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1. INTRODUCTION

In this paper, we will study the problem of finite-time
regulation of robots which aims at designing state or
dynamic output feedback control laws such that the
position of the robot can be regulated into a desired
position in a finite time. Conventionally, most of the
existing results on regulation of robots is achieved
asymptotically. There are two common nonlinear ap-
proaches for achieving asymptotic regulation, namely,
the inverse-dynamics control or computed torque con-
trol (Aubin et al. 1991), and the gravity-compensation
control (Takegaki et al. 1981). Other related work can
also be found in (Berghuis et al. 1993; Canudas de Wit
et al. 1996; Venkataraman et al. 1991). The investiga-
tion on the finite-time control of robots is motivated by
the following two considerations. In terms of appli-
cation, finite-time controller, as the name suggested,
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Administration Region (Project No. CUHK4168/98E), and partially
from NSF of China. Prof. Huang is the corresponding author. E-
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results in a closed-loop system whose position con-
verges in finite time as opposed to asymptotic conver-
gence of conventional controller. Thus our approach
may offer an alternative for the control of robot ma-
nipulators. In terms of theory, finite-time convergence
is an important control problem on its own, and has
been studied in the contexts of optimality and con-
trollability, mostly with discontinuous or open-loop
control. Recently, finite-time stabilization via contin-
uous time-invariant feedback has been studied from
different perspectives. In particular, the state feedback
and the output feedback finite-time control laws for
a double integrator system were given in (Bhat and
Bernstein 1997,1998; Haimo 1986; Hong et al. 2001),
respectively.

This paper will address the finite-time regulation for
a class of multi-dimensional systems describing robot
manipulators. We will investigate two classes of finite-
time regulation controllers that correspond to the
conventional inverse-dynamics control and gravity-
compensation control as mentioned above. Both state
feedback and output feedback control laws will be
considered. We note here that while it is fairly straight-

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



forward to extend the results in (Bhat and Bern-
stein 1997; Hong et al. 2001) on double integrator
systems to the robot systems controlled by inverse-
dynamics finite-time controller, it is technically non-
trivial to establish the finite-time regulation of the
robot systems controlled by the gravity-compensation
controller since in the later case, the closed-loop sys-
tem is not homogeneous and the results in (Bhat and
Bernstein 1997; Hong et al. 2001) are not applicable.
Thus a different technique has to be worked out to ad-
dress the stability issue. For this reason, we will place
our emphasis on gravity-compensation controller.

2. PRELIMINARIES

We begin with the review of the concepts of finite-
time stability and stabilization of nonlinear systems
following the treatment in (Bhat and Bernstein 1997,
1998).

Consider the system

ξ̇ � f �ξ �� f �0� � 0� ξ �0� � ξ0� ξ � Rn (1)

with f : U0 �Rn continuous on an open neighborhood
U0 of the origin. Suppose that system (1) possesses
unique solutions in forward time for all initial condi-
tions.

Definition 1: The equilibrium ξ � 0 of system (1)
is (locally) finite-time stable if it is Lyapunov stable
and finite-time convergent in a neighborhood U �U0
of the origin. The finite-time convergence means the
existence of a function T : U��0� � �0�∞�, such
that, �ξ0 � U � Rn, every solution of (1) denoted
by st �0�ξ0� with ξ0 as the initial condition is de-
fined, and st�0�ξ0� � U��0� for t � �0�T �ξ0��, and
limt�T �x0�

st�0�ξ0� � 0. When U � Rn, we obtain the

concept of global finite-time stability.

Remark 1: Clearly, global asymptotic stability and
local finite-time stability imply global finite-time sta-
bility. This observation will be used in the following
analysis of finite-time stability.

Definition 2: The equilibrium x � 0 of a nonlinear
system

ẋ � f �x��g�x�u f �0� � 0� x � Rn (2)

is finite-time stabilizable if there is a continuous feed-
back law u � µ�x� with µ�0� � 0 such that the origin
x � 0 of the closed-loop system is a finite-time stable
equilibrium.

Remark 2: It is easy to see that the control law
µ�x� must make the closed-loop system nonsmooth.
To this end, finite-time control laws are often sought
from the class of homogeneous functions. Thus, let
us introduce some concepts regarding homogeneous
functions following the treatment of (Hermes 1991;
Rosier 1992; Kawski 1995).

