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Abstract: A model structure comprising a wavelet network and a linear term is proposed
for nonlinear system identification. It is shown that under certain conditions wavelets are
orthogonal to linear functions and, as a result, the two parts of the model can be identified
separately. The linear-wavelet model is compared to a standard wavelet network using data
from a simulated fermentation process. The results show that the linear-wavelet model yields
a smaller modelling error when compared to a wavelet network using the same number of
regressorsCopyright(©2002 IFAC
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1. INTRODUCTION (iii) Efficient construction algorithms have been de-

_ _ vised to define the structure of the wavelet network
The wavelet network is an approach for system iden- (zhang, 1997), (Kan and Wong, 1998) and even to

tification in which nonlinear functions are approxi- adapt it in real time (Cannon and Slotine, 1995).
mated as the superposition of dilated and translated o
versions of a single function, which is localized both This paper proposes a model structure comprising a
in the space and frequency domains (Zhang and BenWavelet network and a linear term. It is shown that,
veniste, 1992), (Zhang, 1997). Given a sufficiently under certain conditions, wavelets are orthogonal to
large number of network elements (called “wavelets”), Iinear_funcFipns, which allows both parts of the model
any square-integrable function can be approximated tot0 be identified separately.

arbitrary precision (Daubechies, 1992). The following This technique would be particularly useful to model
advantages of wavelet networks over similar architec- systems which are only mildly nonlinear. Moreover,
tures have been cited in the literature (Cannon andin sjtyations where a nominal linear model is already
Slotine, 1995): available, a wavelet term can be added to account for

(i) Unlike the sigmoidal functions used in neural net- nonlinearities in the plant.

works of the multi-layer perceptron type, wavelets are An example using a simulated fermentation process
spacially localized. As a result, training algorithms 5 ysed to illustrate the proposed methodology. The
for wavelet networks typically converge in a smaller yegyits show that the linear-wavelet model results in
number of iterations when compared to multi-layer 5 smaller prediction error than a pure wavelet model
perceptrons. with the same complexity.

(i) The magnitude of each coefficient in a wavelet net-

work can be related to the local frequency content of

the function being approximated. Thus, more parsimo- 1.1 Notation

nious architectures can be achieved, by preventing the

unnecessary assignment of wavelets to regions whereScalars are represented in italic lowercase, vectors, in
the function varies slowly. This property is not shared boldface lowercase and matrices, in boldface capitals.
by networks of conventional radial basis functions |x| is the Euclidian norm ofx. The ith element
(Gaussians). of x is denoted byx;. The hat symbol ~ indicates



an estimatedvalue. The Fourier transformof f is
denotedby Ff. When the limits of an integral are
notindicated,it is assumedhatthey are —co and+o.
The inner productof two functions f1, f, : R — R
is givenby (f1, f2) = [za f1(X) f2(X)dVy, wheredVy =
dxgdxy - -dxg is a volume elementin RY. L2(RY) is
thespaceof functionsthataresquare-intgrablein R¢,
e, L2(RY) = {f :RI - R st [pa|f(x)2dVy < o0}.

2. WAVELET NETWORKS

A wavelet network can be regardedas a neural ar
chitecturewith activation functionswhich aredilated
andtranslatedversionsof a singlefunctionv : RY —
R, whered is the input dimension(Zhangand Ben-
veniste,1992), (Zhang, 1997). This function, called
“mother wavelet”, is required to have zero mean
(Daubechies1992). Additionally, it shouldbe local-
ized bothin the spaceand frequeny domainsin the
sensethat |v(x)| and |Fv(w)| rapidly decayto zero
when||x|| — o and||w|| — o respectiely.

Mother waveletsfor the multidimensionalcase(i.e.,

d > 1) canbeconstructedrom one-dimensiondunc-

tions P : R — R with fastdecayin spaceand fre-

gueng. This can be donein several ways (Cannon
and Slotine, 1995), (Zhanget al., 1995), but for the
purpose®f this papertheradialapproachs adopted,
thatis, v(x) = @(||x||). This is the choice made,for

instancejn (Zhang,1997).

