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Abstract: In this paper we consider the problem of controlling a multi–inventory system in the
presence of uncertain demand. The demand is unknown but bounded in an assigned compact
set. The control input is assumed to be also constrained in a compact set. We consider an
integral cost function of the buffer level and we face the problem of minimizing the worst
case cost. We show that the optimal cost of a suitably constructed auxiliary problem with
no uncertainties is always an upper bound for the original problem. In the special case of
minimum–time control, this upper bound is tight, namely its optimal cost is equal to the worst
case cost for the original system. Furthermore the result is constructive, since the optimal
control law can be explicitly computed.

1. INTRODUCTION

Multi–inventory dynamical systems are constituted by
processes that produce and/or transfer goods, possibly
storing them temporarily in warehouses. Such systems
form a class of fundamental importance in practice
since they are met in several different contexts, e.g.,
manufacturing (Forrester, 1961; Boukaset al., 1995;
Bertsekas, 2000; Kimemia and Gershwin, 1983; Nara-
hari et al., 1999), communications (Ephremides and
Verdú, 1989), water distribution (Larson and Keck-
ler, 1999), logistics and traffic control (Moreno and
Papageorgiou, 1995).

A multi–inventory system aims at satisfying the de-
mand of final goods. All the storing and processing op-
erations are consequently decided to pursue this objec-
tive by possibly minimizing some operational costs.
In this context, static optimization methods can be
applied when the system operating conditions such as
demand, external inputs and link structure are known.
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Unfortunately, many real systems work in uncertain
and varying conditions. Under such circumstances a
feedback approach is sometime preferable (Iftar and
Davison, 1990; Moss and Segall, 1982; Kimemia and
Gershwin, 1983). Actually, a feedback control can
make a system robust against uncertain events such as
failures or unknown demand rate.

The authors of this work have recently pursued a de-
terministic approach in dealing with uncertain events
unknown but bounded inside given constraint sets. In
particular, the problems of keeping the buffer levels
within assigned constraints while driving a system
to the “least storage level" are faced in (Blanchini
et al., 1997). In (Blanchiniet al., 2000) it is shown
that for continuous–time models there exists a strat-
egy assuring convergence to any target buffer level if
a certain control dominance necessary and sufficient
condition is satisfied.

The previous contributions deal mainly with stability
instead of control optimality. Although stability is fun-
damental, because it assures that the system is kept
in a desired working point (i.e. at given buffer lev-
els), it is also fundamental to investigate the transient
cost necessary to reach such a point. Several previous
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references have dealt with the problem of transient
optimality (see for instance (Bertsekas, 2000; Shu C.
and R., 2000; Moss and Segall, 1982)). However, with
the exception of (Boukaset al., 1995), very few of
them explicitly consider unknown–but–bounded dis-
turbances.

In this paper, we consider an integral cost of the buffer
levels and we deal with the problem of estimating the
worst–case cost. We introduce an auxiliary optimal
control problem with no uncertainty and, provided that
the necessary and sufficient condition of (Blanchiniet
al., 2000) are satisfied, we prove the following results:

• the auxiliary optimal cost is an upper bound for
the worst case cost of the original problem;
• in the minimum–time case the provided upper

bound is tight, namely it is equal to the worst case
cost.

The mentioned results are constructive since we will
provide the guaranteed cost control. We also show
how to compute a lower bound, namely the optimal
best–case cost.

2. PROBLEM STATEMENT

We consider the following dynamic model of a multi–
inventory system

ẋ(t) = v(t)−w(t), (1)

wherev(t) ∈ IRn is the control andw(t) ∈ IRn is an
unknown external input, whose components model
respectively the controlled resource flows and the de-
mands, or more in general, the non-controllable flows.
We assume that the controlv and the inputw are
bounded:

v(t) ∈ V (2)

w(t) ∈W (3)

whereV and W are assigned convex and compact
sets. Note that in (Blanchiniet al., 1997; Blanchiniet
al., 2000) the notationv = Bu andw = −Ed is used.
In our case there is no reason to consider matrices
E and B. In (Blanchini et al., 1997; Blanchiniet
al., 2000)W ⊂ int{V } is shown to be a necessary and
sufficient condition for stabilizability. Provided that
such a condition is satisfied, a bang–bang stabilizing
(discontinuous) strategy exists. This strategy drives
the buffer level to the origin (or any target level) in
finite time. For any given initial state we consider the
following cost

J =
T∫

0

g(x(t))dt (4)

being g : IRn → IR+ a given positive–definite and
convex function. LetFV be the set of all feedback
control functions of the state

Φ : IRn→ V

andPW the set of all piecewise continuous functions

w : IR+→W

Consider the following problem with free terminal
timeT

Ψ(x0) = inf
Φ∈FV

sup
w∈PW

J,

s.t.,
x(0) = x0, x(T) = 0

(5)

This is a typical min–max problem in which the con-
trol goal is that of minimizing the worst–case cost over
all admissible (i.e. compatible with the constraints)
disturbancesw.

