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Abstract: Reset controllers are linear controllers that reset some of their states to
zero when their input is zero. We are interested in their feedback connection with
linear plants, and in this paper we establish fundamental closed-loop properties. This
paper considers more general reset structures than previously considered, allowing
for higher-order controllers and partial-state resetting. It gives a testable necessary
and sufficient condition for quadratic stability and links it to uniform bounded-input
bounded-output state stability. Unlike previous related research, which includes the
study of impulsive differential equations, our stability results require no assumptions
on the evolution of reset times.
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1. INTRODUCTION

In this paper we study the control system depicted
in Figure 1 which consists of a reset controller
R connected in feedback with a plant transfer
function P (s). 3 A reset controller is a linear
time-invariant system whose states, or subset of
states, reset to zero when the controller input e
is zero. Motivation for reset control comes from
two sources. First, from the limitations of linear
feedback control systems imposed by Bode’s gain-
phase relationship. Second, from the favorable
sinusoidal describing function of reset controllers
which promise relief from Bode’s constraint. In-
deed, a reset integrator, also referred to as a Clegg
integrator, has a describing function similar to the
frequency response of a linear integrator but with
only 38.1◦ phase lag; see [1]. The purpose of this

1 Accepted for oral presentation at the 15th IFAC World
Congress, Barcelona.
2 This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CMS-9800612.
3 They are not to be confused with integral action in
process control, which is also referred to as reset control.

paper is to report on some fundamental properties
of these reset control systems and complements
the papers [2] – [5] which show, either through
theory, simulation or experiment, the potential
benefit of reset control.
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Fig. 1. Block diagram of a reset control system.

Before we discuss previous research, we first give
a simple illustration of reset control. Consider the
feedback system in Figure 1 with plant

P (s) =
s + 1

s(s + 0.2)
.

We take the reset controller to be a first-order
filter 1

s+1 whose state xr resets (to zero) whenever
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the loop error is zero; i.e., e(t) = 0. 4 We can
describe this reset controller by the impulsive
differential equation:

ẋr(t) =−xr(t) + e(t), e(t) �= 0;

xr(t+) = xr(t), e(t) = 0;

u(t) = xr(t).

If this first-order filter is not allowed to reset, then,
the resulting linear closed-loop system responds to
a unit step reference signal r(t) as shown in the
top plot of Figure 2. The response, when the filter
does reset, is shown in the middle plot, while the
last plot shows the reset controller’s output u. The
introduction of reset decreases the overshoot and
settling time without sacrificing rise time.
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Fig. 2. Step response y of the linear control system (top),

reset control system (middle) and reset control action

u (bottom).

The present paper, which reports on results from
[8], provides a summary of fundamental proper-
ties of reset control. It considers more general
reset structures than previously considered, al-
lowing for higher-order controllers and partial-
state resetting. The paper shows the previously
mentioned Hβ-condition to be necessary and suffi-
cient for quadratic stability and links it to uniform
bounded-input bounded-output state (UBIBS)
stability. It also identifies a non-trivial class of
reset control systems that is quadratically stable.
Another contribution of this work is the removal of
all assumptions on reset times. Such assumptions
were required in previous analysis and also appear
in the study of impulsive differential equations
(IDEs); e.g., see [9] and [10].

The paper is organized as follows: In Section 2
we set up the reset control problem by expressing
the dynamics of reset in terms of impulsive dif-
ferential equations. Section 3 presents our main
results where we state Lyapunov-based conditions
for closed-loop stability, give a necessary and suf-
ficient condition for quadratic stability and show

4 In the literature, this simple reset controller is referred
to as a first-order reset element (FORE).

that quadratic stability implies UBIBS stability.
In Section 4 we identify a non-trivial class of re-
set control systems that are always quadratically
stable, and, as a result, are input-output stable.
For brevity, proofs of results are omitted and are
available in the more complete version of this
paper [11].