A wavelet network model with L elementscan be
parameterizeds

L
YOO = 3 Wiva, (X &)
=

wherebasisfunctionsvaj,b i called“daughtemwavelets”
(or simply wavelets), are dilated and translatedver

sionsof v:
_ X —bj
Va, by (x) = a; %y <a—1> @
j

Dilation parametera; € R* controls the spreadof
the wavelet, while translation parameterbj € RY
determinesits central position. It can be shovn
(Daubechies1992) that, if pairs (aj,b;) are taken
from thegrid

{(@a™ nBa™);me Z,n € 29} (3)
for corvenientvaluesof o > 1 and 3 > O (typically
a = 2,B = 1), thenary function in L2(RY) can be

approximatedby (1) to arbitrary precision,given a
sufficiently large numberof wavelets.

2.1 Defining the structure of the waveletnetwork

A major advantageof wavelet networks over other
neuralarchitecturess the availability of efficient con-

struction algorithmsfor defining the network struc-
ture, thatis, for choosingconvenientvaluesfor (m,n)
in Equation(3). After the structurehas beendeter
mined,weightsw; canbe obtainedthroughlineares-
timationtechniques.

In this work, a constructve methodsimilar to that
introducedby (Zhang,1997)is employed. It canbe
describedasfollows. SupposdhatM modellingsam-
ples are available in the form of input-outputpairs
(x[Kl,y[K]),k=1,...,M. Then:

1) Normalizethe input datato fit within the effective
supportH of the motherwavelet. For radialwavelets,
H is a hyperspherén RY with radiusR. For compu-
tationalsimplicity, H is approximatedasa hypercube
inscribedin the hyperspherevith edgegarallelto the
coordinateaxis.

2) Choosemyin and Mmay the minimum and maxi-
mumscalelevelsto beemployed.

3) For eachsamplex|k] in the modelling set, find
Ik, theindex setof waveletswhoseeffective supports
containx[k]:

Ik ={(mn) st x[k € Hnn;
Mmin <M< mmaxmezd} (4)

where Hnp is a hypercubecenteredin nfa™ with
edgest™RV/2.

4) Determinethe pairs(m,n) which appeaiin atleast
two setsly; andlyo, k1 # ko. Thesearethe wavelets
whoseeffective supportincludeat leasttwo samples.
This stepis different from the algorithm described
in (Zhang, 1997), which allows for wavelets with
effective supportscontainingonly onesampleln fact,
such wavelets would introduce oscillationsbetween
neighbormodelling points,which might compromise
thegeneralizatiorability of themodel.

5) Let L be the numberof waveletsobtainedabore.
For simplicity of notation, replacethe doubleindex
(m,n) by asingleindex j =1,...,L.

6) Apply the L waveletsto the M modellingsamples
andgathertheresultsin matrix form as

vi(x[1]) vi(x[2)) --- va(x[M])
Va(x[1]) v2(x[2]) -+ va(x[M])

= : : : ©)
VL(X[L]) vi(x[2]) - vi(x[M]) ||

Notice that each sampleis now representecby L
waveletoutputs(a columnof V).

If the M valuesof the outputvariabley arestacledin
arow vectory = [y[1]y[2] - - - y[M]] thenleast-squares
regressioncan be usedto estimatethe row vector of
network weightsw = [wyw; --- w ] as

w=yvT(vwT)=! (6)



provided VVT is non-singular If necessaryQR de-
composition(LawsonandHanson 1974)or Principal
Componentnalysis(NaesandMevik, 2001)canbe
usedto dealwith ill-conditioning.

Sincemary waveletsresultingfrom stepsl) to 4) may
beredundanta corvenientsubsebf waveletsmustbe

selectedo improve modelparsimory. Thus,the next

stepconsistsof determiningwhich rows of V arethe

mostrelevantfor theestimatiortask.For this purpose,
rows from V areselectedn a stepwisemanney start-
ing from theonewhichdisplaysthelargestcorrelation
with y and addinga new row at eachiteration. This

procedureanbedescribedasfollows.

a) Let vj be the jth row of V, thatis, vj =
[vi (X[1]) vj(x[2]) -~ vj(X[M])].

b) (Preliminary pruning) Eliminate all vectors v;
whosenormis smallerthana fixed thresholdd. Nor-
malizeall remainingvectorsto unit norm.

c) (First selection)For eachvector vj, evaluatethe
correlationindex rj as
vy
rJ -

Vi iyl

Let h; bethevectorwith thelargestcorrelationindex.
Letalsoi = 1.

()

d) (Projections)Replacey andall vectorsv; by their
projectionsontothe subspacerthogonalo h;, thatis

and y«—y(l—P) (8)

whereP; = h[ (hihT)~th; andl is theidentity matrix.

