3 R 10.47 14.08 10.03 9.468
P0 -8.296 1.486 -7.229 -7.296
E 42.07 -28.53 40.68 41.07

C4 R 13.63 -18.51 12.64 12.63
P0 -1.300 3.004 -1.547 -2.186

Table 4. Root-mean-square residuals.

Model LWLS LS Alg. I Alg. II
Structure A 1.9130 1.1067 1.6854 1.7368
Structure B 1.4631 1.3758 1.4354 1.4209
Structure C 1.9977 1.3859 1.8582 1.8565

5.1 Discussion of the results

There are large differences between the locally and
globally identified local model parameters, especially
with model structure A and C. In many cases, the glob-
ally identified local model parameter estimates ofE
andR are in conflict with their physical interpretation
(e.g. when they are negative). Both the multi-objective
identification algorithms can be used to address this
tradeoff.

When comparing the sensitivities of the conflict anal-
ysis for model structures A and B we observe that
the sensitivities with model structure A are up to one
order of magnitude larger than the sensitivities with
model structure B. This indicates that the use of model
structure A leads to a significant conflict between lo-
cal model interpretability and global prediction accu-
racy, compared to model structure B. Certainly, model
structure A leads to a smaller global prediction error
than model structure B when the models are identified
using global least squares. However, model structure
B admits a more intuitive and appealing interpreta-
tion of its membership functions as the partitioning
of the input domain is closely related to the different
phases of the respiration cycle; region B1 corresponds
to the first part of the inspiration phase, region B2
corresponds to the final part of the inspiration phase,
region B3 includes the respiration pause, while region
B4 contains the expiration phase.

Perhaps more interestingly, we observe that the sensi-
tivities with model structure C are also up to one order
of magnitude larger than the sensitivities with model
structure B. This large difference points out a major
conflict in model structure C, especially since Figure 2
shows that the membership functions are only slightly
different. The only difference is that the fuzzy sets
B1 and B4 (in model structure B) are slightly shifted
and resized versions of C1 and C4 (in model structure
C). The other two fuzzy sets are exactly the same
in both model structures. Hence, the conflict analysis
for model structure C points out a structural problem,
namely that there will be a conflict between global
prediction performance and local interpretability due
to an unfortunate interaction between the membership
functions for the fuzzy sets C1 and C4. As ”proved”
by model structure B, this conflict can be resolved by
a small modification of these fuzzy sets.

As expected, a high level of sensitivity (or conflict)
seems to be correlated with a high dependence of the
residuals on which parameter identification criterion
is being used, see Table 4. Especially for model struc-
tures A and C, there is a large difference between
locally weighted least squares and the global least
squares algorithms, while this difference is small for
model structure B.

In summary, it is clear that model structure B is
better than A and C, even though this is not evident
from only inspecting the residuals in Table 4. The
conflict analysis can be used as a constructive tool to
assist modification of the model structure, including
membership functions.

6. CONCLUSIONS

A multi-objective optimization formulation of the
identification problem arises naturally due to the two
conflicting objectives. In this paper we have studied
two multi-objective formulations (one of them was
previously proposed in (Yenet al. 1998)) and sug-
gested algorithms for their solution and tools for anal-
ysis of the solution in terms of conflicts and sensitiv-
ity. As shown by the example, this conflict/sensitivity
analysis provides useful information not only about
the local model parameter estimates, but also about
the adequateness of the model structure and mem-
bership functions. Hence, we believe multi-objective
optimization is a useful tool for Takagi-Sugeno fuzzy
identification.
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Right column: Sensitivities with model structure C.
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