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Abstract: Control of vehicle formations has emerged as a topic of significant interest
to the controls community. In this paper, we merge tools from graph theory and
control theory to derive stability criteria for vehicle formations. The interconnection
between vehicles (i.e., which vehicles are sensed by other vehicles) is modeled as a
graph, and the eigenvalues of the Laplacian matrix of the graph are used in stating a
Nyquist-like stability criterion. The relationship between the location of the Laplacian
eigenvalues and the graph structure is used to identify desirable and undesirable
formation interconnection topologies.
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1. INTRODUCTION

Recent years have seen the emergence of control
of vehicle formations as a topic of significant in-
terest to the controls community. Applications of
this span a wide range, including mobile robotics,
traffic control, satellite clusters and UAV forma-
tions. A recent study (Air Force Scientific Advi-
sory Board, 1995) identified this area as needing
fundamentally new control paradigms.

Broadly speaking, this problem falls within the
domain of decentralized control, but it possesses
several unique aspects. The first is that vehicles
in a formation are, as a rule, dynamically de-
coupled, meaning the motion of one vehicle does

1 Research supported in part by AFOSR grants F49620-

99-1-0190 and F49620-01-1-0460. First author also sup-

ported by an NSF Graduate Research Fellowship and an

ARCS Foundation Fellowship. Address correspondence to

faxa@littongcs.com

not directly affect any of the other vehicles. In-
stead, the vehicles are coupled through the task
that they are jointly asked to accomplish. Tasks
of this nature include requiring a formation to
travel in a specific pattern, distribute itself evenly
over a specified area, or arrive simultaneously at
specified endpoints. Other tasks include the as-
signment of roles to individual vehicles within a
formation which enable the entire formation to ac-
complish a higher-level task. When the formation
is dynamically coupled, the coupling constrains,
or at least naturally suggests, what information
must be available to each component of the de-
centralized controller. In the case of cooperative
vehicle control, no such architecture is necessarily
suggested. As such, a second unique aspect of
cooperative vehicle control is the fact that the
interconnection structure, meaning the flow of in-
formation between vehicles, is not a given. It may
be available as a design parameter, or the control
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architecture may require sufficient flexibility to
handle changes in the interconnection structure.

This paper focuses on interconnections generated
by the ability of one vehicle to sense another
vehicle. As a rule, no vehicle will be able to sense
the entire formation, rendering centralized con-
trol infeasible. Additionally, the interconnection
topology is itself dynamic, in that the ability of a
vehicle to sense another vehicle can change due to
outside influences or to changes in the formation
itself. As such, a control law which is optimized
for one topology may exhibit poor performance,
or even instability, for another topology.

A natural way to model the interconnection topol-
ogy is as a graph. Each vehicle is modeled as
a node on the graph, and an arc joins node i
to node j if vehicle j is receiving information
from vehicle i. To accommodate the full range
of possible topologies, we will consider directed
graphs, meaning bidirectional communication is
not assumed. Several authors (Desai et al., 2001;
Mesbahi and Hadaegh, 2001) have used graph-
theoretic ideas in control of vehicle formations.
In both those papers, the formation implements a
variant of a leader-follower architecture. In graph-
theoretic terminology, such a formation is acyclic,
meaning no sequence of arcs leads from a node
back to itself.

In this paper, we consider graphs which contain
cycles and which therefore avoid the disturbance
rejection problems associated with leader-follower
architectures (Yanakiev and Kanellakopoulos, 1996)
and are more robust to loss of individual links. A
key challenge for formations of this sort is stability
analysis, because cycles in the graph introduce
a global component to each vehicle’s dynamics
which depends on both the structure of the graph
and the vehicle dynamics.

Central to this development will be the use of
the Laplacian of the graph, a matrix representa-
tion of the graph whose spectral properties can
be related to structural properties of the graph
(Chung, 1997; Merris, 1994). The Laplacian has
been used previously in the study of chaos in inter-
connected oscillators (Heagy et al., 1994; Pecora
and Carroll, 1998). This paper, takes a control-
theoretic approach to stability analysis of inter-
connected vehicles. For the problem of relative for-
mation stabilization, a Nyquist-like criterion for
formation stabilization is presented, and spectral
properties of the Laplacian are used to evaluate
desirable structural properties of the graph. A
companion paper, (Fax and Murray, 2002), ex-
plores techniques by which information can be
shared between vehicles to improve stability mar-
gins and formation performance.

