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Abstract: After reviewing the background and description of cutting & packing problem 
and packing algorithms, this paper proposed an improved genetic algorithm for 
non-guillotine rectangles packing problem. First, self-adaptive mutation probability is 
adopted to avoid pre-maturity, some commonly used crossover operators are compared, 
and a stochastic hill-climbing operator is designed to improve the local searching ability. 
Second, the greedy mechanism is introduced to acquire good packing pattern after 
packing order is determined by the GA. Computational results show the effectiveness of 
these improvements. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 

The packing problems have been widely studied 
during the last three decades, as they are often faced 
in industries such as metal, cloth, and papermaking. 
The rectangular pieces packing problem, cut also 
from rectangular stock, is one particular case of this 
set of problems. The aim is often to achieve the 
minimum trim loss. 
 
Packing problems have been proven as NP complete 
problems in many literatures. Since the geometrical 
characteristics of packing objects should also be 
taken into consideration, their computational 
algorithms are more complex to design.  Based on 
their descriptions and solutions, Dyckhoff (1990) 
classified the general stocking cutting and packing 
problems into five categories in his classical 
literature: 

- Cutting stock and trim loss; 
- Bin packing, strip packing, and knapsack; 
- Vehicle loading, pallet loading, and container 

loading; 
- Assortment, depletion, design, dividing, 

layout; 
- Capital budgeting, memory allocation, and 

multi-processor scheduling. 

Generally, the stock cutting problems can be divided 
into regular packing problems and irregular packing 
problems by their shape, also into one-dimensional, 
two-dimensional, three-dimensional and 
multi-dimensional packing problems by their range 
of the solution space.  
 
The earliest literature on stock cutting problems 
appeared in 1939, but actually the academic research 
works have boomed since 1970s'. Gyson and 
Gregory (1974) advanced a heuristic packing 
algorithm in the first time. And then, traditional 
optimization algorithms such as rule based packing 
algorithm (Madsen, 1979), branching and bounding 

(Golden, 1976), dynamic programming (Golden, 
1976), and integral programming (Farley, 1988) were 
practiced on this subject comprehensively. Coffman 
and Shor (1990) brought forward a Benchmark to 
evaluate the effectiveness of packing algorithms, 
which was described as packing a number of squares 
with borders randomly generated between (0, 1) into 
a 1 unit wide infinite long rectangular stock. 
 
Modern optimization technologies have made a 
remarkable progress since 1990s'. Genetic algorithms, 
simulated annealing, fuzzy searching, neural network 
and other meta-heuristic searching algorithms 
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showed a strong advantage especially in 
combinatorial optimization problems. Jakobs (1996) 

designed a BL (bottom-left) -algorithm based genetic 
algorithm for packing of rectangles; Hopper and 
Turton (1999), Liu and Teng (1999) brought forward 
their improved solutions on that algorithm 
respectively; Faina  (1999) discussed the application 
of simulated annealing algorithm on packing 
problems in detail. Based on the four papers above, 
an improved genetic algorithm is presented for 
rectangular packing problems with a new set of 
algorithm evaluation indicators in this paper. 
Simulation results are included to show its efficiency.  
 
This paper is organized as follows. In Section 2, the 
genetic algorithm, model of packing problems and 
their evaluation indicators are introduced. In Section 
3, the implementation of non-guillotine cut 
algorithms is discussed in detail. In Section 4, the 
simulation results of numerical examples are showed 
and the advantages of the algorithms are explained. 
Finally, conclusion and problems for further study 
are proposed in Section 6. 
 
 
2. GENETIC ALGORITHMS AND DESCRIPTION 

OF PACKING PROBLEMS 
 

Genetic Algorithms (GAs) is a powerful global 
optimum strategy based on the simulation of natural 
genetics and evolution (Holland, 1975). Its 
applications in cutting & packing problems are 
scarce, and roughly divided into two methods. One is 
based on the coordinates of the small items and the 
binary or decimal coding [12]. The other is based on 
the order of the placement or cutting and the integer 
coding [7, 8, 9]. Through the exhaustive simulations 
and GAs design experience, it is discovered that the 
first method calls for high designing arts on the 
penalty item of the fitness function, and is easily 
trapped into the in-feasible solution and local 
optimum; the second method should be combined 
with other algorithm to generate packing patterns, but 
it can somehow overturn the shortcomings of the first 
method. Based on the second method, a new packing 
algorithm and genetic operators are designed to 
improve the structure and control parameters of GAs, 
and they also enhance the exactness and stability of 
the algorithm. 
 
The general structure of cutting & packing problems 
is as follows: 
1. One or more stocks of certain figures, forms and 
sizes; 
2. A number of small items to be cut or packed with 
different figures, forms and sizes; 
3. Some cutting & packing restrictions; 
4.Evaluating criteria based on one or more 
objectives. 
 
