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Abstract: In this paper a predictive norm-optimal iterative learning control algorithm from
(Amann et al., 1998) is analyzed. As a main new result in this paper it is shown that if also the
predictive inputs from the algorithm are used in the control of the plant, a faster convergence
can be achieved than with the approach in (Amann et al., 1998). Furthermore, the nature of
the convergence of this new scheme is analyzed in detail in terms of the free parameters of
the algorithm. Copyright © 2002 IFAC
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1. INTRODUCTION

Iterative learning control is a technique to control sys-
tems operating in a repetitive mode with the additional
requirement that a specified output trajectory ���� in
an interval ��� � � is to be followed with high precision.
Examples of such systems are robot manipulators that
are required to repeat a given task to high precision,
chemical batch processes, or more generally, the class
of tracking systems. Motivated by human learning,
the basic idea of iterative learning control is to use
information from previous executions of the task in
order to improve performance from trial to trial in the
sense that the tracking error is sequentially reduced
(Arimoto et al., 1984), (Moore, 1993). Typical iter-
ative learning control algorithms construct the input
to the plant on a given trial from the input used on
the last trial plus an additive incremental which is
typically a function of the past values of the observed
output error, that is, the difference between achieved
output and desired output. The objective of construct-
ing a sequence of input functions �������, � � ��� � �,
such that the performance is gradually improving as
the task is repeated, can be refined to a convergence
condition on the input and error
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where ����� is the difference between ���� and the sys-
tem output ����� at the �th trial and ����� is the input
to the system. This definition of convergent learning is
a stability problem on an infinite-dimensional product
space, typically of the form � � ����� � �. Hence it is
clear that the analysis of iterative learning systems lie
firmly outside the realm of traditional control theory.

In (Amann et al., 1996) an optimality based iterative
learning control law was proposed. The idea was to
solve the following optimization problem
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� (2)

where the tracking error ������� � �����
���������
at trial � 
 � is defined as the difference between
the desired output trajectory (or reference) and the
actual output of the plant 
 to the input �������.
The system is assumed to be described by the input-
output mapping ������� � 
��������� where 
 is a
linear operator defined by the system dynamics. The
norms ���� are induced norms from the inner products
� �� � � of the chosen input and output Hilbert-
spaces 
 and � respectively. For a continuous time
system the inner-product spaces �� 
 are typically
chosen as finite product of ����� � �. The solution of
the optimization problem (2) is
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where 
� is the non-causal adjoint operator of 
.
The corresponding optimal error evolution equation is
given by

���� � �� 
������ (4)

where � �� 

�. In (Amann et al., 1996) it is shown
that the algorithm gives guaranteed convergence with
monotonically decreasing error for all linear, possi-
bly time-varying plants, and the convergence can be
fast, if the system is minimum phase. Furthermore, if
the system is represented in discrete-time, the conver-
gence is geometric. In addition, if the plant 
 has an
equivalent state-space representation, the non-causal
solution (3) has an equivalent causal form, which con-
sists of a Riccati state-feedback term and a so-called
predictive term.

To improve the convergence speed particularly for
non-minimum phase systems, the following cost cri-
terion was introduced in (Amann et al., 1998):
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��
(5)

where ���� � ����� ���� � � � �����
� . In the

following material ������ refers to the i’th element of
���� and ������ refers to the i’th element of the vector
���� � ����� ���� � � � �����

� .

The proposed criterion (5) includes the error not only
of the current trial but also the predicted error in the
next � trials (i.e. � is the prediction horizon) as well
as the corresponding changes in the input. The weight
parameter � � � determines the importance of more
distant (future) errors and incremental inputs. Further-
more, like in General Predictive Control (Camacho
and Bordons, 1998), a receding horizon principle is
proposed in (Amann et al., 1998) where at trial � 
 �
only the input ������ is used as an input into the plant,
and the optimization is repeated again at the next trial.

By including more future signals into the performance
criterion (5), it was argued that the algorithm should
become less ’short sighted’, and faster convergence
should be obtained when compared to (2). This was
rigorously proved in (Amann et al., 1998) when the
input ������ is used as the ’true’ input. In addition,
the resulting algorithm from (5) has a causal imple-
mentation, if the original plant can be described with
a state-space representation.

In this paper it is noted that we can use the receding
horizon principle for any other input ������ , or more
generally, we could take as a ’true’ input a positive
convex combination of the inputs ������ . It is then
an important question whether or not a higher conver-
gence rate can be achieved with these choices when
compared to the choice where ������ is used as the
input. The answer is positive, and will be proved rig-
orously in the following sections.