2. PROBLEM SETUP

The problem under consideration is the stabi-
lization of a set of vehicles where only relative
measurements are available to any given vehicle.
Problems of this type include vehicle platoons
(Yanakiev and Kanellakopoulos, 1996) and satel-
lite formations (Yeh and Sparks, 2000). Consider
a set of N vehicles, whose (identical) linear dy-
namics are denoted

ẋi = PAxi + PBui (1)

yi = PC1xi (2)

zij = PC2(xi − xj), j ∈ Ji (3)

where i ∈ [1, N ] is the index for the vehicles
in the flock. Note that each vehicle’s dynamics
are decoupled from the vehicles around it. The
measurement yi represents absolute state mea-
surements, and zij represents relative state mea-
surements. We will assume henceforth that no ab-
solute state measurements exist, or that an inner
loop has already been closed around them. Thus,
PC1 is empty, and we will denote PC2 as PC for
simplicity. The set Ji ⊂ [1, N ]\{i} represents the
set of vehicles which vehicle i can sense. It is
assumed that Ji �= ∅, meaning each vehicle can
see at least one other vehicle. Note that a single
vehicle cannot drive all the zij signals to zero; the
errors must be synthesized into a single signal.
For simplicity, we assume that all relative state
measurements are weighted equally to form one
relative measurement:

zi =
1
|Ji|

∑
j∈Ji

zij . (4)

A decentralized control law K(s) maps yi, zi to
ui, and represented in state-space form by

v̇i = KAvi + KBzi (5)

ui = KCvi + KDzi. (6)

Let a hatted matrix, for example Â, represent the
matrix A repeated N times along the diagonal.
Using this notation, the system of N vehicles is
represented as(

ẋ
v̇

)
=

(
P̂A + P̂BK̂DP̂CL(n) P̂BK̂C

K̂BP̂CL(n) K̂A

) (
x
v

)
(7)

where L(n) is defined in the following way. Let L
be the N × N matrix defined by

Lii = 1 (8)

Lij =

− 1
|Ji| , j ∈ Ji

0, j /∈ Ji.
(9)



Letting n be the dimension of xi, L(n) is an
Nn×Nn matrix and is defined by replacing each
element of L with that element multiplied by
In, thus generating a version of L dimensionally
compatible with xi. The resulting system is block
diagonal with the exception of L(n).

3. LAPLACIANS OF GRAPHS

There are many introductory texts on graph the-
ory; Diestel (1997) is one. A directed graph G
consists of a set of vertices, or nodes, denoted
V, and a set of arcs A, where a = (v, w) ∈ A
and v, w ∈ V. The first element of a is denoted
tail(a), and the second is denoted the head(a). It
is said that a points from v to w. We will assume
that tail(a) �= head(a), meaning that the graph
has no loops. We also assume that each element
of A is unique. A graph with the property that
(v, w) ∈ A ⇒ (w, v) ∈ A is said to be undirected,
and the pair of arcs can be modeled as a single
edge with no direction associated to it. The in-
degree of a vertex v is the number of arcs with v
as its head, and the out-degree is the number of
arcs with v as its tail.

A path on G of length N from v0 to vN is an
ordered set of distinct vertices {v0, vi, . . . , vN}
such that (vi−1, vi) ∈ A ∀i ∈ [1, N ]. An N -cycle
on G is defined the same as a path except that
v0 = vN , meaning the path rejoins itself. A graph
without cycles is said to be acyclic. A graph with
the property that the set of all cycle lengths has
a common divisor M other than one is said to be
M -periodic. A graph with the property that for
any v, w ∈ V, there exists a path from v to w, is
said to be strongly connected.

We now turn to matrices associated with graphs.
For this purpose, we assume that the vertices of
G are enumerated, and each is denoted vi. The
adjacency matrix of a graph, denoted A, is a
square matrix of size |V|, defined by Aij = 1 if
(vi, vj) ∈ A, and is zero otherwise. Note that A
uniquely specifies a graph. Let D be the matrix
with the out-degree of each vertex along the
diagonal (assume each vertex has nonzero out-
degree). The Laplacian of the graph is defined as 2

L = I − D−1A. (10)

For the graph shown in Figure 1, the arc set (with
the dashed arc omitted) is

A= {(2, 1), (1, 2), (6, 2), (2, 3), (4, 3),

(5, 3), (5, 4), (3, 5), (3, 6)} (11)

2 Some references define L as D − A.
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Fig. 1. Sample Directed Graph

and the Laplacian is

L =


1 −1 0 0 0 0

−0.5 1 −0.5 0 0 0
0 0 1 0 −0.5 −0.5
0 0 −1 1 0 0
0 0 −0.5 −0.5 1 0
0 −1 0 0 0 1

 (12)

The Laplacian matrix is an object of study within
graph theory. Specifically, the eigenvalues of the
Laplacian can be related to structural properties
of its graph. We now note some basic properties
of the Laplacian (Chung, 1997; Merris, 1994):

(1) 0 ∈ λ(L), and the associated eigenvector is
1N×1. If G is strongly connected, then the
zero eigenvalue is simple.

(2) All eigenvalues of L are located in a disk
of radius 1 in the complex plane centered
at 1 + j0. This can be shown by applying
Gershgorin’s theorem to the rows of L.