Let V : Rn � R be a continuous function. V is said
to be homogeneous of degree σ � 0 with respect to

�r1� ����rn� where ri � 0� i � 1� ����n, if, for any given
ε � 0, we have

V �εr1 ξ1� ����ε
rn ξn� � εσV �ξ �� �ξ � Rn (3)

A continuous vector field f �ξ � � � f1�ξ �� ���� fn�ξ ��T

is said to be homogeneous of degree k�R with respect
to �r1� ����rn� where ri � 0� i � 1� ����n, if, for any given
ε � 0, we have

fi�ε
r1 ξ1� ����ε

rn ξn� � εk�ri fi�ξ �� i � 1� ����n; (4)

for all ξ � Rn. The system (1) is homogeneous if f �ξ �
is homogeneous.

The connection of a homogeneous system and its
finite-time stability was given in (Bhat and Bernstein
1997), and is rephrased by the following two lemmas.

Lemma 1: Suppose that the equilibrium of system (1)
is asymptotically stable, and the system is homoge-
neous of degree k. If k � 0, then the origin of the
system is finite-time stable.

Lemma 2: The following control law

u ��l1sgn�x1��x1�
α1 � l2sgn�x2��x2�

α2 � (5)

with

0 � α1 � 1� α2 �
2α1

1�α1
�

finite-time stabilizes the following double integrator
system

ẋ1 � x2� ẋ2 � u (6)

Remark 3: Clearly, (5) is not smooth, but it is a
homogeneous function of degree α 2 with respect to
� 2

1�α1
�1�. In the limiting case where α1 approaches 1,

the control becomes the conventional PD controller,
which is a smooth control law, and cannot achieved
finite-time stability as described in Remark 2. For this
reason, we call (5) a (homogeneous) nonsmooth PD
controller.

The following result is from (Hong et al. 2001), which
extends the result given in (Hermes 1991; Rosier
1992) from asymptotical stability to finite-time stabil-
ity.

Lemma 3: Consider the following system

ξ̇ � f �ξ �� f̂ �ξ �� f �0� � 0 ξ � Rn

where f �ξ � is a continuous homogeneous vector field
of degree k � 0 with respect to �r1� ����rn�, and f̂
satisfies f̂ �0� � 0. Assume ξ � 0 is an asymptotically
stable equilibrium of the system ξ̇ � f �ξ �. Then ξ � 0
is a locally finite-time stable equilibrium of the system
if

lim
ε�0

f̂i�εr1 ξ1� ����ε
rnξn�

εk�ri
� 0� i � 1� ����n; (7)

for all ξ 	� 0

In the next section, we need to extend Lemma 2 to a
vector form that entails the following notation, which
was used in (Haimo 1986) for simplicity.

sig�ξ �α � ��ξ1�
α sgn�ξ1�� ���� �ξn�

α sgn�ξn��
T � Rn�



for ξ � Rn and α � 0.

3. FINITE-TIME FEEDBACK

In what follows, we will mainly study global finite-
time control of robot systems described by

M�q�q̈�C�q� q̇�q̇�G�q� � τ � q � Rn (8)

where q is the vector of generalized coordinates and τ
is the vector of external torque representing the control
input; M�q� denotes the inertia matrix, C�q� q̇�q̇ is the
Coriolis and centrifugal forces, and G�q� represents
gravitational force. Note that M�q�, C�q� q̇�, and G�q�
are all smooth. Some well-known properties of (8) are
in order (Canudas de Wit et al. 1996, pp. 61-62):

P1. M�q� is positive and bounded;

P2. Ṁ�q��2C�q� q̇� is skew-symmetric.

P3. ��G�q��� 
 G0 for some bounded constant G0 � 0.

Finite time regulation problem: Given a desired
position qd � Rn, find a feedback control law u �
µ�q� q̇� such that the equilibrium of the closed-loop
system at �q� q̇� � �qd �0� is globally finite-time stable.

In this section, we will start with the state feedback
control law of the following two basic forms:

τ � G�q��C�q� q̇�q̇

�M�q��l1sig�q�qd�α1 � l2sig�q̇�α2 �� (9)

and

τ � G�q�� l1sig�q�qd�α1 � l2sig�q̇�α2 � (10)

where 0 � α2 � 1�α1 �
α2

2�α2
� l1 � 0 and l2 � 0.

Recall that the inverse dynamics asymptotic regula-
tor and the gravity-compensation asymptotic regulator
take the following forms (see Canudas de Wit et al.
1996):

τ � G�q��C�q� q̇�q̇�M�q��l1�q�qd�� l2q̇� (11)

and
τ � G�q�� l1�q�qd�� l2q̇� (12)

respectively. Thus control laws (9) and (10) can be
obtained from (11) and (12) by simply replacing the
PD controllers in (11) and (12) with nonsmooth PD
controllers.

