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Abstract: A model structure comprising a wavelet network and a linear term is proposed
for nonlinear system identification. It is shown that under certain conditions wavelets are
orthogonal to linear functions and, as a result, the two parts of the model can be identified
separately. The linear-wavelet model is compared to a standard wavelet network using data
from a simulated fermentation process. The results show that the linear-wavelet model yields
a smaller modelling error when compared to a wavelet network using the same number of
regressors.Copyright c

�
2002 IFAC
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1. INTRODUCTION

The wavelet network is an approach for system iden-
tification in which nonlinear functions are approxi-
mated as the superposition of dilated and translated
versions of a single function, which is localized both
in the space and frequency domains (Zhang and Ben-
veniste, 1992), (Zhang, 1997). Given a sufficiently
large number of network elements (called “wavelets”),
any square-integrable function can be approximated to
arbitrary precision (Daubechies, 1992). The following
advantages of wavelet networks over similar architec-
tures have been cited in the literature (Cannon and
Slotine, 1995):

(i) Unlike the sigmoidal functions used in neural net-
works of the multi–layer perceptron type, wavelets are
spacially localized. As a result, training algorithms
for wavelet networks typically converge in a smaller
number of iterations when compared to multi–layer
perceptrons.

(ii ) The magnitude of each coefficient in a wavelet net-
work can be related to the local frequency content of
the function being approximated. Thus, more parsimo-
nious architectures can be achieved, by preventing the
unnecessary assignment of wavelets to regions where
the function varies slowly. This property is not shared
by networks of conventional radial basis functions
(Gaussians).

(iii ) Efficient construction algorithms have been de-
vised to define the structure of the wavelet network
(Zhang, 1997), (Kan and Wong, 1998) and even to
adapt it in real time (Cannon and Slotine, 1995).

This paper proposes a model structure comprising a
wavelet network and a linear term. It is shown that,
under certain conditions, wavelets are orthogonal to
linear functions, which allows both parts of the model
to be identified separately.

This technique would be particularly useful to model
systems which are only mildly nonlinear. Moreover,
in situations where a nominal linear model is already
available, a wavelet term can be added to account for
nonlinearities in the plant.

An example using a simulated fermentation process
is used to illustrate the proposed methodology. The
results show that the linear-wavelet model results in
a smaller prediction error than a pure wavelet model
with the same complexity.

1.1 Notation

Scalars are represented in italic lowercase, vectors, in
boldface lowercase and matrices, in boldface capitals.�
x
�

is the Euclidian norm ofx. The ith element
of x is denoted byxi . The hat symbol ˆ indicates
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an estimatedvalue. The Fourier transform of f is
denoted
�

by F f . When the limits of an integral are
not indicated,it is assumedthatthey are � ∞ and � ∞.
The inner productof two functions f1 � f2 : � d � �
is givenby � f1 � f2 	�
 � d f1  x � f2  x � dVx, wheredVx 

dx1dx2 ����� dxd is a volume elementin � d. L2  � d � is
thespaceof functionsthataresquare-integrablein � d,
i.e.,L2  � d � 
�� f : � d � � s� t � � d � f  x � � 2dVx � ∞ � .

2. WAVELET NETWORKS

A wavelet network can be regardedas a neural ar-
chitecturewith activation functionswhich aredilated
andtranslatedversionsof a singlefunction v : � d �
� , whered is the input dimension(ZhangandBen-
veniste,1992), (Zhang,1997). This function, called
“mother wavelet”, is required to have zero mean
(Daubechies,1992).Additionally, it shouldbe local-
ized both in the spaceandfrequency domainsin the
sensethat � v  x � � and � Fv  ω � � rapidly decayto zero
when

�
x
� � ∞ and

�
ω
� � ∞ respectively.

Mother waveletsfor the multidimensionalcase(i.e.,
d � 1) canbeconstructedfrom one-dimensionalfunc-
tions ψ : � � � with fast decayin spaceand fre-
quency. This can be done in several ways (Cannon
and Slotine,1995), (Zhanget al., 1995),but for the
purposesof this paper, theradialapproachis adopted,
that is, v  x � 
 ψ  � x � � . This is the choicemade,for
instance,in (Zhang,1997).

