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Abstract: In this contribution, the identification and control of nonlinear SMB-
chromatographic processes are discussed. Instead of using the physical manipulated process
variables, the flow rates of extract, desorbent, and recycle, and the switching time directly,
a new set of input variables (�-factors) is employed as control inputs to reduce input/output
couplings. A new measure of the front positions of the axial concentration profiles is used as
outputs. Multi-layer neural network models are identified for this nonlinear MIMO system.
The identified model is used in a model predictive control algorithm. In this algorithm a
parameter varying linear model is employed which avoids the on-line computation of the
nonlinear optimization problem. The simulation results show that the identified model gives
a very good approximation of the process models and the LPVMPC scheme has a good
control performance.

Keywords: Simulated-Moving-Bed (SMB), chromatography, neural networks,
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1. INTRODUCTION

Simulated Moving Bed (SMB) chromatography
(Ruthven and Ching, 1989) is an important separation
process in industrial production, especially of fine-
chemical and pharmaceutical products, where difficult
separation tasks often occur. In recent years, a lot of
research concentrated on modelling, simulation and
optimization of the SMB process. A rigorous model
of the SMB process leads to a description by partial
differential equations, which can only be solved nu-
merically with high computational effort. It is difficult
to control the SMB process on-line using such pro-
cess models directly. Therefore, a black-box model is
needed for the use in on-line control.

Recently, some control strategies of the SMB pro-
cess were discussed. Several choices of the input
and output variables for process control were pro-
posed (Kloppenburg and Gilles, 1999), e.g. the prod-
uct purities as controlled variables and external flow
rates as inputs. For controller design, the process
model was used. Identification and control of SMB-
processes with linear isotherm were discussed in
(Dünnebier et al., 2000; Klatt et al., 2000). To reg-
ulate the process around the optimal trajectory, an
IMC controller was designed based upon linear mod-
els of the ARX type. In (Wang et al., 2001) neural
network based model identification was discussed for
a nonlinear SMB process. In this study, a new set of
output variables is defined to simplify the model struc-
ture. The neural network based identification and the

control strategy based on these models are discussed
for a nonlinear SMB process. The remainder of the
paper is organized as follows: In Section 2, a brief
description of the operation of SMB processes is given
and the related identification and control problems are
formulated. In Section 3, the neural network based
identification of the process is discussed. In Section 4,
the LPVMPC controller based on the NN model will
be described. The identified models and the control
strategy are evaluated by simulations, finishing with
some conclusions in the final section.

2. PROBLEM STATEMENT

2.1 Brief description of the SMB process

A typical SMB system is shown in Fig. 1. All columns
are connected in series by pumps and multi-way,
multi-position solenoid valves. The system has two in-
put ports, through which the feed mixture (A+B) and
the desorbing solvent D can continuously be injected
into the system. There are also two withdrawal ports,
from which the separated pure products extract A and
raffinate B are withdrawn. The cascade of columns is
divided into four sections or zones. During the oper-
ation, the four connecting points, desorbent, extract,
feed and raffinate, are shifted after each specified pe-
riod (called as the switching time � ) by one column in
the fluid flow direction. Due to the different adsorp-
tion affinities of the two components in the packed
columns, an extract product (A) is collected at the
extract port and a raffinate product (B) is withdrawn
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from the raffinate port. If the process parameters are
appropriately chosen for a given SMB equipment and
a given separation task, a cyclic-steady-state (CSS),
in which the process undergoes an identical transient
during each switching period, is reached after a start-
up period.
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Figure 1. Schematic diagram of a SMB process

The SMB process can be described rigorously by
a set of partial differential and algebraic equations
(Dünnebier and Klatt, 1999). The dynamics of a single
column in a SMB process are described by the general
rate model in Eq. (1):
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The model is completed by the mass balances at the
nodes and boundary and initial conditions which rep-
resent the switching process. This rigorous model is
employed here for the generation of the identification
data and for simulation of the controlled system.

A two-level control architecture was proposed in (Klatt
et al., 2000) for the control of the SMB process. On
the upper level, the optimal operating trajectory is
calculated off-line by dynamic optimization based on
the rigorous process model. On the lower level, on-line
process control is performed to keep the process on the
optimal trajectory in case of disturbances, plant/model
mismatch and measurement noise. Here a simplified
model which is identified from simulated data of the
rigorous process model is needed. The identification
procedure and the design of the on-line controller will
be covered in the following sections.

