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1. INTRODUCTION

Fault tolerant control (FTC) is a research area
of increasing importance, due to the growing de-
mand for system safety and availability. Reliabil-
ity analysis provides probabilistic evaluations of
the system ability to perform correctly and allows
the design of systems with given reliability perfor-
mances (Blanke, 1996). As far as real time con-
trol is concerned, FTC can be achieved through
fault accommodation or through control recon-
figuration (Staroswiecki and Gehin, 2000). Fault
accommodation is the problem of controlling the
faulty system, which rests on fault detection, iso-
lation and estimation schemes. It is strongly re-
lated to robust control, whose framework can be
used for the simultaneous design of control and
diagnosis schemes (Stoustrup and Grimble, 1997),
(Jacobson and Nett, 1991). Reconfiguration is the
problem of replacing the faulty part of the system
by a non-faulty one, so as to still achieve the
control objectives. Reconfiguration strategies only
need fault detection and isolation procedures.

Recoverability is concerned with the possibility
either to accommodate the faults or to reconfig-
ure the system when faults occur. It has been
considered from the point of view of the sys-

tem structural properties, e.g. observability or
controllability, extending the evaluation of these
properties to the faulty system. For example, the
smallest second order mode, first introduced in
(Moore, 1981), has been proposed as a reconfig-
urability measure in (Wu et al., 2000), while the
determinants of the controllability and observabil-
ity Gramians were preferably suggested in (Frei et
al., 1999). However, these measures characterize
the performance of the system actuation and mea-
surement scheme by itself : rather than a measure
of its fault tolerance, they provide a measure of its
admissibility with respect to energetic constraints.
In (Hoblos et al., 2000) and (Staroswiecki and
Aitouche, 1999), two reconfigurability measures
have been proposed to evaluate the size of the set
of fault tolerant situations, namely the number of
recoverable failures (redundancy degrees) and the
mean time until a non-recoverable failure occurs.

The recoverability problem can also be considered
from the point of view of a specific objective, as
analysed in (Staroswiecki and Gehin, 2000), by
considering the question : “can the objective be
achieved either through fault accommodation or
through system reconfiguration?”
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The aim of this paper is to analyse the fault
tolerance property in the context of the control
problem in the presence of actuator failures (the
analysis of the estimation problem in the presence
of sensor failures is not developed, being dual).

The control and the fault tolerant control problem
are presented in sections 2 and 3, and the ac-
commodation and reconfiguration points of view
are defined when actuator faults occur. Due to
their simplicity and the low requirements they
impose upon the FDI algorithms, reconfiguration
strategies are further analysed. In section 4, fault
tolerant actuation schemes are characterized and
the energy based reconfigurability measure is dis-
cussed. Section 5 gives some concluding remarks.

2. CONTROL PROBLEM

Consider the LTI deterministic system modelled
by

ẋ(t) = Ax(t) + Bu(t) (1)

= Ax(t) +
∑

i∈I

Biui(t)

x ∈ X ⊂ Rn is the state vector and u ∈ U ⊂ Rm is
the control vector (I is the set of the actuators in
nominal operation mode, ui(t) ∈ Rmi is the input
of actuator n◦i ∈ I, and m =

∑

i∈I mi). A and B
are constant matrices of suitable dimensions, and
it is assumed that the pair (A,B) is controllable.
In order to characterize the set of actuators I,
the following standard optimal control problem is
considered:

1) Objective : transfer the system state from
x(0) = γ to x(∞) = 0, where γ ∈ Rn, and x(∞)
stands for limt−→∞x(t),

2) Constraints : eqn. (1) is satisfied ∀t ∈ [0,∞),
x(t) and u(t) are continuous functions of time, and
X = Rn, U = Rm,

3) Criterion : minimize the functional

Q(u, γ) =
∫ ∞

0
‖u(t)‖2 dt (2)

where ‖.‖ is the Euclidian norm (other criteria
could of course be used; the problem above only
provides a ”standard” analysis frame).

The solution of problem (2) is well known from
the classical theory of optimal control, and the
optimal value of the criterion is given by

Q(I, γ) = γ̃W−1
c (I)γ (3)

where Wc(I) is the controllability Gramian, which
is invertible since the pair (A,B) is controllable

(M being some matrix, the notation M̃ stands
for the transpose of M).