2. SETUP

The reset control system considered in this paper
is shown in Figure 1 where the reset controller R
is described by the IDE

ẋr(t) = Arxr(t) + Bre(t), e(t) �= 0;

xr(t+) = A�xr(t), e(t) = 0;

u(t) = Crxr(t) (1)

and where xr(t) is the reset controllers state,
u(t) its output, Ar ∈ R

nr×nr , Br ∈ R
nr×1 and

Cr ∈ R
1×nr . The matrix A� ∈ R

nr×nr selects the
states to be reset. Without loss of generality we

assume the block diagonal form A� =
[

In�̄
0

0 0n�

]

where n� (of the nr controller states) are reset.
Examples of reset controllers include the Clegg
Integrator (CI):

Ar = 0; Br = 1; Cr = 1; A� = 0

and the First-Order Reset Element (FORE):

Ar = −b; Br = 1; Cr = 1; A� = 0. (2)

In both of these cases, n� = nr = 1. We assume
that plant P (s) in Figure 1 accounts for any lin-
ear pre-compensation. In fact, the design of reset
control systems as developed in [3] involves the
synthesis of both linear compensator C(s) and re-
set controller R. Typically, the linear compensator
is used to stabilize and shape the loop to sat-
isfy classical Bode specifications at high and low
frequencies. The reset controller is then designed
to meet overshoot constraints. We assume P (s)
strictly proper and adopt the realization:

ẋp(t) = Apxp(t) + Bpu(t);

yp(t) = Cpxp(t)

where Ap ∈ R
np×np , Bp ∈ R

np×1 and Cp ∈
R

1×np . The closed-loop reset control system can
then be described by the IDE

ẋ(t) = Ac�x(t) + Bc�w(t), x(t) /∈ M(t);

x(t+) = ARx(t), x(t) ∈ M(t);

y(t) = Cc�x(t) + d(t); (3)

e(t) = w(t) − Cc�x(t)

where



x �
[
x′

p x′
r

]′
,

Ac� �
[

Ap BpCr

−BrCp Ar

]
, Bc� �

[
0

Br

]
,

AR �
[

I 0
0 A�

]
,

Cc� �
[
Cp 0

]
and w(t) � r(t) − n(t) − d(t). The so-called reset
surface M(t) defines those states triggering reset
and is formally defined by

M(t) =
{
ξ ∈ R

np+nr: e(t) = 0, (I − AR)ξ �= 0
}

.
(4)

If x(t∗) ∈ M(t∗), then x(t∗) is called a reset state
and t∗ a reset time. From (4) they satisfy

x(t∗) ∈ M(t∗) ⇒ x(t+∗ ) /∈ M(t+∗ ).

Thus, we can collect these times in the ordered set

T (x0) � {ti ∈ R+: ti < ti+1;

x(ti) ∈ M(ti), i ∈ Ñ ⊆ N}

which emphasizes that reset times depend on
initial conditions as well as the exogenous signal
w(t). Finally, the reset intervals τi are defined as

τ1 � t1;

τi+1 � ti+1 − ti, i ∈ Ñ ⊆ N.

In absence of resetting; i.e., when AR = I, the
resulting closed-loop system Cc�(sI−Ac�)−1Bc� is
called the base-linear system. We define the loop
transfer function as

L(s) = P (s)Rb�(s)

where Rb�(s) = Cr(sI − Ar)−1Br is the transfer
function associated with reset controller R in the
absence of resetting. For example, for CI, Rb�(s) =
1
s and for FORE, Rb�(s) = 1

s+b . Associated with
the base-linear system are its sensitivity function
S(s) = 1

1+L(s) and the complementary sensitivity

T (s) = L(s)
1+L(s) .

3. STABILITY

In this section we establish internal stability of
(3) by giving a necessary and sufficient condition
(called the “Hβ-condition”) for the existence of
a quadratic Lyapunov function (quadratic stabil-
ity). The Hβ-condition is a strict positive real
(SPR) constraint on the base-linear system and
amounts to a requirement over and above base-
linear stability. This is significant in light of ex-
amples demonstrating that reset can destabilize a
stable base-linear system; e.g., see [2]. Moreover,
the Hβ-condition appears to have non-trivial ap-
plication. In Section 4 we prove that a large class
of reset control systems satisfy the Hβ-condition.