Vj HVj(l ,pi)

€) (Selection)or eachvectorv|, evaluatetheindex p;
definedas

pj =rillvill C))
Let hi11 bethevectorwith thelargestvaluefor p;.
f) Leti =i+ 1 andreturnto stepd).

Index pj usedin stepe) reflectsboth the amountof
usefulinformationin v; (measuredby rj) andits lack
of collinearity with the vectorsalreadyselected.In
fact,if vectorvj, is highly collinearto vectorvjz, then
the projectionof vj; onto the subspac@rthogonailto
vj2 will have a smallnorm. Collinearity avoidanceis
importantto achieze amodelwith goodgeneralization
ability (NaesandMevik, 2001).

Statisticakriteriasuchasminimumdescriptioriength
(Rissanen,1978) and generalized cross-alidation
(Zhang,1997) canbe usedto selectthe bestnumber
of waveletsto includein themodel.

3. LINEAR-WAVELET MODELS

Themodelproposedereis of theform

y(x) = f1(x) + f2(x) (10)

where f1(x) = Zidzl 0ix, 6; € R is alinear term and
f2(X) = 351 WjVa, b, (X) is awaveletnetwork.

It will be now be proved that f; is orthogonalto

wavelets Vaj bj and, as a result, to f,. Initially, a
proof will be given for the one-dimensionatase,in

which v(x) = y(x). Then,the multidimensionakase,
in which v(x) = Y(]|x||), will be consideredNotice
thattheseproofsinvolve inner productsde£nedfor a

continuousinput x . The orthogonalitypropertycan
be extendedfor the sampled-dataaseprovided the
spatialsamplingof eachwaveletis sufEciently£ne.

3.1 One-dimensionatase

Definition 1. Functiony : R — R is saidto have n
vanishingmomentsf

/lp(x)xmdx: 0,m=0,1,...n—1 (11

Theoeml. If Y: R — R hastwo vanishingmoments,
thenfunctionsy,, definedfor ac R*, be R as

Wap(X) =a /2y (%)

are orthogonalto functions f : R — R of the form
f(x) =06x,8 e R.

Proof. Assumehaty hastwo vanishingmomentsthat
is

(12)

/lp(x)dx =0
/lp(x)xdx =0

(13)

(14)

Theinnerproductof Y5, and f is thengivenby
(Wap, ) = 1/2/¢(_X;b> exdx  (15)

By defininganew variablez asz= (x— b)/a, Equa-
tion (15) canberewritten as

(Wap, F) =a /2 / W(2)8(az+ b)adz =

fbal/2 / W(2)dz+ 0a%/2 / 2)(2)dz=0 (16)

wherethe two lasttermsequalzerodueto equations
(13)and(14). O

Notice that mother wavelets are alreadyrequiredto
have at least one vanishing moment (Daubechies,
1992). The secondvanishingmomentis a property
of mary motherwaveletsusually employed, suchas
thefunctionsdbN of the Daubechiegamily for N > 1
(Daubechies1992), as well as ary wavelet that is
symmetricalaroundx = 0, suchasthe Mexican Hat

function(x) = (1— Xz)e—o.5x2_



It is worth noting that Gaussianemployed in con-
ventionalradial basisfunctionsnetworks do not sat-
isfy (13), whereassigmoidalfunctionsusedin multi—
layer perceptromeuralnetworks do not satisfy (14).
As a result, if such network structuresare usedto
synthesizef, in Equation(10), orthogonalityto linear
functionsis notgranted.

3.2 MultidimensionalCase

Theoem?2. Letv: RY — R bearadialmotherwavelet
obtainedrom: R — R as

v(x) = w([|x]) 17
If themeanof v is zero,thatis

/' V(X)dVy = 0 (18)

Rd

thenwaveletsv, , definedfor a € R*, b € RY as
Vap(x) = a /% (%) (19)

are orthogonalto functions f : R — R of the form
f(x)=3",6x,6 R,

Proof. Theinnerproductof vap and f is givenby

(Vap, f) = d/z/léd\/(%) ieixidvx (20)

By defininga new variablez asz = (x— b)/a, Equa-
tion (20) canberewritten as

(Vap, ) = d/z./R;d v(z)iei (bi +az)dV, =

d
ad/ZZei by / V(Z)dV; + a / 22V, | (1)
i Rd Rd
|
Thefirst terminsidebracletsin thelastline of Equa-

tion (21) vanisheslueto the zero-mearhypothesion
v. Integrall in thesecondermcanbe evaluatedas