A wavelet network model with L elementscan be
parameterizedas

y  x � 

L

∑
j � 1

w jva j � b j  x � (1)

wherebasisfunctionsva j � b j , called“daughterwavelets”
(or simply wavelets),are dilated and translatedver-
sionsof v:

va j � b j  x � 
 a� d� 2
j v

x � b j

a j
(2)

Dilation parametera j � ��� controls the spreadof
the wavelet, while translation parameterb j � � d

determinesits central position. It can be shown
(Daubechies,1992) that, if pairs  a j � b j � are taken
from thegrid

�� αm � nβαm � ;m �! "� n �# d � (3)

for convenientvaluesof α � 1 and β � 0 (typically
α 
 2� β 
 1), then any function in L2  � d � can be
approximatedby (1) to arbitrary precision,given a
sufficiently largenumberof wavelets.

2.1 Defining thestructureof thewaveletnetwork

A major advantageof wavelet networks over other
neuralarchitecturesis theavailability of efficient con-

structionalgorithmsfor defining the network struc-
ture,thatis, for choosingconvenientvaluesfor  m� n �
in Equation(3). After the structurehas beendeter-
mined,weightsw j canbeobtainedthroughlineares-
timationtechniques.

In this work, a constructive methodsimilar to that
introducedby (Zhang,1997) is employed. It can be
describedasfollows.SupposethatM modellingsam-
ples are available in the form of input-outputpairs
 x $ k% � y $ k%&� � k 
 1� �'��� � M. Then:

1) Normalizethe input datato fit within theeffective
supportH of themotherwavelet.For radialwavelets,
H is a hyperspherein � d with radiusR. For compu-
tationalsimplicity, H is approximatedasa hypercube
inscribedin thehyperspherewith edgesparallelto the
coordinateaxis.

2) Choosemmin and mmax, the minimum and maxi-
mumscalelevelsto beemployed.

3) For eachsamplex $ k% in the modelling set, find
Ik, the index setof waveletswhoseeffective supports
containx $ k% :

Ik 
(�) m� n � s� t � x $ k% � Hm� n ;

mmin * m * mmax� n �! d � (4)

where Hm� n is a hypercubecenteredin nβαm with
edgesαmR+ 2.

4) Determinethepairs  m� n � which appearin at least
two setsIk1 and Ik2, k1 ,
 k2. Thesearethe wavelets
whoseeffective supportincludeat leasttwo samples.
This step is different from the algorithm described
in (Zhang, 1997), which allows for wavelets with
effectivesupportscontainingonly onesample.In fact,
such wavelets would introduceoscillationsbetween
neighbormodellingpoints,which might compromise
thegeneralizationability of themodel.

5) Let L be the numberof waveletsobtainedabove.
For simplicity of notation,replacethe double index
 m� n � by asingleindex j 
 1� ����� � L.

6) Apply the L waveletsto the M modellingsamples
andgathertheresultsin matrix form as

V 

v1  x $ 1%-� v1  x $ 2%-� �'��� v1  x $ M %-�
v2  x $ 1%-� v2  x $ 2%-� �'��� v2  x $ M %-�

...
... �'���

...
vL  x $ 1%-� vL  x $ 2%&� �'��� vL  x $ M %-� L . M

(5)

Notice that each sample is now representedby L
waveletoutputs(acolumnof V).

If theM valuesof theoutputvariabley arestackedin
a row vectory 
 $ y$ 1% y $ 2% ���'� y $ M %/% thenleast-squares
regressioncanbe usedto estimatethe row vectorof
network weightsw 
 $ w1w2 �'��� wL % as

ŵ 
 yVT  VVT � � 1 (6)



provided VVT is non-singular. If necessary, QR de-
composition(LawsonandHanson,1974)or Principal
ComponentAnalysis(NaesandMevik, 2001)canbe
usedto dealwith ill-conditioning.