Eqn. (3) shows that the performance of the actua-
tor set I depends on the control objective. Indeed,

Γ = {γ ∈ Rn, s.t. γ̃W−1
c (I)γ ≤ 1}

represents the set of points in the state space
from which the origin can be reached with control
energy less than 1. The characterization of the
actuation scheme I independently of the control
objective γ leads to consider the worst control
problem from the energetic point of view : transfer
the system state from x(0) = γ∗ to x(∞) = 0,
where

γ∗ = arg max
‖γ‖=1

Q(I, γ)

The set of actuators I is thus characterized by
the maximum eigenvalue of W−1

c (I) which is
interpreted as the maximum energy which might
be required to transfer the system state from
x(0) = γ to x(∞) = 0 for some γ ∈ Rn such
that ‖γ‖ = 1,

Q(I) = Q(I, γ∗) = λmax
[

W−1
c (I)

]

(4)

3. FAULT TOLERANT CONTROL

The FTC problem is concerned with the existence
of admissible solutions to the control problem (in
a sense which will be defined later) when actuators
fail. Let I = IN (t) ∪ IF (t) where IN (t) is the
subset of the normal actuators while IF (t) is the
subset of the faulty ones at some given time t.
Since the changes in the sets IN (t) and IF (t) only
occur when actuators fail (repair operations are
not considered here), they are rare events with
respect to the system dynamics, and the notation
is simplified into IN and IF . The faulty system
behaviour is described by

ẋ(t) = Ax(t) +
∑

i∈IN

Biui(t) +
∑

i∈IF

βi(ui(t), θi)

(5)

where βi(ui(t), θi) describes the contribution of
the faulty actuator i. This vector may be known,
or known with unknown parameters θi or com-
pletely unknown, depending on the faults which
are considered, and of the capability of the FDI
algorithm to estimate them. The objective, con-
straints and criterion of the FTC problem are
identical to those of the control problem, with
the exception of constraint (1) being replaced by
constraint (5).

Analysing the FTC problem rises two questions,
namely

1) can this problem be properly stated, and



2) can this problem be solved.

FTC problem statement. The identification
of the subset IF of faulty actuators is normally
done by the FDI algorithm, which detects and
isolates the faults. The statement of the con-
straints resumes to the identification of the func-
tions βi(ui(t), θi), i ∈ IF . This is not usually done
by FDI algorithms, and could be referred to as a
diagnostic possibility, which rests on fault mod-
elling and on fault parameter identification, and
it could be - or not - provided by the FDI sys-
tem, thus leading to distinguish two approaches,
namely fault accommodation and system reconfig-
uration.

Problem solution. The problem solution exists
provided the objective x(∞) = 0 can still be
reached from the initial state x(0) = γ (the cost
might however be prohibitive; this point will be
addressed later). When solutions are needed to
exist for any objective γ, it is necessary that
system (5) be still controllable.

3.1 Fault accommodation

Accommodation strategies consider the control
problem associated with the faulty system. In this
situation the FTC problem has to be analysed
replacing eqn. (5) by

ẋ(t) = Ax(t) +
∑

i∈IN

Biui(t) +
∑

i∈IF

β̂i(ui(t), θ̂i)

(6)

where the functions β̂i(ui(t), θ̂i) and parameters
θ̂i, i ∈ IF are known or estimated. This approach
obviously needs some fault models to be defined,
and the conclusions will certainly hold when the
actual fault(s) obey that model, which is true
in very few cases and for very specific kinds of
faults (see (Demetriou and Polycarpou, 1998) for
example of recent works using this approach).

3.2 System reconfiguration

Reconfiguration strategies set the control prob-
lem of a system in which the faulty part has
been switched off. The choice of a reconfiguration
strategy might follow from the impossibility of
estimating the fault, or it can be deliberate, so
as to implement fault tolerant strategies which
provide guaranteed results, and are as simple and
as understandable as possible by operators.