2. DERIVATION OF THE ERROR EVOLUTION
EQUATIONS

To answer the question proposed above, we establish
the error evolution equation between ������ and ��
when using the input ������ for � � �� 
� � � � �. It is
a straightforward task (see (Amann et al., 1998)) to
show that in matrix form the solution of (5) is given
by

����������� � ��� 

������ (6)

where ��� � �� � � � � � ���
� and ������� is given by
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and 
�� is given by
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Based on (6) the error evolution equation can be
written as
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where ������ �� � 
�� 
� . Because the elements
in (10) commute with each other, and they are linear,
bounded, and �
� and �
��
� are strictly positive
operators and each operator has as its range dense in
� (showing that we can calculate with operators as we
would calculate with elements of a field) the inverse of
��������� can be calculated with the Cramer’s rule
(MacLane and Birkoff, 1971) as

����������� �
������������������adj �����������

(11)

where we can prove that ������������������ exists.
However, because we are only interested in finding the



relationship between ������ and �� it is easily seen
that the operator mapping �� to ������ is given by

�������������������������������� (12)

for � � �� 
� � � � � � where

������ � �������������������� (13)

and �������������������� is the minor of ���������
at position ��� � � � 
 ��. As a preliminary remark it
is observed that ��������� can be written recursively
as
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or even as
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From (14) and (15) it is seen that
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(16)
with �������������� � � and �������������� �
� 
 � . To shorten the notation, we call the n’th op-
erator obtained from the iteration (16) as �������,
i.e. ������� �� ��������������. We know from
(Amann et al., 1998) that ������� for � � �� 
� �� � � �
are bounded self-adjoint strictly positive linear oper-
ators and Rg ��������� is dense in � and thus it
is mathematically correct to use (11) to calculate the
inverse of ���������.

To calculate the functional dependence from �� to
������ we need the cofactor of ��������� at position
��� ��. But (��) points out that it is ���������������� �
���������. Hence

������ � �������������������� (17)

A similar argument shows that for ������ , � �
��� 
� � � � � ��

������ � �������������������� (18)

As we now know the error evolution equation between
������ and �� we can answer the question proposed
in the first section, i.e. do the inputs ������ for � �

� �� � � � � or, more generally, convex combinations
of the inputs, result in faster convergence than that
observed when ������ alone is used? This is done in
the next section by carefully analyzing the properties
of the family of learning operators given in (18).

3. PARTIAL ORDERINGS FOR THE LEARNING
OPERATORS

In this section we introduce partial orderings for the
operators
��������� � ������������������ for � � ��� � � � ��
in the following way (Kreyszig, 1978): Let �� and ��
be bounded linear self-adjoint operators on a com-
plex Hilbert space � . Then �� 	 �� if and only
if 
���� �� 	 
���� �� (or �� � �� if and only if

���� �� � 
���� ��) for an arbitrary non-zero ele-
ment � � � . Another important concept from func-
tional analysis in this section is a positive operator
(Kreyszig, 1978): a bounded self-adjoint linear op-
erator � is positive if and only if � 	 � (or � is
strictly positive if and only if � � �). This implies
that �� 	 �� if and only if �� � �� 	 � (or �� � ��
if and only if �� � �� � �).

In the end of the subsection we show how the partial
orderings are related to convergence rate, and find
out that by using a positive convex combination of
the inputs ������� � � � ������� (i.e. using the input
���� ��

��

��� ��������, where
��

��� �� � � and
�� 	 �� as the true input for the plant, a quicker
convergence rate can be obtained than using merely
������ as the true input. Furthermore, the convergence
is geometric for a positive convex combination if for
�� � � ,� 
� �, 
��� �� 	 ������ where �� � � and
almost geometric if �� � �.

Most of the proofs are based on a standard result in
functional analysis (Kreyszig, 1978), namely that if
two bounded self-adjoint linear operators � and � on
a complex Hilbert space � are positive and commute,
then their product �� � �� is positive.

We start by collecting from (Amann et al., 1998) the
following useful properties of the family of learning
operator ������� � ���������:

Property 1. Assume that � 	 �, ��� � �, � � � �
�. Then ������� � �� � � �� �� 
� � � � .

From this on we can assume always that ��� � �,
because 
 is supposed to be a linear dynamical system
defined over a finite-time, and hence it is bounded,
implying � � 

� is bounded.

Property 2. � � ��������� � ������� � � for
� � �, � � �, � � �� �� 
� � � � , and the operators
������� are self-adjoint and commute with each
other for � � �� �� 
� � � � .

Property 3. Assume that � � �, � � � � ��. Then
������� � ��������� � � �� 
� �� � � � .

The first step is to show that a similar partial ordering
exists as in the Property 2 for the operators ���������
as a function of �.