Sincemany waveletsresultingfrom steps1) to 4) may
beredundant,aconvenientsubsetof waveletsmustbe
selectedto improve modelparsimony. Thus,the next
stepconsistsof determiningwhich rows of V arethe
mostrelevantfor theestimationtask.For thispurpose,
rows from V areselectedin a stepwisemanner, start-
ing from theonewhichdisplaysthelargestcorrelation
with y andaddinga new row at eachiteration.This
procedurecanbedescribedasfollows.

a) Let v j be the jt h row of V, that is, v j 

$ v j  x $ 1%-� v j  x $ 2%-� ����� v j  x $ M %-�0% .
b) (Preliminary pruning) Eliminate all vectors v j

whosenorm is smallerthana fixed thresholdδ. Nor-
malizeall remainingvectorsto unit norm.

c) (First selection)For eachvector v j , evaluatethe
correlationindex r j as

r j 
 v jyT

�
v j
�1�

y
� (7)

Let h1 bethevectorwith thelargestcorrelationindex.
Let alsoi 
 1.

d) (Projections)Replacey andall vectorsv j by their
projectionsontothesubspaceorthogonalto hi , thatis

v j 2 v j  I � Pi � and y 2 y  I � Pi � (8)

wherePi 
 hT
i  hihT

i � � 1hi andI is theidentitymatrix.

e) (Selection)For eachvectorv j , evaluatetheindex ρ j

definedas
ρ j 
 r j

�
v j
�

(9)

Let hi 3 1 bethevectorwith thelargestvaluefor ρ j .

f ) Let i 
 i � 1 andreturnto stepd).

Index ρ j usedin stepe) reflectsboth the amountof
usefulinformationin v j (measuredby r j ) andits lack
of collinearity with the vectorsalreadyselected.In
fact,if vectorv j1 is highly collinearto vectorv j2, then
theprojectionof v j1 onto thesubspaceorthogonalto
v j2 will have a small norm.Collinearityavoidanceis
importantto achieveamodelwith goodgeneralization
ability (NaesandMevik, 2001).

Statisticalcriteriasuchasminimumdescriptionlength
(Rissanen,1978) and generalizedcross-validation
(Zhang,1997)canbe usedto selectthe bestnumber
of waveletsto includein themodel.

3. LINEAR-WAVELET MODELS

Themodelproposedhereis of theform

y  x � 
 f1  x �4� f2  x � (10)

where f1  x � 
 ∑d
i � 1 θixi � θi � � is a linear term and

f2  x � 
 ∑L
j � 1w jva j � b j  x � is awaveletnetwork.

It will be now be proved that f1 is orthogonalto
wavelets va j � b j and, as a result, to f2. Initially, a
proof will be given for the one-dimensionalcase,in
which v  x � 
 ψ  x � . Then,themultidimensionalcase,
in which v  x � 
 ψ  � x � � , will be considered.Notice
that theseproofsinvolve innerproductsde£nedfor a
continuousinput x . The orthogonalitypropertycan
be extendedfor the sampled-datacaseprovided the
spatialsamplingof eachwaveletis suf£ciently£ne.

3.1 One-dimensionalcase

Definition 1. Functionψ : � � � is said to have n
vanishingmomentsif

ψ  x � xmdx 
 0� m 
 0� 1� �5�/� � n � 1� (11)

Theorem1. If ψ : � � � hastwo vanishingmoments,
thenfunctionsψa � b definedfor a � � � � b � � as

ψa � b  x � 
 a� 1� 2ψ
x � b

a
(12)

are orthogonalto functions f : � � � of the form
f  x � 
 θx� θ � � .