= [ awlzav. =

//[/mu(@)dz] ﬁdz,- (22)

J#

By letting C = zg;lizﬁ andF(z) = zy <\/2|-2+C>’

integral I; becomes

i= [ Fla)da (23)

Since F(z) = —F(—z),Vz € R, it follows that
[ F(z)dz =0, VT € R and,asaresult,li = 0. Then,
from (22),1 = 0 andthus(vap, f) =0 ]

The requirementof zero meanfor v can be restated
for the function ¢ usedin its generation.Sufice

it to rewrite the integral in Equation(18) using the

hypersphericatoordinatesr, y1, Y2, ..., Y4—1) defined
as

X1 = I COSy1 (24)
i—1
X =r siny; | cosy,i=2,...,d—1 (25)
s Jeos
d—1
Xqg =r [] siny; (26)
Jll j

wherer >0,0<yi<mi=12...,d-—2and—m<
Ya—1 < Tt It follows that

[ V00V = [ w(xavy =

Tt 1L T <)

:/ / / < qJ(r)rd‘ldr>
y1=0.y,=0 Ya—1=—Tt \J/r=0

d-2

I_L (siny;)4 1" dyadyz - - - dyg_1 (27)
]:

A necessanand sufficient condition for the integral
thatspanghetwo lastlines of Equation(27) to equal
zerois

/ioOqJ(r)rdfldr =0 (28)

Example Considerthe unidimensionalMexican Hat
functiongivenby

Y(x) = (c—x2)e 05 (29)

wherec is a parameterhich needsto be adjustedo
ensurghaty(||x||) haszeromean.By introducingthe
above expressiorfor Ji(x) in (28), it follows that

/ (c—r2)e 05 d-1gr — 0
0

o 05r2,d+1
_Jo € retidr lgpa

sc=0" =
Jo e 05 rd=1dr g4

(30)

By letting n = e%5 anddé = r9=dr, I4_, canbe
integratedby parts,yielding

la-1= 8o~ [ &=

—0.5r2,.d|”
e T 1 /% dari-os2y  ldit
+ re dr =
d o dJr=o d
—_——

0
(31)

By usingthisresultin (30), it follows thatc = d.
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Fig. 1. Inputandoutputdatafrom the simulation.
4. NUMERICAL EXAMPLE

Considera fermentatiorprocesgescribedy thefol-
lowing Monod model(D’Ans etal., 1972),(Aborhey
andWilliamson,1978):

dC CS

at 95 p (32)
ds CS
i qgs+p (Sn—9Su (33)

whereC = microbialconcentrationS = substrateson-
centration(processoutput),u = dilution rate (process
input), g = maximumgrowth rate, p = saturationpa-
rametey q = yield factor S, = inlet substratecon-
centrationValuesfor the modelconstantsveretaken

from (Zhang,1997)asg=0.55, p=0.15,=2, Sp =

0.8. Supposethat S is obsered at discretetime in-

stantssuchthat y[k] = S(kTs) + €[k], whereTs is the
samplingperiodande[K] is themeasuremermioise.

The systemwas simulatedin closedloop, with input
u beingprovided by a PI controllerwith proportional
gain Kp = 0.5 and integral gain K; = 0.05. The set
pointfor Swaschangedetweerthreevalues:0.2,0.4
and0.6.Themeasurememoisewassimulatedisinga
zero-meanvhite Gaussiamoiseprocessvith standard
deviation of 0.005.The samplingperiodadoptedvas
Ts = 1.0 time unit. The resulting input (u[k]) and
output(y[K]) signalscanbeseenin Figurel.

The first 750 samplesvere employed for modelling,
andthe remainingdata,for validation. The meansof
theinput andoutputsignalswereremoved duringthe
identificationprocedures.

For the purposeof illustration, assumethat it is de-
siredto obtaina nonlinearARX (autorgressie with
exogenousnput) modelof theform

ylK = f(yk—1],ylk—2].ulk—1]) +elk] ~ (34)

asproposedn (Zhang,1997),wheref is a nonlinear
function to be estimatedfrom the input-outputdata
ande[k] is themodellingresidual Noticethattheinput
to the modelis x[k] = [y[k—1]y[k—2]uk—1]]", so
d=3.