We will wrap-up this section by showing that
quadratic stability implies UBIBS stability of (3).

3.1 Preliminaries

Consider the unforced version of (3) described by
the autonomous IDE

ẋ(t) = Ac�x(t), x(t) /∈ M, x(0) = x0;

x(t+) = ARx(t), x(t) ∈ M (5)

where

M =
{
ξ ∈ R

np+nr: Cc�ξ = 0, (I − AR)ξ �= 0
}

.

Our first theorem gives a general Lyapunov-like
stability condition similar to those in [9] and [10].

Theorem 1. Let V (x) : R
n → R be a continuously-

differentiable, positive-definite, radially-unbounded
function such that

V̇ (x) �
[
∂V

∂x

]′
Ac�x < 0, x �= 0; (6)

∆V (x) � V (ARx) − V (x) ≤ 0, x ∈ M. (7)

Then,

(i) there exists a left-continuous function x(t)
satisfying (5) for all t ≥ 0,

(ii) the equilibrium point x = 0 is globally
uniformly asymptotically stable. �

In the next subsection we specialize to quadratic
Lyapunov function V (x) = x′Px. This leads to a
tight, easily tested stability condition.

3.2 Quadratic stability

We state one of our main results which gives a
necessary and sufficient condition, called the Hβ-
condition, for (5) to possess a quadratic Lyapunov
function.

Definition 2. The reset control system (5) is said
to satisfy the Hβ-condition if there exists a β ∈
R

n� such that

Hβ(s) �
[

βCp 0n�̄
In�

]
(sI − Ac�)

−1


 0

0′n�̄

In�




(8)
is strictly positive real 5 where In�

denotes an
identity matrix of size n� × n� and 0n�̄

denotes
a matrix of zeros of size n� × n�̄. �

5 A square transfer function matrix X(s) is called strictly
positive real if i) X(s−ε)’s elements are analytic in Re[s] >
0 and ii) X†(s − ε) + X(s − ε) ≥ 0 for Re[s] > 0 for some
ε > 0. Here † denotes the complex conjugate transpose.



We now specialize to quadratic Lyapunov func-
tions.

Definition 3. The reset control system (5) is said
to be quadratically stable if there exists a positive-
definite symmetric matrix P such that V (x) =
x′Px satisfies conditions (6) and (7). �

We now state our quadratic stability result.

Theorem 4. The reset control system (5) is quadrat-
ically stable if and only if it satisfies the Hβ-
condition. �

Theorem 4 gives an easily testable condition for
quadratic stability. We illustrate with a simple
example.

Example 5. Consider the unforced reset control
system (5) with P (s) = 1

s and Rb�(s) = 1
s+1 . To

check the Hβ-condition we use (8) and form the
stable transfer function

Hβ(s) =
s + β

s2 + s + 1
.

Given any β ∈ (0, 1), it is easy to show that the
real part of Hβ(jω) is positive for all ω > 0.
Hence, the system is quadratically stable from
Theorem 4. A quadratic Lyapunov function veri-
fying (6) and (7) is

V (x) = x′


 0.7282 −0.3953 0.1128
−0.3953 0.8691 0

0.1128 0 1


 x.

�

Remark 6. In this remark we address the preva-
lence of quadratically-stable reset control systems.

1. Some stable reset control systems are not
quadratically stable. For example, in [12], it
was shown that a Clegg integrator exponen-
tially stabilizes the plant

P (s) =
(3 + α)s + 1
s2 + 3s − α

for α ∈ (−6.1, 1.1). However, computation
shows the Hβ-condition is only satisfied for
the smaller range α ∈ (−3, 0). Thus, there
is a difference between the classes of reset
control systems that are stable and quadrat-
ically stable. It is interesting to note that the
quadratically stable systems in this example
exactly coincide to those P (s)’s that are both
minimum phase and stable.