Proof. Assumethatψ hastwovanishingmoments,that
is

ψ  x � dx 
 0 (13)

ψ  x � xdx 
 0 (14)

Theinnerproductof ψa � b and f is thengivenby

� ψa � b � f 	�
 a� 1� 2 ψ
x � b

a
θxdx (15)

By defininga new variablez asz 
6 x � b �87 a, Equa-
tion (15)canberewrittenas

� ψa � b � f 	�
 a� 1� 2 ψ  z� θ  az � b� adz 

θba1� 2 ψ  z� dz � θa3� 2 zψ  z� dz 
 0 (16)

wherethe two last termsequalzerodueto equations
(13)and(14). 9
Notice that motherwaveletsare alreadyrequiredto
have at least one vanishing moment (Daubechies,
1992). The secondvanishingmomentis a property
of many motherwaveletsusuallyemployed, suchas
thefunctionsdbN of theDaubechiesfamily for N � 1
(Daubechies,1992), as well as any wavelet that is
symmetricalaroundx 
 0, suchas the Mexican Hat
functionψ  x � 
� 1 � x2 � e� 0 : 5x2

.



It is worth noting that Gaussiansemployed in con-
v; entionalradial basisfunctionsnetworks do not sat-
isfy (13), whereassigmoidalfunctionsusedin multi–
layer perceptronneuralnetworks do not satisfy(14).
As a result, if such network structuresare usedto
synthesizef2 in Equation(10),orthogonalityto linear
functionsis notgranted.

3.2 MultidimensionalCase

Theorem2. Let v : � d � � bearadialmotherwavelet
obtainedfrom ψ : � � � as

v  x � 
 ψ  � x � � (17)

If themeanof v is zero,thatis

� d
v x � dVx 
 0 (18)

thenwaveletsva � b definedfor a � ��� � b � � d as

va � b  x � 
 a� d� 2v
x � b

a
(19)

are orthogonalto functions f : � d � � of the form
f  x � 
 ∑d

i � 1 θixi � θi � � .

Proof. Theinnerproductof va � b and f is givenby

� va � b � f 	<
 a� d� 2

� d
v

x � b
a

d

∑
i � 1

θixidVx (20)

By defininga new variablez asz 
6 x � b �-7 a, Equa-
tion (20)canberewrittenas

� va � b � f 	�
 ad� 2

� d
v  z �

d

∑
i � 1

θi  bi � azi � dVz 


ad� 2
d

∑
i � 1

θi bi � d
v  z � dVz � a � d

ziv  z � dVz

I

(21)

Thefirst terminsidebracketsin thelast line of Equa-
tion (21)vanishesdueto thezero-meanhypothesison
v. Integral I in thesecondtermcanbeevaluatedas

I 
 � d
ziψ  � z � � dVz 


���'� ziψ
d

∑
i � 1

z2
i dzi

Ii

d

∏
j = 1
j >� i

dzj (22)

By letting C 
 ∑d
k= 1
k >� i

z2
k andF  zi � 
 ziψ z2

i � C ,

integral Ii becomes

Ii 

∞

� ∞
F  zi � dzi (23)

Since F  zi � 
 � F  � zi � �@? zi � � , it follows that
τ

� τ F  zi � dzi 
 0�@? τ � � and,asaresult,Ii 
 0. Then,
from (22), I 
 0 andthus � va � b � f 	<
 0 9
The requirementof zero meanfor v can be restated
for the function ψ used in its generation.Suffice
it to rewrite the integral in Equation(18) using the
hypersphericalcoordinates r � γ1 � γ2 � �'��� � γd � 1 � defined
as

x1 
 r cosγ1 (24)

xi 
 r
i � 1

∏
j � 1

sinγ j cosγi � i 
 2� �'��� � d � 1 (25)

xd 
 r
d � 1

∏
j � 1

sinγ j (26)

wherer � 0, 0 * γi * π � i 
 1� 2� �'��� � d � 2 and � π *
γd � 1 * π. It follows that

� d
v  x � dVx 
 � d

ψ  � x � � dVx 




π

γ1� 0

π

γ2� 0
�'���

π

γdA 1� � π

∞

r � 0
ψ  r � rd � 1dr

d � 2

∏
j � 1

 sinγ j � d � j � 1dγ1dγ2 ����� dγd � 1 (27)

A necessaryandsufficient condition for the integral
thatspansthetwo last linesof Equation(27) to equal
zerois

∞

r � 0
ψ  r � rd � 1dr 
 0 (28)