For the rectangular cutting & packing problem, the 
third part mentioned above is very important. As to 
some industries such as glass and polystyrene, it is 
required that the cut should be orthogonal form one 
edge to the other, which is called guillotine cut. The 
cut without that requirement are called non-guillotine 

 
 
Fig. 1. Non-Guillotine cut and guillotine cut. 
 
cut. As shown in Fig. 1., (a) is non-guillotine cut, and 
(b) is guillotine cut. 
 
Generally, non-guillotine cut is more efficient than 
guillotine cut, but it requires larger searching space 
and more complex cutting and packing algorithm. 
Considering that non-guillotine cut is more general 
than guillotine cut, an improved GAs for 
non-guillotine cut is presented and it can be easily 
modified to fit the guillotine cut situation. 
 
The general objective of packing problems is to 
minimize the waste area rate, and the most widely 
used waste area rate is as follows: let St be the area of 
the stock, the area of rectangles are respectively Si 
and the number of them is N, and then the waste area 
rate W is 
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Based on the area rate index above, the perimeter 
index is used to improve the quality of the waste 
stock. Let Cw be the perimeter of the waste stock, 
expected waste stock perimeter is CE, and then the 
perimeter index is 
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CE represents the perimeter of the square whose area 
is equal to the waste stock’s. Minimizing the 
perimeter index C can make the shape of the waste 
stock to be a square as close as possible, and improve 
the reuse quality especially for expensive stocks. 
 
 

3. ALGORITHM DESCRIPTION 
 

The most widely used simple heuristic packing 
algorithm is BL algorithm. There are two steps in the 
packing process of BL algorithm. First, randomly 
generate the packing order of the rectangles. Second, 
according to the packing order, place each rectangle 
into the stock and move it downward and leftward to 
the bottom-left point of the stock until impossible. 
Hopper and Turton (1999) uses SGA (Simple Genetic 
Algorithm) as the first step of the BL algorithm to 
generate and optimize the packing order, however, 
the BL packing process easily causes gaps among the 
packed rectangles and these gaps cannot be used 
again.  Faina (1999) repeats the BL packing process 
to find the gaps, and Liu and Teng (1999) tries to find 

 



the lowest point of the unpacked stock the make up 
the gaps. Both of them improve the quality of the 
solutions but don’t solve the gap problem completely. 
In this paper, a greedy packing algorithm is presented 
based on all the unpacked potential optimal point of 
the stock and the computational results show that it 
can completely avoid gaps. Furthermore, the uniform 
coding schema is used to diversify the chromosome 
population, adaptive crossover and mutation 
probabilities to prevent the pre-maturation, and a 
Stochastic Hill-Climbing operator is also designed to 
improve the searching quality.  
 
Step 1. Let generation g=0, initialize M individuals 
according to uniform coding schema. For any 
individuals Mi and Mj, define the Hamming distance 
Hij of the two individuals as: 
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k
iM  represents the kth bit of the ith individual. If 

Hij<T, then remove one individual of i and j 
randomly, and regenerate a new individual. T is a 
pre-decided threshold, and a larger T will help to 
generate a more diversified population. 
 
Step 2. Pack and evaluate individuals of the gth 
population according to the following greedy 
algorithm: 
 
1. Initialize the singly linked list P of optional 
unpacked points. The first element of P is the up-left 
point of the stock p0. 
 
2. According to the packing order, place the up-left 
point of the next rectangle on the optional point pj of 
the list P, and calculate its fitness fj. After all the 
optional points in the list P are calculated, find the 
smallest fitness fk =min fj and remark the relative 
point pk. 
 
3. Place the up-left point of the rectangle on the point 
pk, and delete pk, at the same time insert the 
bottom-left point pk, bottom-right point pk＋1, and 
up-right point pk＋2 into the list P, then change the 
pointers. 
 
4. If all the rectangles are place, turn to next step. 
Else go to 2. 
 
The fitness function is f =αW +βC. For any 
individual, W is the area index of the waste stock, 
and C is the perimeter index. The α and β are 
indexes related to the generation g. At the beginning 
α>0.9 and β<0.1, after a certain number of 
generations when the waste area index is close to the 
satisfied solution, increase the value of β to improve 
the quality of the waste stock. 
 
Step 3. Do select operation on the current population 
by the roulette and elitism schema. The probability Pi 
of individual i to be chosen into the next generation 

is: 
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Preserve 5%～10% individuals with best fitness and 
put them directly into the next generation. 
 
Step 4. Do crossover operation on the chosen 
population. Four crossover operators including 
Single-point crossover, partial mapping crossover 
(PMX), order crossover (OX) and Non-ABEL 
crossover are tried and compared for their efficiency 
through the computational results. 
 
Step 5. Do mutation operation on the population. The 
swap and inverse operators are used, and the 
probability of mutation Pm is: 
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P0 is the initial value, µ and ν are control parameters, 
f  is the average fitness value, fmin is the best fitness 

value, and H  is the average Hamming distance of 
the population. Furthermore, a new 
stochastic-hill-climbing (SHC) mutation operator is 
proposed. For the 5% individuals M with the best 
fitness value and their candidate children M’ 
generated by the mutation operation, if 

MM
ff <' , 

accept M’ with probability 1; otherwise accept M’ 

with probability . TgMM
Tffe /)( ' −−

g is dependent on 
the generation g. At the beginning Tg is larger, 
helping to enlarge the search space, and decreases as 
the generation g increasing.  
 
