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Abstract: This work proposes a systematic methodology for the optimal selection of 
controller parameters, in the sense of minimizing a performance index which is a quadratic 
function of the tracking error and the control effort. The performance index is calculated 
explicitly as an algebraic function of the controller parameters by solving a Zubov-type 
partial differential equation. Standard nonlinear programming techniques are then 
employed for the calculation of the optimal values of the controller parameters. The 
solution of the partial differential equation is also used to estimate the closed-loop stability 
region for the chosen values of the controller parameters. The proposed approach is 
illustrated in a chemical reactor control problem.  Copyright © 2002 IFAC 
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1.INTRODUCTION 
 
Over the last two decades, significant research efforts 
and activity have concentrated on the controller 
synthesis problem for nonlinear processes. The 
primary objective was to overcome the performance 
limitations associated with linear controller design 
methods based on linearized dynamic process models, 
and instead derive feedback control laws capable of 

directly coping with process nonlinearities. In this 
direction, a significant body of research results have 
been reported on the nonlinear controller synthesis 
problem that led to explicit, concrete and transparent 
control schemes and algorithms (Isidori, 1989; 
Nijmeijer and Van der Schaft, 1990). In all the 
aforementioned approaches, the tuning of the available 
controller parameters is based on trial-and-error and 
heuristic approaches, inevitably resorting to extensive 
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dynamic simulations and/or costly experiments. The 
proposed approach aims at the development of a 
systematic way to optimally choose the tuneable 
parameters of a nonlinear control system, when in 
addition to the traditional closed-loop performance 
specifications (stability, fast and smooth set-point 
tracking, disturbance rejection, etc.) optimality is also 
requested with respect to a physically meaningful 
performance index. The formulation of the 
optimization problem presupposes a fixed-structure 
controller whose parameters must be optimally 
selected by minimizing an appropriately defined 
performance index of quadratic nature, that penalizes 
both the set-point tracking error as well as excessive 
input efforts. The optimization problem reduces to a 
finite-dimensional static optimization problem, since 
the value of the performance index can be explicitly 
calculated on the basis of a Lyapunov function which 
is the solution of a Zubov-type PDE (Margolis and 
Vogt, 1963; Zubov, 1964; Kalman and Bertram,1960). 
Moreover, for the optimally chosen controller 
parameters, an explicit estimate of the size of the 
closed-loop stability region can be obtained on the 
basis of the Lyapunov function.  
The next section outlines the proposed general 
methodology for optimal controller tuning. In the 
following section, numerical results are presented, 
which evaluate the performance of the proposed 
approach in a representative chemical engineering 
example. 
 
 

2.PROPOSED APPROACH 
 
Let’s consider a nonlinear system with the following 
state-space representation. 

        u)f(x,x =
      e              (1) h(x)=

where  is the vector of state variables,  
the input variable,  the output variable and 

,  real analytic vector 
and scalar functions respectively. Without loss of 
generality, it is assumed that the origin x  is the 
reference equilibrium point that corresponds to zero 
input and that the output map vanishes at the origin: 

 and . The problem of local output 
regulation involves the design of a feedback controller, 
which ensures that the resulting closed-loop system is 
locally asymptotically stable at the origin, and the 
regulated output e(t) asymptotically decays to 0 as 
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In order to accomplish the above task, we consider 
controllers, which are typically modeled by equations 
of the following form: 

     ξ  )pe;η(ξ,=
    u              (2) p)e;θ(ξ,=

where  is the controller’s state vector,  
represents the m-th dimensional vector of controller 
parameters, P the admissible parameter space which is 
assumed to be a compact subset of , 

 a real analytic vector function 

with and  a real 
analytic scalar function with . The 
resulting closed loop system is: 
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Consider now the following quadratic performance 
index defined by: 
         = +

                (4) t))]

which represents a rather natural choice. It contains a 
quadratic error term for output regulation and a 
quadratic input penalty term with a relative weight ρ. 
Notice that since a fixed-structure controller (2) is 
always assumed throughout the present study, the 
performance functional J(p) can be naturally viewed as 
a function of the parameter vector p, so the problem of 
optimal tuning involves finding the values of the 
parameter p, which minimize the performance index 
J(p). For the closed-loop system (3) and the associated 
performance index (4), one may define the augmented 

state vector 


 
, the vector function 

p) =  

and the positive-definite scalar function 
[h(x)] . 