Proposition 1. Assume that �>0. Then �� � ���� �
���� � � � � � ������ � ����

Proof. First note that for � � ��� � � � ��

���� � ���� ����
� ���� �����

��
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� ������ � � � ������

(19)

Furthermore ���� � ������ � � � ������ � �
and � � ���� � � based on Property 2. Thus
���� � ������ � � � ���������� � ������ for
� � ��� � � � �� ��.

This result suggests that by including the information
from the inputs ������ , � � �
� � � � �� in the cal-
culation of the current input signal quicker conver-
gence can be achieved when compared to the case
where merely ���� is used (see the end of this sub-
section how the partial order is related to convergence
speed). One interesting approach to do this inclusion
would be to select the current input as a positive
convex combination of the input signals, i.e. ���� ���

��� �������� , where �� 	 �,
��

��� �� � �. In this
case the error evolution is governed by the following
equation

���� �
���� ������� 
 ������ 
 � � �
 �������
� ������� 
 ������ 
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 ���������
� �������������

(20)

where ����������� reflects the fact that the prop-
erties of the new learning operator ����������� is
also dependent on the choice of � �� ���� � � � ���.
The next proposition shows that by taking an arbitrary
convex combination results gives a learning opera-
tor ����������� which lies between ��������� and
��������� in the sense of the partial order.

Proposition 2. Assume that � � �� Then �� �
���� � ���� if ���� 
� �� and ���� 
� ����.

Proof.
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(21)

The next issue is to analyze whether or not � intro-
duces a partial ordering for the learning operator. This
question is answered in the following proposition:

Proposition 3. Let �� � �, ��� � � � and � � �.
Then ������������ � �����������.

Proof. Take an arbitrary � � ��� � � � � � ��. From
Property 3 we now that ���������� � ���������.
Thus �������������������� �

���������������������. However, because
����������� � ������������ � �, it implies that

��������������������� �
������������������

�� ��
(22)

Thus
�������������������� �
������������������������

(23)

We can repeat this argument inductively and thus

���������������� � � � ��������� �
������������������ � � � ����������

(24)

and consequently

����������� �
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������������ � ������������

(25)

which completes the proof.

The next step is to analyze whether or not the pre-
diction horizon � introduce a partial ordering for the
operators. However, because for an arbitrary set of
���� � � � ��� it is not clear how to select a new set
of ����� � � � �

�
���� so that the comparison would make

logical sense, we look at a special case where for a
fixed � � �� an arbitrary � � �� we always select
�� � �, �� � � for � � �
� � � � ���� and �� � ���,
i.e. ��������� �� � �������� 
 �� � ���������.
This specific selection gives the following proposition:

Proposition 4. Assume that � � �.
Then ����������� �� � ��������� ��

Proof. Because ����������� � �, this implies that

���������������� � � � ������� �
���������������� � � � �������

(26)

and hence

��������� �� � ���������� 
 ��� �����������
� ������������ 
 ��� ���������������
� ����������� ��

(27)
because based on Property 2, ��������� � ������� �
��������� � �����������.

The next important question is how these partial or-
derings are then linked to the convergence properties
of the learning operators? To answer this question we
need first the following proposition from (Amann et
al., 1998):

Proposition 5. Let � 	 � such that 
����� 	
�� 
�� �� �� � � . Then

������� � ����� �� �� � �� � � �� �� 
� � � �
(28)



where

������� �� �
�

� 
 �� 
 �� ������ ��
� �� � �

(29)
and the error sequence is bounded by ������ �
����� ������.

Note that if � � � (which holds for the important
case of discrete-time systems) then � � ����� �� � �,
� � ��� 
� � � �� but if � � � then ����� �� � � for
� � ��� 
� � � ��. For a bounded self-adjoint operator �
on a complex Hilbert-space � it is valid that ��� �
����	��� � 
��� �� � implying that ��������� �
����� ��. Thus ������� is a contraction if � � �.
Furthermore in this case all the Propositions from 1 to
4 can be rewritten so that ������� is replaced with
����� �� giving the following qualitative conclusions:

i) The lowest convergence rate is achieved by using
������ as an true input and the quickest conve-
gence rate is achieved bu using ������ as the
true input. By using a convex combination of
the inputs the convergence rate lies between the
convergence rate given by ������ and ������.
The convergence is geometric in each case.

ii) Increasing � increases the convergence rate for
an arbitrary positive convex combination of
������� � � � �������.

iii) If the coefficients �� of ����������� are se-
lected as in Proposition 4 then
��������������� � �������������. This
shows that by increasing the prediction horizon
a quicker convergence rate is achieved.