In many cases, reconfiguration is understood as
the replacement of the faulty part by some non-
faulty one. Considering the problem under investi-
gation, this means that some actuators were not in

service before the fault occurrence and that they
can be switched on after the fault. Let Ioff be the
set of those actuators, which are assumed without
loss of generality to be non-faulty. It obviously
follows that considering from the beginning the
whole set of actuators I∪Ioff reduces the problem
to that of reconfiguring the system Ioff ∪ IN ∪ IF

by simply removing the faulty part. Thus, includ-
ing Ioff within I (namely, into IN ), one can go on
with unchanged notations. In this situation, the
FTC problem has to be analysed replacing eqn
(5) by

ẋ(t) = Ax(t) +
∑

i∈IN

Biui(t) (7)

3.3 Admissible solutions and the definition of fault
tolerance

Suppose some fault situation IF ⊂ I such that
the FTC problem can be formulated (using ei-
ther accommodation or reconfiguration) and has
a solution, i.e. the system state can be transferred
from x(0) = γ to x(∞) = 0, and let Q(IN , γ) be
the corresponding (minimal) energy cost. Obvi-
ously, the fact that a solution exists does not mean
that it is satisfactory. Indeed, two cases can be
distinguished : in the first one, the control energy
needed is of no importance provided the system
objective is achieved in spite of the fault. In this
case, the actuation scheme I is fault tolerant with
respect to the situation IF if and only if system
(6) - when accommodation is used - or (7) - when
reconfiguration is concerned - is controllable. In
the second case, some energy limitation constraint
is considered : indeed, the control energy, although
optimal, might be too high, thus denying the ac-
tuation scheme I to deserve the ”fault tolerant”
label with respect to the situation IF .

Definition 3.1. : Let IF be a fault situation. The
solution of the FTC problem is admissible with
respect to the control objective γ if and only if

Q(IN , γ) ≤ σ(γ) (8)

where σ(γ) is some predefined function.

The quantity

τ(γ) =
σ(γ)

γ̃W−1
c (I)γ

where τ(γ) ≥ 1 can be interpreted in terms of
admissible loss of efficiency of the actual actuation
scheme IN with respect to the nominal one I when
the objective γ is to be achieved. Four special
choices of σ(γ) will be discussed below :



• σ(γ) = ∞,∀γ ∈ Rn. In this case, fault
tolerance is only concerned with the existence
of an optimal solution, whatever its cost, thus
resuming the fault tolerance property to the
permanence of the controllability property,

• σ(γ) = σ < ∞, ∀γ ∈ Rn, ‖γ‖ ≤ 1 defines
a uniform bound for the energy spent in
controlling the faulty system, whatever the
initial state in the unit sphere,

• σ(γ) = τ.γ̃W−1
c (I)γ, ∀γ ∈ Rn defines a

uniform bound for the loss of efficiency in
the control of the faulty system, whatever the
control objective.

• σ(γ) = γ̃W−1
c (I)γ + ∆σ where ∆σ is some

given constant is interpreted as the definition
of a uniform bound for the overcost when
controlling the faulty system, whatever the
control objective (it will be seen below that
this choice is not sound, unless the admissi-
bility condition is required to hold only in a
bounded region of Rn).

Based on the definition of admissibility, fault
tolerance can be defined as follows.

Definition 3.2. : The actuation scheme I is fault
tolerant with respect to the fault situation IF and
the control objective γ if and only if the recovery
problem has an admissible solution for γ.

4. FAULT TOLERANT ACTUATION
SCHEMES

Due to their simplicity and the low requirements
they impose upon the FDI algorithms, only recon-
figuration strategies are now considered.

4.1 Fault tolerance characterization

The solution of the recovery problem under the
constraints (7) exists and is admissible for any
objective γ ∈ Rn if and only if

1) (A,BN ) is controllable
2) γ̃W−1

c (IN )γ ≤ σ(γ) ∀γ ∈ Rn

Obviously, as it has already been noticed, the
second condition is always satisfied when σ(γ) =
∞, ∀γ ∈ Rn is chosen. For the actuation scheme
I to be fault tolerant through reconfiguration
with respect to the situation IF it is necessary
and sufficient that the non-faulty actuators keep
the system controllable (see (Hoblos et al., 2000)
for the determination of the subsets of actuators
which enjoy this property).

The following results characterize the conditions
under which the actuation scheme I is fault tol-
erant through reconfiguration with respect to the

situation IF under the other definitions of admis-
sibility.

Theorem 4.1. : The actuation scheme I is fault
tolerant through reconfiguration with respect to
the situation IF under the admissibility condition

γ̃W−1
c (IN )γ ≤ σ ∀γ ∈ Rn, ‖γ‖ ≤ 1

if and only if

1) (A,BN ) is controllable

2)
µ1 ≤ σ where µ1 is the maximal
eigenvalue of W−1

c (IN )

Proof : evident from (4).