2.2 Choice of input and output variables for control

In this study, the same inputs are used as in (Wang et
al., 2001): We assume that the feed flow rate QF and
the feed concentrations cfeedA;B are constant during

the separation in order to maintain a high productivity,
and the extract flow rate QE , the desorbent flow rate
QD, the recycle flow QR and the switching time � are
used as the manipulated variables of the process. To
reduce the strong interactions of the process, the so-
called �-factors, �1;:::;4, are used as the new system
input variables for identification and control, which
were introduced for the computation of optimal op-
erating policies of the SMB-process. They are defined
by a nonlinear input transformation (Dünnebier and
Klatt, 1999):
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where qi(:; :) are the adsorption isotherm functions, c i
are the fluid phase concentrations.

The new system input variables ui are:

u , [u1; � � � ; u4]
T , [�1; � � � ; �4]

T : (3)

The axial profile at the end of a switching period in
CSS is an important characteristic curve of the sepa-
ration process and represents the separation behavior.
The purpose of on-line control is to keep the adsorp-
tion and desorption fronts at their optimal positions.
In (Wang et al., 2001) characteristic points of the
front curves of the axial profiles were used as system
output variables and a related neural network model
was identified. But this choice of the outputs requires
the fronts to be approximately of Gaussian form, and
the structure of the obtained model is still complex. In
this study, a new set of outputs (y1, y2, y3 and y4) is
defined as shown in Fig. 2. Consider the nominal axial
concentration profiles (c(0)a (x), c(0)b (x)). Deviations
from this desired profile result in different shapes and
positions of the observed profiles (c(k)a (x), c(k)b (x))
at instance k. These deviations can be quantified by
the areas between nominal and current profiles. To
reduce the influence of strong deformations of the
front shapes, only the regions between 5% and 60%

percent of the nominal plateau heights are considered,
resulting in the four shaded areas in Fig. 2. These
areas describe profile changes sufficiently well and are
sensitive to the front shifts. But their computations are
not so sensitive to the deformation of the profiles as
the outputs used in (Wang et al., 2001; Dünnebier et
al., 2000). Furthermore, with this choice of the out-
puts, the structure of the obtained model is simple.
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Figure 2. Definition of output variables. Solid line:
CSS profile, dashed line: dynamic profile at the
k-th period.

Formally,

y1(k) =

Z Z
Da1

dc dx; y3(k) =

Z Z
Da2

dc dx

y2(k) =

Z Z
Db1

dc dx; y4(k) =

Z Z
Db2

dc dx:

(4)

Because the real axial concentration profiles cannot
be measured on-line, the Assembled Elution Profile
(AEP) (Dünnebier et al., 2000), which is assembled
from measurements of the elution profiles at the ends
of the columns during a switching period is used as
an approximation of the axial profile. In this work,
we assume that all elution profiles from the individual
columns are measurable and the AEP profiles are used
for identification and control.

Since the values of the inputs are held constant dur-
ing each switching period, the switching time is re-
garded as the discrete sampling time of the system,
and the SMB process is then regarded as a discrete
time MIMO system with four inputs and four outputs.
The identification and the control of such a discrete
time MIMO (4 � 4) system is the main focus of this
study.

3. NEURAL NETWORK BASED
IDENTIFICATION OF PROCESS MODELS

The identification method discussed in (Wang et al.,
2001) is used here for SMB processes with the above
new definition of the output variables. The identifica-
tion procedure will be outlined in the following para-
graphs. A typical laboratory scale nonlinear SMB pro-
cess for the separation of two enantiomers is used as
an example in the study. The process parameters and
the operating point are taken from (Strube et al., 1998)
and also given in (Wang et al., 2001).

3.1 Analysis of the process dynamics

The step responses of the process in Fig. 3 show that
the process is strongly nonlinear and not completely
decoupled, even though its interactions have been
largely reduced by using �-factors as inputs. From

these curves, some rough structural information about
the dynamics of the process can also be extracted for
an initial guess of the model structure. For example,
the inputs which have a strong influence on one output
can be determined, so that the model only contains
those inputs and/or other outputs as model inputs that
have a strong effect on this output.
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Figure 3. Step responses. Solid line: Æ�i = 3%�i0,
dashed line: Æ�i = �3%�i0

Multilayer perceptron feedforward neural networks
(NARX model) are then used as process models for
the problem because of the high dimension of the
input space of the system. To reduce the computational
effort, four (4�1)-MISO sub-models denoted as M 1,
M2, M3 and M4 are identified separately for each out-
put. The i-th MISO NARX model Mi is represented
by the following equation:
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where �i is the parametrized nonlinear function de-
scribed by a MLP neural network with a hidden layer,
'(k) is the regressor, di; yj , di; l are time delays, and
nyi , ni; yj , ni; l are the numbers of lags of the past
outputs and inputs, respectively.

The neural network MISO NARX models were trained
using the Levenberg-Marquardt optimization method.