Under this notation, the closed loop system and the 
associated performance index can be denoted as 

 

and                       tJ(p)=  

respectively. 
If we assume that the closed-loop system is 
asymptotically stable around  and there is a 
function V(x;p)

0
, where  with 

, which satisfies the following linear first-
order non-homogenous PDE: 

Rn:V

V(0;p) =

V F(x;p)= Q
x

∂
−

∂
            (5) 

then: 

   dV V(x;p)= F(x;p)=
dt x

∂
∂

        (6) 

and: 

               ( ) ( )  J p = Q x(t);p dt= −∫ ∫
        ( )=V(x(0);p) V x( );p− ∞  

        ( )=V x(0);p                  (7) 
If in addition the above PDE (5) admits a positive-
definite solution V  in a neighborhood of (x;p) x=0 , 
then V(x;p)  is a Lyapunov function for the system 
x F(x;p)=  (Khalil, 1991). 
The above construction represents Zubov’s method for 
the calculation of Lyapunov functions for nonlinear 
autonomous dynamical systems (Margolis and Vogt, 
1963; Zubov, 1964). With respect to PDE (5), one 
needs to address the following important issues: 



 
(i) Existence and Uniqueness of Solutions: 
 
The origin x=0  is a characteristic point of Zubov’s 
PDE (5) and therefore (5) is singular at the origin. 
(Courant and Hilbert, 1962) However, it can be proved 
that if p)F/ (0;x∂∂  is Hurwitz, then equation (5) 
admits a unique, analytic solution V(x;p)  in a 
neighborhood of x=0  (Zubov, 1964). 
 
(ii) Solution Method: 
 
Since F(x;p) , Q(x;p) , as well as the solution V(x;p)  
are locally analytic, it is possible to calculate the 
solution p);xV(  in the form of a multivariate Taylor 
series around x=0 . The method involves expanding 
F(x;p) , Q(x;p) , as well as the solution p);xV(  in 
Taylor series and equating the Taylor coefficients of 
the same order of both sides of PDE (5). This 
procedure leads to linear algebraic equations with 
respect to the Taylor coefficients of the unknown 
solution p);xV(  (See Remark 2 below). Moreover, it 
should be pointed out that the proposed series solution 
method can be easily implemented with the aid of a 
symbolic software package such as MAPLE. In 
particular, a simple MAPLE code has been written 
(Tseronis, 2001), which automatically calculates the 
Taylor coefficients of the unknown solution of 
Zubov’s PDE (5). 
 
(iii) Local positive-definiteness of the solution 

( ; )V x p : 
 
Given that the function Q(x;p)  is positive-definite, it 
can be proved (Zubov, 1964) that, if p)(0;xF/∂∂  is 
Hurwitz, p);xV(  is locally positive-definite, in the 
sense that the second order terms of the series 
expansion form a positive-definite quadratic form. 
 
(iv) Stability region estimates: 
 
Let (N)V (x;p)  be the N-th order truncation of the 
Taylor series expansion of the solution p);xV(  of 
Zubov’s PDE (5). Moreover, let: 

(N)
(N) n+ν dV (x;p)Ω ={x R |x 0 =0}

dt
∈ ≠ ∧  

and: 

(N)

(N) (N)

x Ω
C (p)= min V (x;p)

∈
 

Then, it can be proven, that the set: 
(N) n+ν (N) (N)S (x;p)={x R |V (x;p) C (p)}∈ ≤  

is wholly contained in the stability region of the 
closed-loop system (4), thus providing an estimate of 
the size of its stability region. (Margolis and Vogt, 
1963; Zubov, 1964) 
 
The foregoing properties enable the approximate 
calculation of the performance index as a function of 
the controller parameters p using the approximate 
solution of Zubov’s PDE (5), as well as an estimate of 
the stability region. The final step is the numerical 
solution of a nonlinear programming problem 

(Fletcher, 2000; Floudas, 1999) for the minimization 
of J(p) subject to inequality constraints that guarantee 
that p)(0;xF/∂∂  is Hurwitz. 
 
Remark 1: In the linear quadratic case, where the 
closed-loop dynamics is linear, of the form 

(p)x=A x  
and the performance index is quadratic of the form 

[ ] [ ]T
(p)

0

J(p)= x(t) Q x(t) dt
∞

∫  

the solution to the Zubov PDE is a quadratic function: 
T

(p)V(x;p)=x V x  
where the matrix V(p) satisfies the Lyapunov matrix 
equation 

T
(p) (p) (p) (p) (p)A V +V A = Q−  

It is well known (see e.g. Chen, 1984) that, if A(p) is 
Hurwitz and Q(p) is positive definite, the above matrix 
equation admits a unique solution V(p) which is 
positive definite. Moreover, that the performance 
index J(p) can be calculated from 

[ ] [ ]T
(p)J(p)= x(0) V x(0)  

We see therefore, that the proposed method for 
calculating J(p) in nonlinear systems, is a direct 
generalization of standard results on linear-quadratic 
problems. 
 