Let us now consider the next modified setV̂

V̂ = {v̂∈ IRn : v̂+w∈ V , ∀ w∈W } (6)

Note thatW ⊂ int{V } implies thatV̂ is non–empty
and includes 0 as an interior point. Consider the fol-
lowing auxiliary system

ẋ(t) = v̂(t), (7)

with

v̂(t) ∈ V̂ (8)

Let F̂
V̂

be the set of all feedback control functions

Φ : IRn→ V̂

and consider the following optimal control problem
for (7)

Ψ̂(x0) = min
Φ∈F̂

V̂

J

s.t.,
x(0) = x0, x(T) = 0

(9)

Problem (9) for (7) is quite simpler than (5) because
no uncertainties are present. Conversely (5) is very
hard, since the control is not aware, at each time, of
the future actions ofw. In the next section we state
how the two problems are related to each other.

Remark 2.1.The setV̂ can be easily determined if
the support functional ofV is known. If V is a
polytope,V̂ is also a polytope computable via linear
programming.

3. MAIN RESULTS

As it is well known, an optimal control problem can be
faced by means of dynamic programming. The HJB
equation for problem (9) is

min
v̂∈V̂

[
∇Ψ̂(x)v̂

]
+g(x) = 0 (10)



whereΨ̂(x) is the cost–to–go function. If such equa-
tion is satisfied, thenΨ̂(x0) represents the optimal
cost with initial conditionx0(Bertsekas, 2000). The
following theorem holds.

Theorem 3.1.Assume that the cost–to–go function
Ψ̂(x) is smooth everywhere withx 6= 0, and satisfies
the HJB equation (10). Then the control

Φ̂(x) = argmin
v∈V

[
∇Ψ̂(x)v

]
(11)

applied to (1) guarantees a cost

J≤ Ψ̂(x0),

for eachx(0) = x0 and for allw(·) ∈PW .

The following corollary is an immediate consequence
of Theorem 3.1.

Corollary 3.1. Under the assumptions of Theorem 3.1

Ψ(x)≤ Ψ̂(x)

for all x.

The previous theorem and corollary provide a guar-
anteed cost control, but say nothing concerning the
tightness of the upper bound. However, in the special
case of minimum time we can show that this upper
bound is tight. The minimum–time HJB equation for
problem (5) is

min
v̂∈V̂

[
∇Ψ̂(x)v̂

]
+1 = 0 (12)

where nowΨ̂(x0) is the minimum time necessary for
the auxiliary system state to reach the origin starting
from x0. Correspondingly letΨ(x0) be the minimum
time which is necessary to drive the actual system state
to zero in system (1). We have the following theorem

Theorem 3.2.Let g(x) ≡ 1. Assume that the cost–to–
go functionΨ̂(x) is smooth everywhere, withx 6= 0,
and satisfies the HJB equation (12). Then

Ψ(x) = Ψ̂(x)

Solving the HJB equation is usually a hard task. Fortu-
nately, in the minimum–time case we have an explicit
solution according to the next theorem.

Theorem 3.3.Assume thatV̂ is smooth (i.e. its bound-
ary is smooth). Then̂Ψ(x) is the Minkowski function
of −V̂ , namely

Ψ̂(x) = min
{

λ > 0 : −x∈ λ V̂
}

Remark 3.1.The requirement ofV̂ being smooth is
not restrictive. Indeed, if, for instance,̂V is a polytope,
we can always approximate it by means of a smooth
convex set with arbitrary precision. In this case the

Minkowski function admits a nice analytic expression
(Blanchini and Miani, 1999).

We show now that the boundJ ≤ Ψ̂(x0) is non–tight
in general.