Theorem 1: The equilibrium �q� q̇� � �qd�0� of the
closed-loop systems composed of robot system (8)
and control law (9) is globally finite-time stable.

Proof: Let x1 � q�qd , x2 � ẋ1 � q̇, and x� �xT
1 �x

T
2 �

T ,
then the closed-loop system of the robot manipulator
under the control law (9) can be rewritten in the form
of�

ẋ1 � x2� xi � �xi1� ����xin�
T � i � 1�2;

ẋ2 ���l1sig�x1�
α1 � l2sig�x2�

α2 ��
(13)

where x � �xT
1 �x

T
2 �

T � R2n. First note that the system
is a multiple version of 2-dimensional system, in a
similar form studied in (Kawski 1989), and therefore,
we can conclude that the solution of the system is
unique in forward time by using Proposition 2.2 and
its remark in (Kawski 1989).

Next, take a Lyapunov function candidate of the form

V��x��
l1

1�α �∑
n
i�1 �x1i�

1�α1�� 1
2 xT

2 x2. Then, V̇��x���13��

�l2�∑
n
i�1 �x2i�

1�α2� 
 0. Because V̇��x� � 0 together
with (13) implies �x1�x2� � 0, the equilibrium x � 0
of system (13) is globally asymptotically stable by
LaSalle’s invariant set theorem. Moreover, (13) is ho-
mogeneous of negative degree (k � α 2� 1 � 0) with
respect to � 2

1�α1
� ���� 2

1�α1
�1� ����1�. Thus, the conclu-

sion follows from Lemma 1.

Next, we will consider the property of the closed-loop
system of the robot (8) under control law (10), whose
structure is simpler than that of (9). For this purpose,
let x1 � q� qd , x2 � ẋ1 � q̇, and x � �xT

1 �x
T
2 �

T , the
state equation of the closed-loop system of the robot
manipulator under the control law (10) is���
��

ẋ1 � x2

ẋ2 ��M�x1 �qd��1�C�x1 �qd�x2�x2

�l1sig�x1�
α1 � l2sig�x2�

α2 �

(14)

Clearly, x � 0 is the equilibrium of (14). It can be seen
that the closed-loop system under this control law is no
longer homogeneous. Therefore, Lemma 1 does not
apply directly to this case. We will use Lemma 3 to
establish the global finite-time stability for this later
case. For this purpose, we rewrite (14) as follows���
��

ẋ1 � x2

ẋ2 ��M�qd��1�l1sig�x1�
α1 � l2sig�x2�

α2 �

� f
qd �x1�x2�

(15)

where

f
qd �x1�x2� ��M�x1 �qd�

�1C�x1 �qd�x2�x2

�M̃�qd �x1��l1sig�x1�
α1 � l2sig�x2�

α2� (16)

with M̃�qd �x1� � M�x1 �qd��1�M�qd��1

It can be easily verified that the following system�
ẋ1 � x2

ẋ2 ��M�qd��1�l1sig�x1�
α1 � l2sig�x2�

α2 �
(17)

is homogeneous of degree �1 � k � α 2� 1 � 0 with
respect to �r11�r12� ����r1n�r21�r22����r2n� with r1i �

r1 � 2
1�α1

and r2i � r2 � 1 for i � 1� ����n.

Theorem 2: Assume the solutions of both (14) and
(17) are unique in forward time, then the origin of (14)
is globally finite-time stable.

Proof: We will first show that the equilibrium of (14)
is globally asymptotically stable. For this purpose,
consider a Lyapunov function



V �x� �
1
2

xT
2 M�x1 �qd�x2 �

l1
1�α1

�
n

∑
i�1

�x1i�
1�α1�

(18)
Then,

V̇ �x���14� ��xT
2 �l1sig�x1�

α1 � l2sig�x2�
α2 �

�l1xT
2 sig�x1�

α1 ��l2�
n

∑
i�1
�x2i�

1�α2�
 0

It can be seen that V̇ �x���14��0 together with (14)

implies �x1�x2�� 0. It follows from LaSalle’s theorem
that the equilibrium of the closed-loop system at the
origin is globally asymptotically stable.

Nevertheless, since system (14) is not homogeneous,
we cannot apply Lemma 1 to conclude the global
finite-time stability of (14). Thus, we need to appeal
to Lemma 3.