Step 6. If g > gmax or the best fitness value does not 
change in 10 generations, turn to the next step; 
otherwise let g=g+1, and go to Step 2. 
 
Step 7. Output the optimal solution. 
 
 

4. COMPUTATIONAL RESULTS 
 
The benchmark designed by Coffman and Shor 
(1990) is used to compare the efficiency of different 
crossover operators and algorithm of this paper and 
Faina’s (1999). First, initialize a stock with width w 
and infinite length; second, give a certain number of 
rectangles (between 8 and 64) with width and length 
randomly generated between (0, w). Each simulation 
runs 100 times. Table 1 compares the four crossover 
operators, two mutation operators and the 
stochastic-hill-climbing operator. When comparing 
crossover operators, the stochastic-hill-climbing 
operator is used, and when comparing mutation 
operators, PMX crossover operators are used. Table 2 
compares the efficiency of the algorithm used in this 
paper and in Faina’s (1999). 
 
Computational results in Table-1 show that except 
the Non-ABEL operator, there is not much difference 

 



Table 1 Comparison of Operators 
Number of rectangles: 32 

 
Crossover Average % Min/Max % Mutation Average % Min/Max % 
Single-point 96.12 94.14 / 96.91 Swap 93.89 92.17 / 95.55 
PMX 96.33 93.98 / 97.71 Inverse 94.47 92.08 / 96.13 
OX 96.07 93.24 / 97.32 SHC 96.33 93.98 / 97.71 
Non-ABEL 94.46 91.08 / 97.65    

 
 

Table 2 Comparisons of Algorithms 
 

This paper Faina’s algorithm Number of 
rectangles Average 

(%) Min/Max (%) Maximum 
Deviation (%) 

Average 
(%) Min/Max (%) Maximum 

Deviation (%) 
8 92.34 90.11 / 95.28 2.94 90.31 82.34 / 96.36 7.97 
16 95.15 93.16 / 97.09 1.99 92.95 87.96 / 96.91 4.99 
32 96.33 93.98 / 97.71 2.35 93.29 91.44 / 94.45 1.85 
64 93.44 91.86 / 96.21 2.77 92.29 88.56 / 94.88 3.73 

 
 
of the efficiency among the rest of other three 
operators. Since the Non-ABEL operator is more like 
random search, it is not good to preserve the good 
schema, which is the key technique of the GAs, and 
the performance is not stable either. As for the 
mutation operators, it’s obvious that the SHC 
operator has better performance. The SHC operator 
not only chooses offspring with higher fitness value, 
but also accepts individuals with lower fitness value 
by certain probability, which is a good example on 
the combination of the GAs and neighborhood 
local-search techniques to improve the performance. 
 
In Table-2, the performance of the algorithm used in 
this paper is better than that of Faina’s, and one point 
to be mentioned is that the total evaluation of fitness 
value in Faina’s algorithm is 100 times of the number 
of the rectangles, whereas 40 times in this paper, 
which is much more time efficient. After packing 
order is generated by the GAs, greedy algorithm is 
used to pack the rectangles into the stock, and get a 
better packing pattern each time. Whereas Faina’s 
algorithm uses a random packing algorithm, which 
does not guarantee better packing pattern even 
though the packing order is good. Furthermore, the 
min/max stock usage rate of this paper is obviously 
smaller than that of Faina’s algorithm. It’s because of 
the hidden parallel and mass evolution of GAs, 
whereas the simulating annealing algorithm used in 
Faina’s algorithm is more sensitive on the initial 
value when applied to combinatorial optimization 
problems. 
 
Jakobs (1996), Hopper and Turton (1999), and Liu 
and Teng (1999) also use GA, but the performance 
cannot be compared because they do not give the 
form and sizes of the stock and rectangles they used. 
Since they only try on simple genetic algorithms and 
bottom-left packing algorithm, our refined crossover 
and SHC operator with greedy search algorithm is 
more efficient.  
 
 
 

5. CONCLUSION 
 
In this paper, an improved GA combined with greedy 
search algorithm is proposed for non- guillotine 
rectangles packing problem. First, self-adaptive 
mutation probability is adopted to avoid pre-maturity, 
compare and refine some common used crossover 
operators, and design a stochastic hill-climbing 
operator is to improve the local search ability. 
Second, a greedy searching mechanism is introduced 
to acquire good packing pattern after packing order 
determined by the GA. Finally, computational results 
are presented to show the effectiveness of these 
improvements. 
 
This algorithm is also applied on guillotine 
rectangles packing problem and got satisfied results. 
Now research on polygon packing problems are 
undergoing. 
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