3.2 Exciting signal

To obtain a set of informative experimental data for
nonlinear identification, a random uniform sequence
(RUS) (Wang et al., 2001) was used as an exciting
input signal. The simulation experiments were con-
ducted under MATLAB based on the general-rate
model in Eq.(1) of the SMB process. A large amount
of data was collected as a training set (data length N =
6500) for the identification, so that the trained model
is not over-estimated and the model structure can be



adjusted correctly according to the gradient informa-
tion. Another independent data set with a length of
500 samples was generated as a test data set for the
validation of the identified models.

3.3 Determination of the structural parameters of the
model

The structural parameters of the model cannot be ac-
curately determined in advance. The gradient method
(Schultz, 1998; Wang et al., 2001) was used to de-
termine the model orders. After training of the NN
model, the average gradients of the output with respect

to the input terms �gi = 1

N
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j
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using the identified models. The average gradient dis-
tribution �gi is then used to adjust the model structure
by adding more important terms to the model and/or
removing less important terms from the model.
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In this way, we modified the structural parameters
for retraining of the model and finally determined all
structural parameters. In addition, another important
structural parameter nH , the number of the neurons
in the hidden layer of the neural networks, was deter-
mined by the SVD (Singular Value Decomposition)
method (Sentoni et al., 1996).

3.4 Identification results

The four MISO neural network-based models were
identified separately using the training data. The ob-
tained model structures are given in Table 1.

Table 1. Model Structures

Models
M1 M2 M3 M4

u fu1; u2; u3g fu2; u3g fu2; u3g fu2; u4g
nyi 3 3 3 4
ni {3, 2, 2} {3, 2} {2, 3} {2, 4}
di {1, 1, 2} {1, 1} {1, 1} {1, 1}
nH �� 6 3 6
nH : the neuron number in the hidden layer of NN.

u: input terms of the model.

An example of the multi-step ahead predictions, and
the pure predictions of the identified NN models on
the validation data are displayed in Fig. 4. The predic-
tions of the NN models are compared with the results
of linear ARX models in Table 2. It can be seen that

some submodels (e.g. M1 and M2) can be accurately
represented by linear models while M3 and M4 can
be much improved using NN model. The NN models
have high accuracy and show a good long range pre-
diction performance.
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Figure 4. a) 10-step ahead prediction and b) pure
prediction of M3

Table 2. Prediction errors of the models

Models Types Pred. Errors (RMSE)

1-step 10-step simu.
M1 linear arx 1.1e-3 2.4e-3 2.58e-3

nn narx not identified
M2 linear arx 6.7e-3 2.68e-2 2.7e-2

nn narx 1.9e-3 1.4e-2 1.95e-2
M3 linear arx 1.04e-2 4.03e-2 5.86e-2

nn narx 3e-3 6.3e-3 1.25e-2
M4 linear arx 2.09e-2 7.32e-2 0.29

nn arx 3e-3 1.9e-2 4.9e-2
Note: 1. predictions are based on validation data.

2. nn narx: neural network nonlinear ARX model.

Because of the limited amount of the experimental
training data, the obtained model has still some kind
of uncertainty, although it has passed the validation
test. As a final indirect proof of the effectiveness of the
identified model, it is applied to control design. This
will be discussed in the next section.

4. LINEAR PARAMETER VARYING MODEL
PREDICTIVE CONTROL (LPVMPC) BASED ON

THE NN MODEL

4.1 The LPVMPC algorithm

If we linearize the NN model, we can obtain a lin-
earized ARX model at each time instance k. Its pa-
rameters vary with the actual process state, as shown
in Fig. 5. This figure demonstrates that the parameters



of the linearized model change strongly at the different
process states. This means that the system dynamics
can also change strongly during the operation.

0 100 200 300 400 500
-1.5

0

1.5

�nn(k) = [ai; bj ], parameters of the linearized ARX model

time [samples], k

Figure 5. Variations of the parameters of the linearized
model obtained from the NN model M3

For such a system a linear MPC scheme can not
achieve a satisfactory result. On the other hand, the
solution of linear MPC problems is simple and the
commercial software is available (e.g. MATLAB MPC
Toolbox) for linear systems. In contrast, nonlinear
MPC is not easily applied because of the difficulty
of the nonlinear optimization problem. Therefore, the
linear parameter varying model (Arkun et al., 1998) is
extended and a linear parameter varying MPC scheme
(LPVMPC) is introduced for the process which is
shown in Fig 6.

