
PID AUTOTUNING USING NEURAL NETWORKS AND
MODEL REFERENCE ADAPTIVE CONTROL 1

K. Pirabakaran and V.M. Becerra

Department of Cybernetics
The University of Reading

Reading, RG6 6AY
United Kingdom

Abstract: This paper describes the application of artificial neural networks for automatic
tuning of PID controllers using the Model Reference Adaptive Control approach. The
effectiveness of the proposed method is shown through a simulated application. Copyright
© 2002 IFAC.

Keywords: Autotuners, PID Control, Model Reference Adaptive Control, Neural Networks,
Back–propagation.

1. INTRODUCTION

The PID controller is by far the most common con-
trol algorithm. Today, PID controllers can be found in
virtually all control systems, with applications rang-
ing from process conditions regulation to precision
motion control for assembly and process automation.
This is not surprising since the reliability of the PID
controllers has been field proven by decades of suc-
cessful applications (Kiong et al., 1999). Their popu-
larity is due to their robustness in a wide range of op-
erating conditions, the simplicity of their structure as
well as the familiarity of designers and operators with
the PID algorithms. The importance of PID controllers
cannot be undermined as they provide the engines
to millions of control systems operating around the
world.

Tuning a controller implies setting its adjustable pa-
rameters to appropriate values that provide good con-
trol performance. With all PID controllers, occasional
retuning is needed: real-world processes change over
time for a variety of reasons. PID tuning is often
done manually and iteratively. The process operator or

1 Work supported by the Research Endowment Trust Fund of the
University of Reading

control engineer varies the parameters (in a principled
or ad-hoc way) until acceptable process behavior to a
small change in the setpoint is achieved. This can be a
prolonged exercise.

Since the number of PID controllers that can be found
in industry is so overwhelming, the tuning of such
devices is an important issue. Indeed, this issue has
received significant attention in the literature. Several
methods have been proposed for PID auto-tuning. A
subset of them can be found in the book by Astrom
and Hagglund (1995). As the demand on control
performance and process economy increased, and sys-
tems with more complex structure must be controlled,
more sophisticated tuning methods are needed. Some
authors have recently published methods for auto-
matic tuning involving neural networks (Fujinaka et
al., 2000), (Rad et al., 2000), (Konar et al., 1995).

This paper describes the application of artificial neural
networks for automatic tuning of PID controllers us-
ing the Model Reference Adaptive Control (MRAC)
approach. The approach is to first construct a plant
emulator, using a multi–layer perceptron (MLP) net-
work. This emulator is then used together with an
on-line trained neural network, which adjusts the PID
parameters such that the error between the reference

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

Process Signal

y

Model Output

ym

Control Signal
u

Controller Parameter

Command
Signal u c

Model

Adjustment
mechanism

ProcessController

Fig. 1. A block diagram of a model reference adaptive system

model output and process output is reduced. The neu-
ral network tuner takes past plant output values, con-
trol signal and set point signal as inputs, and produces
the required changes in the PID controller parameters.

This paper is organized as follows. In section 2, an
overview of Model Reference Adaptive Control is pre-
sented. The proposed autotuning method is presented
in section 3. Sections 4 and 5 present a case study
based on a simulated two tank process model. The
paper concludes with a discussion on the results and
on the autotuning methods presented.

2. MODEL REFERENCE ADAPTIVE CONTROL
(MRAC)

Model reference adaptive control was originally pro-
posed to solve a problem in which the specifications
are given in terms of a reference model that tells how
the process output ideally should respond to the com-
mand signal. This is one of the main approaches to
adaptive control. The basic idea is illustrated in Figure
1, which is the original MRAC, proposed by Whitaker
in 1958. The regulator can be thought of as consisting
of two loops: an inner loop which is the ordinary feed-
back loop composed of the process and controller. The
parameters of the controller are adjusted by the outer
loop in such a way that the error e between the process
output y and the model output ym becomes small. The
outer loop is thus the adaptation loop (Astrom and
Wittenmark, 1995).