Remark 2: It is possible to derive recursion formulas 
for the application of the series solution method for 
Zubov’s PDE (5). In this direction, it is convenient to 
use the following tensorial notation: 

a) A lower index denotes the component of a vector 
function, whereas an upper index denotes the index 
of a variable with respect to which differentiation is 
performed. Thus, for the µ-th component fµ(x) of a 
vector function f(x), we denote: 

2
µ µi ij

µ µ
i i

f f
f = (0), f = (0)

x x x
∂ ∂

∂ ∂ ∂ j

1 2
µ

N

, etc. 

b) The standard summation convention, where 
repeated upper and lower indices are summed up. 

Using the above notation, the series solution method 
for the PDE (5) gives rise to the following recursion 
relations among the Taylor coefficients of the 
unknown and known functions: 
- From matching of quadratic terms: 

1 2 2 1 1 2µi i µi i i i
µ µ 1 2V F +V F =-Q  ,    i ,i =1,2,...,n  

- From matching of third order terms: 
( )
( )

3 1 3 2 31 2 2 1

2 3 1 3 31 2

1 2 3

i µi i µi iµi i i i
µ µ µ

i i i i µiµi µi i i
µ µ

i i i
1 2 3

V F +V F +V F

+ V F +V F +V F

= Q  ,    i ,i ,i =1,2,...,n−

 

- From matching of N-th order terms: 
L+1 N 1 N1 L

N-1
i ...i i ...iµi ...i
µ 1

NL=1
L

V F = Q   ,   i ,...,i =1,...,n
 
 
 

−∑∑  

where the second summation is over the  possible 

combinations of the indices i

N
L

 
 
 

1, i2, …,iN. Also, it should 
be noted that in all the above recursion relations, the 
dependence on the parameter p is not explicitly 
indicated, in order to simplify notation. Finally, it is 



important to observe that the recursion relations are all 
linear in the unknown coefficients and this enables the 
symbolic calculation using MAPLE. 

 
 
3.ILLUSTRATIVE EXAMPLE 

 
To illustrate the main aspects of the proposed 
parametric optimization approach, a representative 
chemical engineering example is considered next. In 
particular, an isothermal continuous stirred tank 
reactor (CSTR) is considered, where the series/parallel 
Van de Vusse reaction is taking place (Van de Vusse, 
1964; Wright and Kravaris, 1992). 

A B→ → C

B

 
2A D→  

where the rates of formation of species A and B are 
given by: 

2
Α 1 A 3 Ar = k C k C− −  

B 1 A 2r =k C k C−  
The reaction rate constants are considered to be: 

. Under the 
assumption that the feed stream consists of pure A, the 
mass balance equations for species A and B lead to the 
following nonlinear dynamic process model: 

-1 -1
1 2 3k =50 h , k =100 h , k =10 l/mol h⋅

              
0

2
A A A 1 A 3

F (C C ) k C k C
V

− − − AC =  

       B B 1 A
FC = C +k C k C
V

− − 2 B

2

            (8) 

where F is the inlet flow rate of A, V is the volume of 
the reactor that is considered to be constant during the 
operation, CA and CB are the concentrations of species 
A and B, respsctively, and  is the 
concentration of A in the feed stream. Our goal is to 
control C

A0C =10 mol/l

B at a certain set-point value by manipulating 
the dilution rate (F/V). The system is initially at steady 
state with CB at a constant set-point and then it is 
subjected to a step change in the set point. The final 
steady state values are: 

A Bs sC =2.697 mol/l, C =1.05 mol/l  and 

s(F/V) =28.428 l/h . Furthermore, defining deviation 
variables with respect to the final steady state values: 

1 A 2 Bx =C 2.697, x =C 1.05, u=F/V 28.428− − − , 
the CSTR model (8) is put in the form of equation (1): 

1 1 1 2x =f (x ,x ,u)  

2 2 1 2x =f (x ,x ,u)  

2e=x  
A simple linear static state-feedback control law is 
applied to the system: 

1 1 2u= p x p x− −  
where p and p  are the controller parameters (gains) 
which, according to the proposed method, must be 
optimally selected by minimizing the following 
performance index: 

1 2

    J(p  2 2
1 2 20
,p ) {[x (t)] ρ[u(t)] }dt

∞
= +∫

                     (9) 2 2
2 1 1 2 20

{[x (t)] ρ[p x (t)+p x (t)] }dt
∞

= +∫
The above performance index can be calculated as 
follows: 

      J(           (10) 1 2 1 2 1 2p ,p )=V(x (0),x (0);p ,p )

where  is the solution of Zubov’s PDE: 1 2 1 2V(x ,x ;p ,p )
 

1 1 2 1 1 2 2 2 1 2 1 1 2 2
1 2

V Vf (x ,x , p x p x )+ f (x ,x , p x p x )=
x x
∂ ∂

− − − −
∂ ∂

2 2
2 1 1 2 2= x ρ(p x +p x )− −                                          (11) 

 
The above PDE was solved symbolically using 
MAPLE, applying the series solution method outlined 
in the previous section, up to a certain truncation order 
N. The result was evaluated at the initial condition 
(steady state corresponding to the initial set-point 
value) and the function  was 
minimized using the nonlinear programming library of 
MAPLE  (see Tseronis, 2001). 