Theorem 4.2. : The actuation scheme I is fault
tolerant through reconfiguration with respect to
the situation IF under the admissibility condition

γ̃W−1
c (IN )γ

γ̃W−1
c (I)γ

≤ τ ∀γ ∈ Rn

if and only if

1) (A,BN ) is controllable

2)
{

µ2 ≤ τ where µ2 is the maximal root of :
det [Wc(IN )− µ2Wc(I)] = 0

Proof : the first condition is necessary and suf-
ficient for solutions to exist for any objective
γ ∈ Rn. The second condition means that these
solutions are admissible. Indeed, the admissibility
condition can be written

max
γ∈Rn

γ̃W−1
c (IN )γ

γ̃W−1
c (I)γ

≤ τ

The well known solution of the maximization is
provided by

max
γ∈Rn

γ̃W−1
c (IN )γ

γ̃W−1
c (I)γ

= µ2

where µ2 is the maximal root of the matrix pencil

W−1
c (IN )− µ2W−1

c (I)

which is also the maximal root of the matrix pencil

Wc(I)− µ2Wc(IN ) (9)

(end of proof).

The result can also be stated in terms of the
submatrix BF of the faulty actuators. Indeed, by
eventually re-arranging the components of u one
has :

B = [BN , BF ] =⇒ BB̃ = BN B̃N + BF B̃F

and:

Wc(I) = Wc(IN ) + Wc(IF ) (10)



from which the matrix pencil (9) writes :

(1− µ2)Wc(IN ) + Wc(IF )

leading to the admissibility condition :

λ ≤ τ − 1

where λ is the maximal eigenvalue of the matrix
Wc(IF )W−1

c (IN ).

Consider now the last admissibility condition :

γ̃W−1
c (IN )γ ≤ γ̃W−1

c (I)γ + ∆σ ∀γ ∈ Rn

Factorizing W−1
c (IN ) on the left and W−1

c (I) on
the right, and making use of (10) gives :

γ̃W−1
c (IN )Wc(IF )W−1

c (I)γ ≤ ∆σ ∀γ ∈ Rn

which shows that such a definition is not sound,
the inequality being inhomogeneous (multiplying
γ by a scalar factor can give arbitrary large values
to the left hand member). The interpretation is
that the overcost indeed depends on the control
objective, and cannot be bounded by a constant
for any point in Rn. However, this can be required
for a bounded region, e.g. a set defined by ΓQ =
{

γ ∈ Rn, 1
2 γ̃Qγ ≤ 1

}

where Q is some symmetric
positive definite matrix. In that case, the following
result holds.

Theorem 4.3. : The actuation scheme I is fault
tolerant through reconfiguration with respect to
the situation IN under the admissibility condition
:

γ̃W−1
c (IN )γ ≤ γ̃W−1

c (I)γ + ∆σ ∀γ ∈ ΓQ ⊂ Rn

if and only if :

1) (A,BN ) is controllable

2)
{

µ3 ≤ ∆σ where µ3 is the maximal root of :
det [Wc(IF )− µ3Wc(IN )QW (I)] = 0

Proof : it directly follows from the maximization
of γ̃W−1

c (IN )Wc(IF )W−1
c (I)γ under the quadratic

constraint on γ (end of proof).

4.2 Fault tolerance evaluation

Structural and probabilistic measures of fault tol-
erance have been proposed in both situations
where energy limitation constraints are, or are
not, taken into account for the definition of ad-
missibility in (Hoblos et al., 2000), (Staroswiecki
and Aitouche, 1999).

When σ(γ) = ∞, ∀γ ∈ Rn, the control energy,
which acts no more as a constraint, has also been

proposed as a measure of fault tolerance. Indeed
let

SN =
{

IN ∈ 2I s.t. (A,BN ) is controllable
}

and let Q(IN ) = max‖γ‖≤1 Q(IN , γ) be the worst
case energy cost in some situation IN ∈ SN

(e.g. the quantities µ1 and µ2 in the preceding
section). Since (SN ,⊆) is a partial order, mini-
mal elements exist, which are subsets of actuators
through which the system is controllable, and such
that controllability is lost when any of them is
switched off. Let Smin be the subset of such mini-
mal elements. From common sense considerations,
one has