Consider the closed-loop system (16), and take a
Lyapunov function candidate of the form V��x� �

l1
1�α �∑

n
i�1 �x1i�

1�α1�� 1
2 xT

2 M�qd�x2. Then, V̇��x���17��

�l2�∑
n
i�1 �x2i�

1�α2� 
 0. With invariant set theorem
and Lemma 1, the homogeneity of negative degree
(k � 0) of system (17) yields the global finite-time
stability of its equilibrium x � 0.

Next, we will conclude from Lemma 3 that the equi-
librium of system (15) is locally finite-time stable
by showing that f

qd �εr1 x11� ����ε
r2 x2n� is ‘higher de-

gree’ with respect to ε k�r2 in the sense of (7) where
r1 � 2

1�α1
and r2 � 1. To this end, first note that,

since M�qd �x1�
�1 and C�x1�qd �x2� are smooth, and

k � 0,

lim
ε�0

M�qd � εr1x1�
�1C�qd � εr1x1�ε

r2 x2�ε
r2 x2

εk�r2

� M�qd��1C�qd �0�x2 lim
ε�0

ε�k � 0

Next applying the mean value inequality (Rudin 1976,
Theorem 9.19) to each entry of M̃�qd�εr1 x1� gives
M̃�qd �εr1 x1� �M�εr1 x1�qd��1�M�qd��1 �O�εr1�.
Thus

lim
ε�0

M̃�qd�εr1 x1��l1sig�εr1x1�
α1 � l2sig�εr2x2�

α2 �

εk�r2

� lim
ε�0

O�ε�r1�k�r2�� � lim
ε�0

O�ε�2k� � 0

Thus for any fixed x � �xT
1 �x

T
2 �

T � R2n,

lim
ε�0

f
qd �εr1 x11� ����ε

r1 x1n�ε
r2x21� ����ε

r2 x2n�

εk�r2
� 0�

which shows the local finite-time stability of the equi-
librium of system (15) according to Lemma 3.

Finally, invoking Remark 1 completes the proof.

Remark 4: The uniqueness of the solution in forward
time of system (15) or (17) is not guaranteed in general
because of the complexity of the closed-loop systems.
However, for the class of robot systems with primatic

joints as shown in Section 4, using the results of
(Kawski 1989), it is possible to conclude the the
uniqueness of the solution in forward time of system
(15) or (17).

Remark 5: A variation of state feedback control law
(10) is given as follows

τ � G�q�� l1satv�sig�q�qd�α1�� l2satv�sig�q̇�α2�
(19)

with 0 � α1 � 1�α1 �
α2

2�α2
� l1 � 0� l2 � 0 and

satv�ξ � � �sat�ξ1�� ����sat�ξn��
T , where sat�ξ i� is the

saturation function, i.e., sat�ξ i� � ξi if �ξi� 
 1,
sat�ξi� � 1 if ξi � 1, and sat�ξ i� � �1 if ξi � 1,
respectively. This control law is bounded since ��G�� 

G0, and it is desirable in case of actuator saturation.

Remark 6: In practice, it is not easy to obtain accu-
rate measurement of the velocity q̇. Thus it is more
desirable to design a control law that relies on the
measurements of the position q only. Following our
work for the double integrator system in (Hong et
al. 2001), we consider the following dynamic output
feedback control law:

τ � G�q�� l1sig�ζ1�
α1 � l2sig�ζ2�

α2 (20)���
��

ζ̇1 � ζ2� k1sig�e1�
σ1

ζ̇2 � M�q��1��G�q��C�q�ζ2�ζ2 � τ �
�k2sig�e1�

σ2

(21)

where 0 � α1 � 1�α2 �
2α1

1�α1
�σ1 � α1�σ2 � 2σ1�1,

and e1 � ζ1�x1�e2 � ζ2�x2. Under this control law,
the closed loop system can be written as follows:��������
�������

ẋ1 � x2

ẋ2 � f1�x�e��M�qd��1

�l1sig�x1 � e1�
α1 � l2sig�x2 � e2�

α2 �

ė1 � e2� k1sig�e1�
σ1

ė2 � f2�x�e�� k2sig�e1�
σ2

(22)

where

f1 ��M�x1 �qd��1C�x1 �qd�x2�x2

�M̃�qd �x1��l1sig�x1 � e1�
α1 � l2sig�x2 � e2�

α2 �

and

f2 ��M�x1 �qd��1�C�x1 �qd�x2�x2

�C�x1 �qd�x2 � e2��x2 � e2��

and M̃�qd �x1� is as defined in Theorem 2. Associated
with (22) is the following system��������

�������

ẋ1 � x2

ẋ2 ��M�qd��1�l1sig�x1 � e1�
α1

�l2sig�x2 � e2�
α2 �

ė1 � e2� k1sig�e1�
σ1

ė2 ��k2sig�e1�
σ2

(23)

It can be easily verified that (23) is homogeneous.