[N]
1 2 1V (x (0),x (0);p ,p )2

 
Figures 1 and 2 provide the optimal  values of p1 and 
p2 as a function of the size of the step change in the set 
point, for various truncation orders N. The value of 
ρ=10-5 was used for the weight coefficient and the 
final set point value was CBsp=1.05 in all calculations. 
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Fig. 1. Optimal values of p1 as a function of the size of 

the step change in the set point. (ρ=10-5) 
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Fig. 2. Optimal values of p2 as a function of the size of 

the step change in the set point. (ρ=10-5) 
 
 



The results for truncation order N=2 are exactly what 
would have been obtained from a linear approximation 
of the dynamics. The optimal values of p1 and p2 are, 
as expected, independent of the step size. This is not 
the case for higher truncation order N>2: the optimal 
p1 and p2 are strongly dependent upon the step size, as 
a result of the nonlinearity of the system. 
The results also indicate numerical convergence for 
the optimal p1 and p2 values with increasing N. For the 
value of weight coefficient ρ and the range of step 
sizes considered, a truncation order N>4 provides a 
good approximation. 
Figures 3 and 4 show the effect of the weight 
coefficient ρ on the optimal p1 and p2 values, for a step 
change in the set point from CBsp=1.2 to CBsp=1.05 
(step size of –0.15). Calculations were performed with 
truncation order N=5. 
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Fig. 3. Optimal p1, p2 as a function of ρ, in the range 

10-9-10-5 for a step change in the set point from 1.2 
to 1.05 (step size=-0.15). 
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Fig. 4. Optimal p1, p2 as a function of ρ, in the range 

10-5-100 for a step change in the set point from 1.2 
to 1.05 (step size=-0.15). 

 
 
As expected, optimal p1 and p2 are strongly dependent 
on the weight coefficient ρ. In fact, the numerical 
results seem to indicate that the optimal p1 and p2 tend 
to infinity as ρ  and to zero as . 0→ ρ→∞
 
 

Figures 5 and 6 depict the optimal closed-loop 
responses for three representative values of the weight 
coefficient, ρ=10-7, ρ=10-5, ρ=10-3. As expected, the 
small value of ρ gives very fast output response but 
physically unrealistic values of the dilution rate. On 
the other hand, the large value of ρ gives unnecessarily 
slow response. 
 
 

 
 
Fig. 5. Optimal output responses to a step change in 

the set point from 1.2 to 1.05 (ρ=10-7,10-5, 10-3). 
 

 
 
Fig. 6.  Optimal input responses to a step change in the 

set point from 1.2 to 1.05 (ρ=10-7,10-5, 10-3). 
 
To complete the simulation study, estimates of the 
stability region have been obtained using the method 
outlined in the previous section. For a step change in 
the set-point from 1.2 to 1.05, weight coefficient  
ρ=10-5 and truncation order N=6, the optimal gains are 
p1=50.99 and p2=76.27. Figure 7 illustrates the method 
of estimating the stability region in this case. 
 
 



 
 
Fig. 7. Geometric interpretation of the method for 

estimating the stability region. 
 

The figure shows the curve dV =0
dt

, which separates 

the x1-x2 plane into two regions, one with dV <0
dt

 and 

another with dV >0
dt

[6]V=V (x

[6]V (x

. It also shows contours of the 

function . The 
estimate of the stability region is exactly the interior of 
the contour of , which is tangent to the 

curve 

1 2 1 2,x ;p =50.99,p =76.27)

1 2 3,x )=C
dV
dt

=0  and is wholly contained in the region 

with dV <0
dt

. Because C1<C2<C3<C4<C5, the value C3 

is exactly the smallest C-value on the curve dV
dt

=0 , as 

requested by the method. 
 
Figure 8 depicts the estimates of the stability region 
for p1=50.99 and p2=76.27 and for different truncation 
orders, N=2, 4, 6, 8, 10, 12. 
 
 
 
 

 
 
Fig. 8. Stability region estimates for different 

truncation orders (p1=50.99, p2=76.27) 
 
 

For N=2, one obtains the standard quadratic estimate 
of the stability region (Khalil, 1991), which is a rather 
conservative estimate. The estimate for N=4 is a 
superset of the one for N=2, the estimate for N=6 is a 
superset of the one for N=4, etc. With increasing N, 
the results seem to indicate numerical convergence to 
a limiting region, which corresponds to the stability 
region estimate that would have been obtained if an 
exact solution of Zubov’s PDE were available. 
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