ExampleConsider system (1) withn = 2 and

V = {v : ‖v‖1≤ 2}
W = {w : w1 = 0, |w2| ≤ 1}

g(x) = max{|x1 + γx2|, |x1− γx2|}

whereγ > 0 is a parameter. It is easy to show that

V̂ = {v : ‖v‖1≤ 1}.
Note also thatg is linear in any quadrant and it is
linear along the positive and negative axes. The level
surfaces of functiong are as depicted in Fig. 1 (the
dotted lines). Consider the initial conditionA= [1 0]T .
The optimal strategy for the auxiliary system is clearly

0

B

x

x
A

2

1

C

Fig. 1. The system trajectories

v̂(t) =
[
−1
0

]
, 0≤ t ≤ 1

The corresponding transient isx(t) = (1− t)A (the
dashed line fromA to the origin in Figure 1) which
implies the (optimal) cost̂Ψ(A) = 1/2. Now consider
the system with disturbances. Among the admissible
strategies we have the following. Take

v(t) =
[
−2
0

]
, 0≤ t ≤ 1/2

Sincew1 = 0, the disturbance has no influence on the
horizontal motion, precisely,x1(t) =

∫ t
0 v1(σ)dσ =



−2t. Then at t = 1/2 the state reaches the verti-
cal axis (see the curved trajectory in Fig 1) say
x1(1/2) = 0. Note that since|w2| ≤ 1 we have
|x2(t)| = |

∫ t
0 w2(σ)dσ | ≤ t. Then, necessarily, att =

1/2 the second component ofx, x2(1/2), is such that
|x2(1/2)| ≤ 1/2. Thereforex(1/2), is on the vertical
axis between pointsB and C (which correspond to
the values 1/2 and−1/2, respectively). Henceforth by
means of a control

v2 =−2sgn[x2]

the state is driven to 0. It is quite easy to see that the
worst case cost is achieved ifw2 pushes at full force
the state away from the origin. So let us assumew2 = 1
(the opposite casew2 =−1 leads to the same conclu-
sions). Now note that whenx is on the positive vertical
axis with the considered control action we have ˙x2 =
−2+ 1 = −1. Sincex2(1/2) ≤ 1/2 it takes at most
further 1/2 time units to reach the origin. Significantly
the total amount of time isT = 1, the same time of the
auxiliary system, as expected, notwithstanding the fact
that the perturbed trajectory is completely different.
Now the cost of the “extremal trajectory" is the cost of
the path fromA to B plus the cost of the path fromB
to 0. Now being these paths segments and beingx(t)
linear in t on these paths, and since the functiong is
linear on the first close quadrant, the total cost is easy
computed by means of the trapezoidal formula:

J = [
1
2

g(A)+
1
2

g(B)]
T
2

+[
1
2

g(B)]
T
2

=

=
T
4

g(A)+
T
2

g(B)

Now g(A) = 1,g(B) = γ/2 andT = 1. Therefore if we
takeγ < 1

Ψ(A)≤ 1
4

(1+ γ)< Ψ̂(A).

4. PROOFS OF THE MAIN RESULTS

In this section we prove Theorems 3.1-3.3. To this
aim we introduce the following preliminary results.
A convex and compact setS ⊂ IRn can be always
represented as follows

S = {s : zTs≥ µS (z), for all z∈ IRn}
where the function

µS (z) .= min
s∈S

zTs

is positively homogeneous of order one. Such a rep-
resentation holds forV , W andV̂ . The setV̂ can be
represented as follows

V̂ = {v̂ : zT v̂≥ µV (z)−µW (z), for all z∈ IRn}
thus, in general, for anyzT ∈ IRn, we have

µ
V̂

(z)≥ µV (z)−µW (z). (13)

Proof of Theorem 3.1. First note that for allz∈ IRn

the following inequality holds for allw∈W

min
v∈V

zT(v−w)≤min
v∈V

zTv− min
w∈W

zTw =

= µV (z)−µW (z)≤min
v̂∈V̂

zT v̂.

Consider the cost–to–go function̂Ψ(x) for problem
(9). If we apply the control

Φ(x) = argmin
v∈V

∇Ψ̂(x)v, (14)

denoting byx(t) the trajectory of system (1) with
control (14), the corresponding Lyapunov derivative
is

d
dt

Ψ̂(x(t)) = ˙̂Ψ(x) = ∇Ψ̂(x)[Φ(x)−w] =

= min
v∈V

∇Ψ̂(x)[v−w]

≤min
v̂∈V̂

∇Ψ̂(x)v̂ =−g(x)

where the last equality comes from the assumption
that (10) holds. By integrating both sizes we have

J =
T∫

0

g(x(t))dt ≤ Ψ̂(x(0))− Ψ̂(x(T)) = Ψ̂(x(0))

The last inequality obviously implies that

Ψ(x(0))≤ Ψ̂(x(0))

2

The next step is to show that in the minimum–time
case, the latter inequality is indeed an equality.

Proof of Theorem 3.2The proof is only sketched for
brevity.

We have seen thatΨ(x) ≤ Ψ̂(x). Now we prove that
Ψ(x) ≥ Ψ̂(x) by showing that, givenx0, there exists
a trajectory ˆx(t) of the auxiliary system (7) which
reaches the origin before a “worst case" trajectory of
the original system (1).