Theorem 3: Assume the solutions of of (22) and (23)
are unique in forward time, then the origin of (22)



is locally finite-time stable for any positive constants
l1� l2�k1, and k2.

The proof is a combination of the proof of Theorem
2 here and the proof of Proposition 2 in (Hong et al.
2001). We omit the proof for avoiding redundancy.

4. SIMULATIONS

In the section, we will show the performance of the
finite-time controllers using a two-link robotic manip-
ulators moving in a plane by Matlab 5.2.

Consider a robot system with two prismatic joints of
form (8) with

M�q� �

�
�m1 �m2� 0

0 m2

�
�

C � 0, and

G�q� � g

�
0

m2q2

�
where g is the acceleration of gravity, m1 � 18�8, and
m2 � 13�2.

Our controller takes the following general form

τ � G��k1�q1�qd
1�

α1sgn�q1�qd
1��k2�q̇1�

α2sgn�q̇1��

k3�q2�qd
2�

α1sgn�q2�qd
2�� k4�q̇2�

α2sgn�q̇2��
T (24)

where 0 � α1 � 1, α2 � 2α1��1�α1�, and ki � 0� i �
1�2�3�4. It is not difficult to obtain that the solution of
the closed loop system is unique in forward time with
Proposition 2.2 and its remark in (Kawski 1989).

This controller includes the conventional gravity-
compensated asymptotic controller as a limiting case
with α1 � α2 � 1. The performance of the controller
is defined by two sets of parameters, namely, the PD
gains �k1�k2�k3�k4�, and an additional parameter α 1.
For comparison, we select two different sets of PD
gains and three different α1’s for simulations. First we
take k1 � 400�k2 � 300�k3 � 120, and k4 � 100 with
α1 � 1�3�1�4�1�5�1, respectively. The step responses
of the positions of the first link, and second link are
shown in Figures 1 and 2, respectively. In both fig-
ures, the star line, solid line, dotted line, and dashed
line correspond to the controller with α 1 � 1�2�1�3,
1�4 and 1, respectively. As expected, the curve corre-
sponding to α1 � 1 (hence α2 � 1) is the response by
an asymptotic regulator while the other three curves
exhibit the behaviors of finite time convergence. Due
to the finite time convergence property, responses of
all the three finite time controllers are clearly faster
than the asymptotic controller. The characterization of
the quantitative relation between the settling time and
parameter α1 is interesting, and worth further investi-
gation. Figures 3 and 4 repeat the experiment shown
in Figures 1 and 2 with k1 � 220�k2 � 200�k3 � 80,
and k4 � 70. The conclusion is consistent with the first
experiment.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time t

R
es

po
ns

es
 o

f j
oi

nt
 1

alpha
1
 = 1  

alpha
1
 = 1/2

alpha
1
 = 1/3

alpha
1
 = 1/4

Fig. 1. Time response of q1 under regulators
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Fig. 3. Time response of q1 under regulators

5. CONCLUSIONS

This paper has studied the problem of the finite-time
regulation of robot systems. The research has offered
an alternative approach for improving the design of the
robot regulator. Also simulation shows that the control
law can achieve faster response than conventional PD
control law. This virtue may be attributed to the extra
parameters in the control law.

Two issues have not been adequately addressed in this
paper, namely, the relation of values of the controller
parameter to the settling time, and the establishment
of the uniqueness of the solution in forward time of
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Fig. 4. Time response of q2 under regulators

the closed-loop system (14). As mentioned in Remark
4, the answer to the first issue relies on the explicit
construction of the Lyapunov function. It is possible to
find an explicit Lyapunov function for the closed-loop
system resulting from the first controller, but it does
not seem to be easy to do so for the closed-loop system
resulting from the second controller since the closed-
loop system is not homogeneous. As for the second is-
sue, we have given a complete analysis of the stability
property of the closed-loop system resulting from the
first controller. However, for the closed-loop system
resulting from the second controller, our results rely
on the assumption of the uniqueness of the solution
in forward time. The uniqueness condition may be
verified for robot systems with prismatic joints, but
may not be guaranteed for more general robot sys-
tems. Thus this issue remains to be an unsolved and
challenging one.
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