2. In spite of the previous example, it does
appear that the class of quadratically stable
systems is rich. For example:
(a) Consider those reset control systems

whose base-linear transfer functions have
the classic second-order form:

T (s) =
ω2

n

s2 + 2ζωns + ω2
n

where ζ, ωn > 0. Also, assume the reset
controller is a FORE (with pole s = −b).
In Section 5, we will show this class of
reset control systems to be quadratically
stable for all b > 0. This is encourag-
ing given the ubiquity of control systems
having this type of complementary sensi-
tivity functions which arise when integral
action is required and one loop-shapes a
stable, minimum-phase plant. This class
also covers the example in [5] which
demonstrates that reset control satisfies
specifications unachievable by any linear
stabilizing compensator.

(b) The experimental demonstrations of re-
set control in [3] and [7] were verified to
be quadratically stable, and, their asso-
ciated loop transfer functions were non-
trivial. For example, in [3], the transfer
function was 14th-order and had a pair
of complex right-half plane zeros.

3. The class of quadratically stable reset control
systems require their base-linear systems to
be stable – this follows immediately from
the Hβ-condition. This begs the question: Do
there exist stable reset control systems with
unstable base-linear system? Said another
way, can mere application of reset stabilize a
linear, unstable feedback loop? The answer is
“yes” and the example comes from [12] where

P (s) =
3.1s + 1

s2 + 0.3322s − 0.1
.

This plant cannot be stabilized by a linear
integrator, but it can be stabilized by a Clegg
integrator. This stability is not deducible
from the Hβ-condition but from the tech-
niques in [12]. ◦

Remark 7. As mentioned, Horowitz and his co-
workers (for example, see [6]) incorporated FOREs
into control system design by advocating a two-
step process in which a linear controller was first
designed followed by selection of the FORE’s pole.
In [6], specific guidelines were provided which ex-
plicitly link the design of the FORE to the linear
compensation. However, considerations of closed-
loop stability were not addressed. The question,
then, is whether quadratic stability can be incor-
porated into this design scheme. Assuming FORE
as the reset element, one possibility comes from
the following expression for Hβ(s):

Hβ(s) =
(

1
s + b

− β

)
S(s) + β.

Design of the linear compensator insures base-
linear stability and consequently the stability of



Hβ(s). Therefore, for quadratic stability it suffices
to guarantee

Re
{(

1
jω + b

− β

)
S(jω)

}
> −β

for all ω > 0. For fixed β and b it seems possible
to express the above as a useful constraint on
the linear loop-shape. This would allow one to
bring quadratic stability directly into the design
process. ◦

The Hβ-condition is useful in establishing other
properties of reset control systems. In the next
subsection we will address one such property,
UBIBS stability.

3.3 UBIBS stability

In [7], a bounded-input bounded-output (BIBO)
stability result was given for a special class
of reset control systems that utilize FOREs. It
was assumed that the reset intervals were lower-
bounded. We generalize this result to a larger class
of reset control systems, extend it to UBIBS sta-
bility and remove the assumption on reset times.
We now consider the forced reset control system
described by the IDE in (3) and recall the def-
inition of UBIBS stability. In the following ‖ · ‖
denotes the usual Euclidean vector norm and ‖·‖∞
the signal norm: ‖x‖∞ � supt ‖x(t)‖.

Definition 8. The reset control system (3) is
said to be uniformly bounded-input bounded-state
(UBIBS) stable, if, for each η > 0, there exists
µ > 0 such that for each initial condition x0 and
each bounded input w(t):

‖x0‖ < η, ‖w‖∞ < η ⇒ ‖x(t, x0, w)‖ < µ

for all t ≥ 0. �

For UBIBS stability, we require the following
assumptions on the reset controller and reset
times.