Consider the setV̂ and an initial statex0 and let v̂0
be the unique vector on the boundary ofV̂ which is
aligned with−x0, i.e.v̂0 =−λx0 for someλ ≥ 0 (note
that such aλ exists because 0∈ int{V̂ }). It is possible
to show that there exists a directionzT such that the
plane

Π = {v : zT(v− v̂0) = 0}

is tangent toV̂ in v̂0,

µ
V̂

(z) = min
v̂∈V̂

zT v̂ = zT v̂0

(roughlyzpoints fromv0 toward the interior ofV̂ ) and

µ
V̂

(z) = µV (z)−µW (z),

namely inequality (13) is actually an equality. It can
also be proved that, since ˆv0 is on the boundary of
V̂ , z is such thatzTx0 > 0. Consider the Lyapunov–
like function V(x) = zTx. If for initial condition x0
we apply the constant control input ˆv(t) ≡ v̂0 to the



auxiliary system (7) we have, denoting by ˆx(t) the
corresponding solution,

V̇(x̂(t)) = zT v̂0 = µ
V̂

(z) = µV (z)−µW (z)

Now, letx(t) be the solution of system (1) whenw(t)
is constant and such thatzTw = µW (z). We get

V̇(x(t)) = zT(v−w)

≥ µV (z)−µW (z) =

= µ
V̂

(z) = V̇(x̂(t))

For initial state ˆx(0) = x(0) = x0, conditionV̇(x(t))≥
V̇(x̂(t)) implies that

V(x̂(t))≤V(x(t)), t ≥ 0.

The proof is completed by noticing that the trajec-
tory x̂(t) reaches the origin, let us say at timeT.
Conversely,x(t) = 0 at timet only if V(x(t)) = 0 is
satisfied, and, in view of the inequality above, this
condition cannot hold beforeT, whenV(x̂(T)) = 0 is
achieved. 2

Remark 4.1.Since we had previously shown that
Ψ(x) ≤ Ψ̂(x), namely that the minimum time for the
perturbed system (1) does not exceed the minimum
time for the auxiliary system (7), the previous proof
shows, in passing, that ˆx(t) is indeed the optimal tra-
jectory for the auxiliary system. Namely, the optimal
minimum–time trajectory for the system without dis-
turbances is achieved open-loop by taking the con-
trol action pointing to the origin. This fact is already
known (see (Moss and Segall, 1982)). Clearly the
open–loop solution is useless as long as we have to
cope with disturbances.

Proof of theorem 3.3 The time necessary to reach
the origin fromx0 for the auxiliary system (7) is the
same time necessary for the system ˙x = −v̂ to reach
x0 from the origin. The reachable set at time t is−tV̂ .
Therefore the reachable set hitsx0 at time

Tmin = min{t ≥ 0 : x0 ∈ −tV̂ }.

ClearlyTmin = Ψ̂(x0). 2

5. CONCLUSIONS AND DISCUSSION

In this paper we have shown that an optimal control
problem for multi–inventory systems with unknown–
but–bounded demand admits a guaranteed cost so-
lution achieved by considering a suitable auxiliary
problem. Such guaranteed cost is an upper bound for
the worst–case cost which is shown to be tight in the
minimum–time case. The results are constructive as
long as we can solve the optimal auxiliary problem. In
the minimum time case we provide a solution for the
HJB equations being the Minkowski function of the
opposite of the constraint set of the auxiliary problem.

Often, the setsV andW are polytopes, having a finite
representation. If this is the case,V̂ is also a polytope
(Bertsekas and Rhodes, 1977). Then, the Minkowski
function of the opposite ofV̂ is non–smooth. How-
ever, we can always approximate it by means of a
smooth function as it is shown in (Blanchini and Mi-
ani, 1999).

If we consider a generic functiong(x), then finding
an exact solution is a hard task. It can be shown
that approximate solutions can be found, providing a
guaranteed cost.

As a final conclusion, notice that the best–case cost,
namely whenv andw cooperate to reach the origin,
can be computed by considering (7) with

v̂∈ V̌ = V −W ,

the Minkowski sum ofV and−W . Therefore, de-
noting by Ψ̌(x0) the cost–to–go function with initial
conditionx0 and control constrained asv∈ V̌ , we can
derive the upper and lower bounds

Ψ̌(x0)≤ J≤ Ψ̂(x0).

Clearly the lower bound is tight for anyg(x). Namely
the cost is actually reached for some favorable realiza-
tion of w(·).

We have shown that the upper bound obtained by
solving the optimal control problem for the auxiliary
system is not tight in general. Determining if there are
special cases of cost functionsg(x), besideg(x) ≡ 1,
for which the bound is non conservative is still under
investigation.
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