Example. Considerthe unidimensionalMexican Hat
functiongivenby

ψ  x � 
� c � x2 � e� 0 : 5x2
(29)

wherec is a parameterwhich needsto beadjustedto
ensurethatψ  � x � � haszeromean.By introducingthe
above expressionfor ψ  x � in (28), it follows that

∞

0
 c � r2 � e� 0 : 5r2

rd � 1dr 
 0

B c 

∞
0 e� 0 : 5r2

rd3 1dr
∞
0 e� 0 : 5r2rd � 1dr


 Id3 1

Id � 1
(30)

By letting η 
 e� 0 : 5r2
anddξ 
 rd � 1dr, Id � 1 canbe

integratedby parts,yielding

Id � 1 
 ηξ � ∞r � 0 �
∞

r � 0
ξdη 


e� 0 : 5r2
rd

d

∞

r � 0

0

� 1
d

∞

r � 0
rd3 1e� 0 : 5r2

dr 
 Id3 1

d

(31)

By usingthis resultin (30), it follows thatc 
 d.
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Fig. 1. Inputandoutputdatafrom thesimulation.

4. NUMERICAL EXAMPLE

Considera fermentationprocessdescribedby thefol-
lowing Monodmodel(D’Ans et al., 1972),(Aborhey
andWilliamson,1978):

dC
dt 
 g

CS
S � p

� Cu (32)

dS
dt 
 � qg

CS
S � p

�  Sin � S� u (33)

whereC = microbialconcentration,S= substratecon-
centration(processoutput),u = dilution rate(process
input), g = maximumgrowth rate, p = saturationpa-
rameter, q = yield factor, Sin = inlet substratecon-
centration.Valuesfor themodelconstantsweretaken
from(Zhang,1997)asg 
 0� 55� p 
 0� 15� q 
 2� Sin 

0� 8. Supposethat S is observed at discretetime in-
stantssuchthat y $ k% 
 S kTs �C� ε $ k% , whereTs is the
samplingperiodandε $ k% is themeasurementnoise.

The systemwassimulatedin closedloop, with input
u beingprovidedby a PI controllerwith proportional
gain Kp 
 0� 5 and integral gain Ki 
 0� 05. The set
point for Swaschangedbetweenthreevalues:0.2,0.4
and0.6.Themeasurementnoisewassimulatedusinga
zero-meanwhiteGaussiannoiseprocesswith standard
deviation of 0.005.Thesamplingperiodadoptedwas
Ts 
 1� 0 time unit. The resulting input (u $ k% ) and
output(y $ k% ) signalscanbeseenin Figure1.

The first 750 sampleswereemployed for modelling,
andthe remainingdata,for validation.The meansof
the input andoutputsignalswereremovedduringthe
identificationprocedures.

For the purposeof illustration, assumethat it is de-
siredto obtaina nonlinearARX (autoregressive with
exogenousinput)modelof theform

y $ k% 
 f  y $ k � 1% � y $ k � 2% � u $ k � 1%-�D� e$ k% (34)

asproposedin (Zhang,1997),where f is a nonlinear
function to be estimatedfrom the input-outputdata
ande$ k% is themodellingresidual.Noticethattheinput
to the model is x $ k% 
 $ y $ k � 1% y $ k � 2% u $ k � 1%/% T , so
d 
 3.

4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

Number of regressors

M
S

E

Wavelet network 

Linear−wavelet model 

Fig.2.Mean-square-errorfor thelinear-waveletmodel
andthewaveletnetwork.

To obtaina linear-waveletmodel,a linearARX model
of theform

y $ k% 
 θ1y$ k � 1%1� θ2y$ k � 2%1� θ3u $ k � 1%1� el in $ k%
(35)

was initially identified by a standardleast-squares
procedure.A wavelet network was then built ac-
cording to the methoddescribedin subsection2.1,
by using the residueof the linear identification e 

$ el in $ 1% el in $ 2% ����� el in $ 750%/% in the placeof y. A radial
MexicanHat motherwaveletobtainedfrom (29) was
employed.Its effective supportcanbetakenasR 
 5.
The other parametersof the constructionalgorithm
wereadoptedasα 
 2� β 
 1� mmin 
 0 andmmax 
 2.
Steps1) and 3) resultedin 785 wavelets,a number
which was reducedto 545 by Step4). In stepb) of
theselectionprocess,191waveletswerediscardedby
usinganormthresholdδ 
 10� 3.