Assumption 9. The state matrix Ar in (1) satis-
fies

Ar =
[

Ar11 Ar12

0 Ar22

]
.

That is, ẋ� does not explicitly depend on the non-
resetting states x�̄. ◦

Remark 10. Assumption 9 holds if all states of R
are reset. Examples include CI and FORE. ◦

We now state our result on UBIBS stability.

Theorem 11. If Assumption 9 holds and (5) is
quadratically stable, then, the reset control sys-
tem (3) is UBIBS stable. �

Example 12. As an illustration of Theorem 11,
consider the reset control system with P (s) =

s+1
s(s+0.2) and Rb�(s) = 1

s+1 . To establish its bound-
edness to a step input r(t) we invoke Theorem 11.
Since the reset controller is a FORE and therefore
its only state is reset, Assumption 9 holds. Using
(8) we form

Hβ(s) =
s2 + (0.2 + β)s + β

(s + 1)(s2 + 0.2s + 1)
.

Clearly, Hβ(s) is stable, and for β = 0.25 the real
part of Hβ(jω) is positive for all ω ≥ 0. Hence, the
Hβ-condition is satisfied and the step response is
bounded. �

In the next section we consider an important class
of second-order base-linear systems that satisfy
the Hβ-condition. As a result, the associated reset
control systems enjoy the previously discussed
stability and performance properties.

4. A CLASS OF SECOND-ORDER
BASE-LINEAR SYSTEMS

In this section we follow-up on Remark 6.2a and
show there exists a rich class of reset control
systems that are quadratically stable. To begin,
consider the feedback system in Figure 3 where
the reset controller is a FORE (with pole b).
Assume the linear loop has transfer function

P (s) =
(s + b)ω2

n

s(s + 2ζωn)

resulting in a base-linear system with complemen-
tary sensitivity function

T (s) =
ω2

n

s2 + 2ζωns + ω2
n

.

This transfer function has classical second-order
form and is often encountered in feedback con-
trol systems where integral control is used and
response is second-order dominant. This setup is

P(s)
e

yFORE
-

u

Fig. 3. Block diagram of a reset control system with

FORE.

described by the IDE in (5) with data:



Ac� =


−2ζωn 1 1

0 0 b
−ω2

n 0 −b


 , Bc�


 0

0
1


 ;

AR =


 1 0 0

0 1 0
0 0 0


 ;

Cc� =
[
ω2

n 0 0
]
. (9)

Our next result shows this class of reset control
system to be quadratically stable.

Theorem 13. The reset control system described
in (5) and (9) is quadratically stable for all posi-
tive b, ωn and ζ. Consequently, this reset control
system is also UBIBS stable. �

Remark 14.

1. Examples 5 and 12, as well as the reset
control system in [5], have the second-order
base-linear structures considered here. As a
result, their quadratic stability is ensured by
Theorem 13.

2. A useful extension to Theorem 13 would con-
sider P (s) that are second-order dominant;
i.e.,

P (s) =
(s + b)ω2

n

s(s + 2ζωn)(s/p + 1)

where 1
s/p+1 models a high-frequency par-

asitic. The question is whether quadratic
stability (or equivalently, the Hβ condition)
is robust in the presence of this dynamic.

◦

5. CONCLUSION

This paper shows that quadratic stability plays an
important role in reset control systems, similar
to that in linear feedback. For linear systems,
quadratic stability is tested via a Lyapunov equa-
tion. For reset control systems, it is deduced from
a constrained Lyapunov equation, or equivalently,
from an SPR condition – the Hβ-condition. All
stable linear systems are quadratically stable, but
not so for reset control; see Remark 6.1. Never-
theless, the Hβ-condition has been valuable in
establishing stability for some high-order exper-
imental systems and is always satisfied for the
important class of reset control systems described
in Section 5. A possible topic for further research
is to explore the use of non-quadratic Lyapunov
functions. One step in this direction has been
taken in [8] where passivity formalism has been
applied.
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