3. PID AUTOTUNING USING NEURAL
NETWORKS AND MODEL REFERENCE

ADAPTIVE CONTROL

This paper combines and extends of previous works
on the subject of self tuning neural network PID con-
troller by Fujinaka et al. (2000) and the work by
the authors on autotuning of PID controllers using
MRAC (Pirabakaran and Becerra, 2001). The algo-
rithm presented by Fujinaka et.al (2000) achieves the
tuning objective by minimizing the squared control er-
ror (e2

c = (uc− y)2, where uc is the setpoint and y is the
plant output), however, no performance specifications
like natural frequency or damping ratio can be consid-
ered by using their approach.

The structure of the autotuning scheme described in
this paper is shown in Figure 2, where the outputs of
the neural network shown in Figure 3 are the controller
parameter changes, (proportional ∆Kp, integral ∆Ki,
and derivative ∆Kd gains) and the inputs are selected
in a suitable way according to the specific problem.

This method calculates the controller parameters on–
line. As a result, the training targets for the PID con-
troller parameters are not available, so that supervised
training, such as standard back–propagation, cannot
be applied. Instead, the neural network weights are
calculated to minimise a criterion using a gradient
method. The criterion used is the minimisation of the
squared model error:

J =
1
2

e2 =
1
2
(y− ym)2 (1)

where y is the process output and ym is the reference
model output. The reference model transfer function
is given by:

uc

kp , ki k d

ym

y

ey

+
-

u

Reference
Model

Process
PID

Controller

Neural
Network
Tuner

,

Fig. 2. Schematic diagram of autotuning PID controller

Gm (s) =
Ym (s)
Uc (s)

=
ω2

n

s2 +2ζ ωns+ω2
n

(2)

which has unit steady state gain, natural frequency ωn

and damping ratio ζ . The reference model determines
the desired output for a given input. The model error
is calculated using the reference model output and
the process output and then the model error is used
to update the neural networks weights. In order to
update the weights, the back–propagation algorithm
was modified to consider the above criterion.

The velocity form of the PID control algorithm in
discrete-time was used:

u(n) = u(n−1)+Kp(e(n)− e(n−1))

+Kie(n)

+Kd(e(n)−2e(n−1)+ e(n−2)) (3)

where Kp, Ki, and Kd are proportional, integral and
derivative gains, respectively, u(n) denotes the plant
input at nT , and e is the control error. Here T is the
sampling interval. In order to adjust Kp, Ki, and Kd , a
three layered neural network with sigmoid activation
functions in the hidden layer and the linear activation
functions in the output layer was used. Each layer
consists of N1, N2, and N3 neurons, where N1 and N2
can be selected by trial and error. N3=3, corresponds
to the number of PID gains. The cost function to be
minimised by the back–propagation method is defined
to be the squared model error (1). The connection
weights at the output layer and hidden layer are up-
dated by the following equations.

Fig. 3. Neural network for autotuning

∆wk j(n+1) = ηδko j +α∆wk j(n)

+β∆wk j(n−1) (4)

∆w ji(n+1) = ηδ joi +α∆w ji(n)

+β∆w ji(n−1) (5)

where k=1,2,3; j=1,2,....N2; i=1,2,...N1, η is the learn-
ing rate, α and β are the momentum terms and w ji
denotes the connection weight from input node i to
neuron j, wk j denotes the connection weight from
neuron j to output neuron k. The local gradient δ j(n)
for hidden neuron j is given by:

δ j(n) =−
∂E(n)

∂o j(n)

∂o j(n)

∂net j(n)
(6)

δ j(n) =
∂E (n)

∂o j (n)
f ′j
(

net j (n)
)

(7)

Hence

δ j = f ′(net j)
3

∑
k=1

ek(n) f ′(netk)wk j (8)

The local gradient of the output neurons, δk, is given
by:

δk =−
∂E

∂netk
(9)

From equation (1), the model error is given by:

E =
1
2

ek(n+1)2 =
1
2
(ym(n+1)− y(n+1))2(10)

Therefore,

∂E
∂netk

=−e(n+1)
∂y(n+1)

∂netk
(11)

Using the chain rule,

∂y(n+1)

∂netk
=

∂y(n+1)

∂u(n)

∂u(n)

∂ok

∂ok

∂netk
(12)

So that the local gradient δk can be written as:

δk = e(n+1)
∂y(n+1)

∂u(n)

∂u(n)

∂ok

∂ok

∂netk
(13)

Furthermore, from equation (3)

∂u(n)

∂ok
=

e(n)− e(n−1),
e(n),
e(n)−2e(n−1)+ e(n−2),

(14)

where k=1,2 or 3, o1 = Kp; o2 = Ki; o3 = Kd .

The calculation of the plant jacobian ∂y(n+1)
/

∂u(n)
is described in section 5.

4. THE TWO TANK PROCESS MODEL

In order to test the autotuning techniques introduced
in this paper, a nonlinear dynamic model of a two tank
process has been used. This system is illustrated in
Figure 4. The liquid level control system considered
here consists of two tanks, which are connected by a
short pipe. The amount of liquid flowing into the tanks
is regulated by a control valve. The control problem
is to maintain the desired liquid level (h2) in second
tank by adjusting the valve opening percentage (V). A

Fig. 4. Two tank process

model of this system is given by the following set of
equations:

Q1 =
CV
100

Q2 = K2

√

h2

Q12 = K1

√

h1−h2

dh1

dt
=

(Q1−Q2)

A1

dh2

dt
=

(

Q12−Q2

)

A2

(15)

where the manipulated variable V is the valve opening
in percentage, Q1, Q2, and Q12 are volumetric flows
in cm3 /s, h1 is the liquid level in tank 1 in cm, h2 is
the liquid level in tank 2 in cm, A1 is the base area of
tank 1 in cm2, A2 is the base area of tank 2 in cm2.
The measured output is h2, the liquid level in tank
2. The parameters of the process are: A1=289 cm2 ;
A2=144 cm2; c = 280cm2s−1.%−1; K1 = 30cm5/2s−1;
K2 = 30cm5/2s−1.

5. IMPLEMENTATION AND RESULTS

This section illustrates the application of the devel-
oped neural network based autotuning techniques (see
section 3) to the two tank level control system de-
scribed in section 4.

The system Jacobian ∂y(n+1)
/

∂u(n) is not avail-
able as the true plant parameters are assumed to be
unknown. Thus, an emulator is introduced that mim-
ics the input/output map of the plant. By using this
emulator to provide an approximation to the system
Jacobian, the modified back-propagation method de-
scribed in section 3 can be applied to adjust the neural
network tuner weights. The PID gains are adjusted by
the neural network. The Jacobian of the level control

j

k

i
u(n)

y(n)

y(n-1)

wji

wkj

y^(n+1)

Fig. 5. Neural network emulator

system is derived by using the emulator shown in Fig-
ure 5. The emulator used is a non–linear ARX model.
The input layer of the emulator consists of three units,
which are connected to six units in the hidden layer.
The output layer consists of one unit, representing the
estimated value. Its mapping can be written as follows:

ŷ(n+1) = f (u(n) ,y(n) ,y(n−1)) (16)

The neural network emulator was trained off–line us-
ing the Levenberg Marquadt’s algorithm. Two thou-
sand training data samples were used to train the em-
ulator. Using this emulator, the system Jacobian is
calculated as follows:

∂ ŷ(n+1)

∂u(n)
=

6

∑
j=1

w
1 j

o
j
(1−o

j
)w

j1
(17)

Here the suffix 1 in denotes the neuron unit corre-
sponding to u(n) at the input layer. The range of sum-
mation over j is in accordance with the structure of the
connection between the hidden layer and output layer.