J1 ⊆ J2 ⊆ SN =⇒ Q(J1) ≥ Q(J2)

since the energy cost needed to achieve the ob-
jective cannot decrease when actuators are lost.
Thus, the worst fault situation from an energetic
point of view has to belong to Smin, and the
energy-based measure of fault tolerance can be
evaluated by

Q∗ = max
J∈Smin

Q(J)

The interpretation is as follows : the system fault
tolerance is evaluated by means of the energy cost
(in absolute or in relative terms) of the worst
situation in which the system is still controllable.
Since the control energy does not act as a con-
straint, the system is really fault tolerant in any
situation of SN , in the sense that the recoverabil-
ity problem has an admissible solution. It follows
that the energetic cost does not really measure the
system reconfigurability, but it merely evaluates
the quality of the solutions when they exist. This
can also be seen by considering a non-fault toler-
ant situation, namely a set of actuators J ∈ Smin.
By definition of Smin the standard control problem
has an admissible solution, and Q(J) measures the
energy cost for the worst objective γ such that
‖γ‖ = 1. Obviously, the system is not fault tol-
erant through reconfiguration, while any positive
value of Q(J) could be obtained, depending on the
system parameter values.

5. EXAMPLE

Consider a MIMO system with 7 states, and 4
actuators : I = {a, b, c, d}. The matrices A and B
are as follows,

A = diag {−1,−0.5,−3,−4,−2,−1.5,−2.5} ,

B̃ =









0 1 1 1 1 1 0
1 0 1 1 1 0 1
1 1 0 1 0 1 1
1 0 1 0 1 1 1











The Gramian maximal eigenvalue is λmax
[

W−1
c (I)

]

=
0.4357 energy units.

Assume that admissible solutions are defined such
that the worst situation control cost should not
exceed 1.125 energy units. Then, there are 10 fault
situations in which the system is controllable,
namely {a, b, c, d} , {b, c, d} , {a, c, d} , {a, b, d} ,
{a, b, c} , {c, d} , {b, c} , {a, d} , {a, b} , {a, c}, but
only 6 of them are admissible when energy limi-
tation is considered, as shown by Table 1.

Just for illustration, let us evaluate the fault
tolerance by means of structural and probabilistic
measures, as proposed in (Hoblos et al., 2000),
(Staroswiecki and Aitouche, 1999). The strong
redundancy degree of {a, b, c, d} is equal to one,
which means that any single actuator can fail
while the standard control problem still exhibits
an admissible solution. Besides, assume that the
actuators reliabilities are given by exponential
laws with constant failure rates, all equal to λ =
0.4 × 10−5H−1, and let MTUFTL be the mean
time until the fault tolerance property is lost.
Table 1 shows the actuators subsets for which the
system is controllable, and the associated λmax

and MTUFTL (non admissibility is shown by
bold characters).

Actuator
subsets

λmax

(energy units)
MTUFTL
(105 hours)

{a, b, c, d} 0.4357 1.666
{b, c, d} 1.1197 0.833
{a, c, d} 0.4676 0.833
{a, b, d} 0.8274 1.25
{a, b, c} 0.4778 1.25
{c,d} 3.0201 −
{b, c} 1.3948 −
{a,d} 2.2576 −
{a, b} 1.0612 1.25
{a, c} 1.1452 −

Table 1 : Admissible actuators subsets and
associated characteristics

6. CONCLUSION

In this paper, the fault tolerance problem has been
analysed through accommodation and reconfigu-
ration strategies. Investigation about the system
reconfigurability has been developed taking (or
not) into account energy considerations, and nec-
essary and sufficient reconfigurability conditions
have been given for different definitions of admis-
sibility. Reconfigurability measures based on the
controllability Gramian, which have been recently
proposed in the literature have been shown not to
constitute a fault tolerance measure, but to apply
only in a limited frame to evaluate the quality of
the control which can be achieved by a (fault tol-

erant or non fault tolerant) control scheme. This
is obviously an off-line analysis, which rests on
the definition of a standard problem, namely the
minimum energy control problem on an infinite
horizon. Other standard problems could be con-
sidered, e.g. the classical LQ problem with states
and controls entering the cost functional. The
real-time control problem has not been consid-
ered. Indeed, it should be stated in a completely
different way, namely a hybrid system formula-
tion, because the transitions from one operating
set of actuators IN (t) to the next one IN (t + dt)
need in that case to be explicitly considered.
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