A similar processwascarriedout to directly identify
function f in (34)usingawaveletnetwork.

Figure2 comparesthe linear-waveletandthewavelet
network modelsin termsof themean-square-errorof
modellingMSE definedas

MSE  n� 
 1
M

M

∑
k� 1

y $ k%1� f̂n  x $ k%&� 2
(36)

whereM is the numberof modelling points and f̂n
is an estimateof f generatedusingn regressors.For
the wavelet network, eachwavelet correspondsto a
regressor(a columnof matrix V in (5)). In thecaseof
thelinear-waveletmodel,thefirst threeregressorsare
relatedto thelinearpart.

Figure 2 revealsthat, for a given numberof regres-
sors(which indicatethecomplexity of themodel),the
linear-wavelet model yields a smaller mean-square-
error thanthe wavelet network. Conversely, it canbe
statedthat,for a givendegreeof approximationaccu-
racy, the linear-wavelet model is moreparsimonious
thanthewaveletnetwork.
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Fig. 3. Validation results.The model predictionand
theactualplantoutputarerepresentedby dashed
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After identification,the modelswereusedto predict
the validation data recursively, that is,
ŷ $ k% 
 f̂  ŷ $ k � 1% � ŷ $ k � 2% � u $ k � 1%-� , startingfrom the
initial conditionsŷ $ 751% 
 y $ 751% � ŷ $ 752% 
 y $ 752% . For
illustration,20 regressorswereemployedfor boththe
linear-waveletmodelandthewaveletnetwork.

Figure3 displaysthe validationresultsfor the linear
model,the linear-waveletmodelandthewaveletnet-
work. By comparingFigures3aand3b, it canbecon-
cludedthat the useof waveletsimproved the predic-
tion ability of the linear modelconsiderably. The ad-
vantageof the linear-wavelet modelover the wavelet
network becomesapparentat theendof thevalidation
window, whenthewaveletnetwork predictionlargely
deviatesfrom theactualprocessoutput.

5. CONCLUSION

This paperproposeda modelstructurecomprisinga
waveletnetwork anda linearterm.It wasshown that,
undercertainconditions,linear functionsareorthog-
onal to wavelets,which meansthat the two partsof
the model can be identified separately. In the one-
dimensionalcase,the motherwavelet is requiredto
have two vanishingmoments.For multidimensional
waveletsof the radial type, suffice it to enforcethe
zero-meancondition.An exampleusing a simulated
fermentationprocessshowedthattheproposedmodel
yields a better approximationthan a conventional
waveletnetwork usingthesamenumberof regressors.

The proposedtechniquecan be usedto improve the
quality of existing linear models,by addingwavelet
terms to accountfor nonlinearities.Conversely, the
useof linearfunctionsmayhelpimprove thegeneral-
izationability of a waveletnetwork, by providing in-
terpolationoverregionsof theinputspacein whichno
modellingsamplesareavailable.Onepossibledraw-
back is that the wavelet network will not be able to

replacemissinglineartermsin theeventthatthelinear
partof themodelhasbeenunder-parameterized.

Though not discussedhere, linear-wavelet models
could also be applied for data compression,partic-
ularly in the caseof signalswith linear trends.For
such signals,the orthogonalityproperty shows that
linearde-trendingcanbefollowedby a wavelet iden-
tification of theresidualoscillations.

Work is beingcarriedout to uselinear-waveletmodels
for predictive control. At eachstep, the linear term
will be employed to generatean initial solution for
thesequenceof controlmovements.Thissolutionwill
thenbeusedasthestartingpoint for anoptimization
algorithmthattakesthewholemodelinto account.
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