The underlying problem, however, is that for a strictly
proper continuous-time system the lower bound in
Proposition 5 is in fact zero (an operator having a
strictly positive lower bound on an infinite-dimensional
space � cannot be compact but � is a compact oper-
ator). Thus in the previous propositions and properties
in this section � has to be replaced with � when � 	
�. Especially ������������� � � and thus strict ge-
ometric convergence is not possible to achieve. Con-
sequently it would be interesting to know which error
functions are left unaffected by �����������. This
question is answered in the following proposition for
�������:

Proposition 6. �������� � � if and only if � �
Ker ���.

Proof. Suppose that � � Ker ���. Then ������� �
�� � �. Assume now that � � Ker ��� implies that
�������� � �. Then

���������� � �� 
 �� 
� � ���������
��

�
(30)

or (because ��������� is invertible and the operators
commute)

��������� �� 
 �� 
� � ��������� � � �
(31)

but based on the induction assumption and the fact that
�� � �

���������� � � (32)

Assume now that there exists � � � such that
�������� � �� 
 ����� � �. This shows that
�� 
 ��� � � implying �� � � and hence � �
Ker���. Assume now that there exists � � � such that
�������� � �. This implies that 
��������� �� �

�� �� � ����. However, Property 2 shows that � 	
������� 	 ������� showing that


�� �� 	 
��������� �� 	 
��������� �� � 
�� ��
(33)

which implies that 
��������� �� � 
�� �� and hence
�������� � � and � � Ker���.

The extension to ������������� is straightforward:
from Proposition 6 it is clear that if � � Ker ���
then ������������ � �. On the other we know from
Proposition 2 that � 	 ������� 	 �����������.
Thus if ������������ � � a similar argument as in
Proposition 6 shows that �������� � � implying
� � Ker���. Furthermore, it is easy to show that
Ker ��� � Ker �
�� � �Rg �
��

�. Thus we see that
if � �� Ker �
�� � �Rg �
��

� then the algorithm
converges even when �� � � in Proposition 5. The
nature of this convergence is shown in the next section.

4. ALMOST GEOMETRIC CONVERGENCE

As it was mentioned in the previous section, for a
strictly proper continuous-time plant geometric con-
vergence cannot be achieved, and this was due to
the fact that � is compact operator in an infinite-
dimensional space. However, as � is a compact self-
adjoint operator on a Hilbert space � , then � has the
following spectral decomposition

�� �
�
�

��� 
�� ����� (34)

where ���� � are the eigenvalues of � and ���� are the
corresponding eigenvectors. In addition, the � �

� � �
and 0 belongs to the spectrum of � . Furthermore, if
� is separable and infinite-dimensional (for example
����� � �) then the eigenvectors form a complete or-
thonormal basis for � . This means that an arbitrary
vector � � � can be written as � �

�
� 
�� ����� .

Thus when using the standard algorithm (i.e. ������ is
the true input) the evolution of the error signal can be
written as

���� � ��������� ��
�

����� � �� 
��� ����� (35)

where ����� � �� is obtained from the iteration (29). If
a convex combination of the inputs is used as the true



input for the plant, then in this case the error evolution
is governed by

���� � ����������� ��
�

���������� � �� 
 ��������� � �� 
 � � �


������������� � �� 
 ��������� � ��� 
��� �����

(36)
where
�������� �� � ������ ���������� �� � � � ���������� ��
for � � ��� � � � ��. In the standard case where the
true input is ������ the following proposition from
(Amann et al., 1998) shows the ’almost geometric
convergence’ property.

Proposition 7. For any  � �, let ! be an inte-
ger such that the approximation error satisfies ��� ��


��� 
��� ������ �  . Then the following bound
holds:

���� � ����
� �������
  (37)

If the true input is a convex combination of
������� � � � ������� an easy modification of Proposi-
tion 7 shows that in case the bound in (37) can be
replaced with

���� �

�
��
���

��������
� ��

	�

����
  (38)

Thus if ���� �� "�
�� then the previous proposi-
tions guarantee almost geometric convergence. Fur-
thermore, the convergence is dependent on the projec-
tion of ���� on the eigenvectors of ������� (note that
����������� has the same eigenvectors as �������)
in the sense that if ���� can be approximated accu-
rately with ’low-frequency’ eigenvectors of �������
the convergence is faster than when compared to the
case where ���� contains significant ’high-frequency’
components.

5. CONCLUSIONS

In this paper the mathematical properties of the pre-
dictive norm optimal iterative control proposed in
(Amann et al., 1998) were analyzed in detail. As a
new result it was found out that by using a convex
combination of the predictive inputs from the algo-
rithm a faster convergence can be obtained than by
the previously used input ������. Furthermore, the
convergence properties of the new scheme were an-
alyzed both in terms of the weighing parameter � and
the prediction horizon �. The analysis showed that
by increasing either the prediction horizon � or the
weighing factor � the convergence rate will increase.

Robustness is an issue that was not properly addressed
in this paper. This is an open problem for further
research.
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