X 10~

0.6} Wavelet network

Linear-wavelet model

0.2r

0.1r

4 6 8 10 12 14 16 18 20
Number of regressors

Fig. 2. Mean-square-errdor thelinearwaveletmodel
andthewaveletnetwork.

To obtainalinearwaveletmodel,alinearARX model
of theform

ylk| = 81y[k— 1]+ 65y[k — 2 + Baulk — 1] + €™ [K
(35)
was initially identified by a standardleast-squares
procedure.A wavelet network was then built ac-
cording to the method describedin subsection2.1,
by using the residueof the linear identificatione =
[@in[1)in[2] ... "750] in the placeof y. A radial
Mexican Hat motherwavelet obtainedfrom (29) was
employed.Its effective supportcanbetakenasR = 5.
The other parametersof the constructionalgorithm
wereadoptedasa = 2, 3 = 1, Myjn = 0 andmyax= 2.
Stepsl) and 3) resultedin 785 wavelets,a number
which wasreducedto 545 by Step4). In stepb) of
theselectionprocess191 waveletswerediscardedy
usinganormthresholdd = 103

A similar processwvascarriedout to directly identify
function f in (34) usingawaveletnetwork.

Figure2 compareghelinearwaveletandthe wavelet
network modelsin termsof the mean-square-erraf
modellingMSE definedas

M 2
ZyW—m D (36)

whereM is the numberof modelling points and f,
is an estimateof f generatedusingn regressorsFor
the wavelet network, eachwavelet correspondgo a
regressot(a columnof matrixV in (5)). In the caseof
thelinearwaveletmodel,thefirst threeregressorsare
relatedto thelinearpart.

Figure 2 revealsthat, for a given numberof regres-
sors(whichindicatethe compleity of themodel),the
linearwavelet model yields a smaller mean-square-
error thanthe wavelet network. Corversely it canbe
statedthat, for a given degreeof approximatioraccu-
ragy, the linearwavelet modelis more parsimonious
thanthe waveletnetwork.
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Fig. 3. Validation results.The model predictionand
theactualplantoutputarerepresentetly dashed
andcontinuoudinesrespecttely.

After identification,the modelswere usedto predict
the validation data recursvely, that s,
[kl = f(y[k — 1], y[k — 2],u[k — 1]), startingfrom the
initial conditionsy[751 = y[751], y[752 = y[752. For
illustration, 20 regressorsvereemployedfor boththe
linearwaveletmodelandthewaveletnetwork.

Figure 3 displaysthe validation resultsfor the linear
model,the linearwavelet modelandthe wavelet net-
work. By comparingFigures3aand3b, it canbe con-
cludedthat the useof waveletsimproved the predic-
tion ability of the linear modelconsiderablyThe ad-
vantageof the linearwaveletmodelover the wavelet
network becomespparentatthe endof thevalidation
window, whenthe waveletnetwork predictionlargely
deviatesfrom theactualprocesoutput.

5. CONCLUSION

This paperproposeda model structurecomprisinga
waveletnetwork anda linearterm. It wasshawn that,
undercertainconditions, linear functionsare orthog-
onal to wavelets,which meansthat the two parts of
the model can be identified separatelyIn the one-
dimensionalcase,the motherwavelet is requiredto
have two vanishingmoments.For multidimensional
wavelets of the radial type, suffice it to enforcethe
zero-mearcondition. An example using a simulated
fermentatiorprocesshavedthatthe proposednodel
yields a better approximationthan a corventional

waveletnetwork usingthe samenumberof regressors.

The proposedtechniquecan be usedto improve the
quality of existing linear models,by addingwavelet
termsto accountfor nonlinearities.Corversely the
useof linearfunctionsmay helpimprove the general-
ization ability of a wavelet network, by providing in-
terpolationoverregionsof theinputspacen whichno
modelling samplesare available. One possibledraw-
backis that the wavelet network will not be ableto

replacemissinglineartermsin theeventthatthelinear
partof themodelhasbeenunderparameterized.

Though not discussedhere, linearwavelet models
could also be applied for datacompressionpartic-
ularly in the caseof signalswith linear trends.For
such signals,the orthogonality property shavs that
linearde-trendingcanbe followed by a waveletiden-
tification of theresidualoscillations.

Work is beingcarriedoutto uselinearwaveletmodels
for predictive control. At eachstep,the linear term
will be employed to generatean initial solution for
thesequencef controlmovementsThis solutionwill
thenbe usedasthe startingpoint for an optimization
algorithmthattakesthe whole modelinto account.
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