SMB

NN model

Adaptation

Parameter

Process

ri yi
Linear MPC

di(t)

Figure 6. Linear Parameter Varying MPC control sys-
tem structure

In Fig. 6, the linear MPC (LMPC) controller and the
nonlinear NN model are the two basic parts. At each
sampling instance the parameters of the controller are
based on the NN model and the new on-line measure-
ments, and then the new control is computed by the
standard LMPC algorithm.

A general linear MPC controller is obtained by (Morari
and Ricker, 1995):

min
fu(p)g

Jk =

k+MpX
p=k+1

beTpQbep +
k+McX
p=k+1

MuTpR Mup

s:t: X(k + 1) = F �X(k) +G � u(k)

Y(k + 1) = H �X(k)
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j4ui(k + p)j � 4Umax

Ymin;i � yi(k + p) � Ymax;i

(6)

where be(k + p) , r(k + p) �Y(k + pjk), r(k + p)
is the reference sequence, F;G;H are system ma-

trices, Umin;i; Umax;i and �Umax are control limits,
Ymin;i; Ymax;i are output limits, Q, R, Mp, Mc are
weighting matrices and control parameters, respec-
tively.

For LPVMPC the following models are used:

a) A linear model around the set point:

Y(k + 1) = Y0 +�0 � ['(k)�'0
]

Y , [y1; � � � ; y4]
T

(7)

where�0 is the parameter matrix of the linear model.

b) A linearized model at time instance k is obtained
by linearization of the NN model of Eq. (5) as follows:

Y(k +1) = Yk +�nn(k) � ['(k)�'(k � 1)] (8)

where the �nn(k) is the parameter matrix of the lin-
earized model.

c) The new weighted linear model at time instance k
for LPVMPC is updated by

Y(k + 1) = Y0 +�new(k) � ['(k)�'0
]

�new(k) = Kcomp�nn(k) + (I�Kcomp)�0

Kcomp , diag(kc1; kc2; � � � ; kc4)

(9)

where Kcomp is the compensation matrix and kci is
the compensation factor for each control loop, taking
a value in [0; 1].

According to Eq.(7), (8) and (9), the model used for
LPVMPC is updated at each instance k. This control
strategy, which uses the linear MPC result and the NN
model, can improve the control performance without
having to solve a general nonlinear optimization prob-
lem, comparing with LMPC.

4.2 Simulation Results

The identified NN model and the LPVMPC are used
for control of a nonlinear SMB process. The control
system is simulated to reject the disturbances in �i and
in feed concentrations cfeed. The simulation shows
that the LPVMPC system can reject the disturbance
significantly compared to the linear MPC system. Two
simulation cases are shown in Fig. 7, 8.

In these figures the output responses of LPVMPC
system are improved significantly comparing with
LMPC, but the inputs of the two systems in both
cases are quite similar. The reason for this is that both
channels (u3 ! y3 and u4 ! y4) contain integration
dynamics, as indicated in their step responses in Fig. 3.
As a result, a small change in input (u3 or u4) will
result in significant change in output (y3 or y4).

In addition, the LMPC system based on the linear
model of the SMB process is stable. But its control
responses are quite slow. In LPVMPC the nonlin-
ear dynamics of the process are considered and this



compensation of the model nonlinearity improves the
control performance. The compensation factor k ci in
Eq.(9) has a large effect on the system performance
and stability. A larger value of kci means a strong
influence of the nonlinear dynamics on the system and
will result in faster system responses. If it is too large,
the LPVMPC system will be unstable. Conversely, the
system with a smaller kci is stable, but quite slow. An
appropriate value of kci should be carefully chosen by
simulation.
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5. CONCLUSIONS

In this paper we have investigated the neural network-
based identification of a nonlinear SMB-process. The
�-factors were used as inputs, and the front area vari-
ations of the AEP-profiles were defined as outputs.
Since the process is sampled after each switching time
� , a nonlinear discrete time (4 � 4)-MIMO system
is obtained. Multi-layer perceptron (MLP) networks
with one hidden layer were employed to identify the
process model. The identified models were evaluated
both on training data and on validation data by com-
paring the multi-step-ahead prediction and the pure
prediction. The results have shown that the identi-
fied models exhibit satisfactory long range prediction
performance, which is favorable for a model based
control application. In addition, it has also been shown
that the identified model is simpler than that with
the characteristic points as system outputs (Wang et
al., 2001). Furthermore, a linear parameter varying
MPC based on the NN model is proposed and applied
successfully to the control of a nonlinear SMB pro-
cess. This LPVMPC scheme exploits the linear MPC

technique, providing linear parameter varying models
from the NN models. Thus the nonlinear optimization
problem can be avoided and the available MPC tools
can be used. Simulations show a large improvement of
the control performance compared to linear MPC for
an enatiomer separation using SMB chromatography.
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