To illustrate, a simulation has been carried out using
the following values for the reference model param-
eters, sampling time, learning rates and momentum
parameters, respectively: ωn=0.02 rad/s, ζ =0.7; T =3
s, η=10−4, α= 2.0× 10−7, β=10−7. The reference
signal uc during the autotuning period was generated
as follows:

uc(t) = usq(t)+0.6sin(0.02t)+5 (18)

where usq(t) is a square wave with amplitude 0.6 and
period 500 s.

Figure 6 shows the reference model output and pro-
cesses output before, during and after the tuning pe-
riod, and also the oscillations during the tuning period.
Notice that the system follows quite closely the refer-
ence model output after the autotuning is carried out.
The step response is shown before and after the tuning.
Figure 7 shows the evolution the controller parame-
ters. It can be seen that how the controller parameters
change with time and eliminate the model error.

6. CONCLUSIONS

A new autotuning technique was proposed in which
a neural network is used to tune on–line the gains of
a PID controller, based on Model Reference Adaptive
Control concepts. A neural network tuner is trained
on–line in order to make the system behave like the
reference model. The on–line training was carried out
using a modified back–propagation method. This re-
quires the use of an emulator, which is trained off–
line, to obtain an approximation to the plant Jaco-
bian. The use of neural networks allows nonlinear-
ities in the controlled system to be considered for
tuning purposes. Furthermore, the use of the Model
Reference Adaptive Control approach allows desired
performance measures, such as natural frequency and
damping ratio, to be specified. The effectiveness of
the developed techniques has been demonstrated by
means of a simulated two tank process.

Further work includes the following aspects. In the
method described in section 3, the stability of the
closed loop system is not guaranteed during the auto–
tuning period. Lyapunov theory can be used to de-
rive an adaptation algorithm with guaranteed stability.
From Figure 7 it is possible to note that although the
controller parameters (Kp, Ki, Kd) have not converged
when the adaptation stops, the scheme clearly makes
the closed loop system follow the reference model
very closely. It is then important to investigate the
conditions for the convergence of the controller pa-
rameters.

7. REFERENCES

Astrom, K. and T. Hagglund (1995). PID Controllers:
Theory, Design, and Tuning. Instrument Society
of America. Research Triangle Park, USA.

Astrom, K. J. and B. Wittenmark (1995). Adap-
tive Control, 2nd ed. Addison–Wesley. Reading,
Mass.

Fujinaka, T., Y. Kishida, M. Yoshioka and S. Omatu
(2000). Stabilization of double inverted pen-
dulum with self-tuning Neuro-PID. In: IEEE
International Conference on Neural Networks.
Vol. IV. Como, Italy. pp. 345–348.

Kiong, T. K., W. Q. Guo and H. C. Chieh (1999).
Advances in PID control. Springer. London.

Konar, A. F., S. A. Harp and T. Samad (1995). Neuro-
PID controller. US Patent and Trademark Off ice.
USP: 5,396,415.

Pirabakaran, K. and V. M. Becerra (2001). Automatic
tuning of PID controllers using model refer-
ence adaptive control techniques. In: IECON’01
27th Annual Conference of the IEEE Industrial
Electronics Society. Denver, Colorado, USA.
pp. 736–740.

Rad, A. B., T. W. Bui, Y. Li and Y. K. Wong (2000).
A new on line PID tuning method using neural
networks. In: IFAC Digital Control, Past, Present
and Future. Terrassa, Spain. pp. 443–448.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

2

3

4

5

6

7

8

9

Time (s)

y
an

d
ym

 (
cm

)

Before
Autotuning After autotuning

During
autotuning

Fig. 6. Process and reference model outputs before, during and after the autotuning period

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

4.9

4.95

5

5.05

K
p

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

K
i

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10

10.01

10.02

10.03

Time(s)

K
d

Fig. 7. Controller parameter values before, during and after the autotuning period.