(3) If G is aperiodic, then no eigenvalues (other
than the zero eigenvalue) will lie on the
boundary of the Gershgorin disk. if G is M -
periodic, then L has M eigenvalues on the
boundary with an angular spacing of 2π

M .
(4) If G is an undirected graph, all eigenvalues of

L are real.

Most of these results can be deduced by observing
that D−1A is nonnegative and applying concepts
from Perron-Frobenius theory (Horn and John-
son, 1985). The sections which follow identify the
role Laplacians play in formation stability analysis
and use the ideas mentioned above to evaluate
the effects of certain formation interconnection
structures on formation stability.

4. STABILIZATION OF VEHICLE
FORMATIONS

The following theorem states the relationship be-
tween the Laplacian and formation stability.



Theorem 1. A local controller K(s) stabilizes the
formation dynamics in Equation (7) iff it simulta-
neously stabilizes the set of N systems

ẋ = PAx + PBu (13)

z = λiPCx

where λi are the eigenvalues of L.

PROOF. Let T be a Schur transformation of
L, meaning the unitary matrix such that U =
T−1LT is upper triangular with the eigenvalues of
L along the diagonal (Horn and Johnson, 1985).
Clearly, T(n) is a Schur transformation of L(n).
This transformation has the following useful prop-
erty, a clear consequence of the block structure of
the relevant matrices:

Lemma 2. Let X be an r×s matrix, and Y be an
N × N matrix. Then

X̂Y(s) = Y(r)X̂. (14)

Letting x̃ = T(n)x, and ṽ = T(m)v, the system
equations can be rewritten as( ˙̃x

˙̃v

)
=

(
P̂A + P̂BK̂DP̂CU(n) P̂BK̂C

K̂BP̂CU(n) K̂A

) (
x̃
ṽ

)
.

The elements of the transformed system matrix
are block diagonal with the exception of upper
triangular U(n). This means that stability of this
system is equivalent to the stability of the systems
along the diagonal, i.e.

˙̃xi = (PA + λiPBKDPC)x̃i + PBKC ṽi (15)
˙̃vi = λiKBPC x̃ + KAṽ (16)

which is equivalent to the controller K(s) stabi-
lizing the system

ẋ = PAx + PBu (17)

z = λiPCx

In this context, the zero eigenvalue of L can be
interpreted as the unobservability of absolute mo-
tion of the formation in the measurements zi. It
seems that a prudent controller design strategy
is to close an inner loop around yi such that
the result system is stable, and then to close
an outer loop around zi which achieves desired
formation performance. For the remainder of this
paper, we concern ourselves solely with the outer
loop. Hence, we assume from now on that C1

is empty and that A has no eigenvalues in the
open RHP. We do not wish to exclude eigenvalues
along the jω axis because many vehicle formations

(e.g. vehicle platoons, satellite clusters) possess
those, and the presence of unobservable secular or
periodic motion of the formation may be tolerable
in those cases. If K(s) stabilizes the system in
Equation (17) for all λi other than the zero eigen-
value, we will say that it stabilizes the relative
formation dynamics.

In general, proving simultaneous stabilization re-
sults can be difficult. This set of systems is spe-
cial, in that they differ only by a complex scalar.
For single-input,single-output (SISO) systems, a
second version of Theorem 1 that is useful for
stability and robustness analysis can be derived.

Theorem 3. Suppose G(s) = C2(sI − A)−1B is
a SISO system. Then K(s) stabilizes the relative
formation dynamics iff the net encirclement of
−λ−1

i by the Nyquist plot of K(s)G(s) is zero for
all nonzero λi.

PROOF. The Nyquist Criterion states that sta-
bility of the closed loop system in Theorem 1 is
equivalent to the number of CCW encirclements of
−1+ j0 by the forward loop λiG(jω)K(jω) being
equal to the number of RHP poles of G(s), which
is assumed to be zero. This criterion is equivalent
to the number of encirclements of of −λ−1

i by
G(jω)K(jω) being zero.

Note that because the vehicle is likely to have
poles on the jω axis, care must be taken when
interpreting the Nyquist plot.

In the case where G(s) is a multi-input, multi-
output (MIMO) system, the formation can be
thought of as a structured uncertainty of the
type scalar times identity (Zhou and Doyle, 1998),
where the scalars are the Laplacian eigenvalues.
More specifically, we shall write the eigenvalues as
λi = 1 + µi and consider bounds on µi. Suppose
it is known that |µi| ≤ M for all nonzero λi. If we
close the loop around the unity block and leave
µiI as an uncertainty, the resulting lower block
is C(s) = G(s)K(s)(I + G(s)K(s))−1, which is
assumed to be stable. The following result from
robust control theory then applies:

Theorem 4. K(s) stabilizes the relative formation
dynamics of the MIMO formation G(s) if

ρ(C(jω)) < M−1 ∀ω ∈ (−∞,∞) (18)

As an example, let G(s) = e−sT

s2 and K(s) = Kp +
Kds. This corresponds to a double integrator with
a time delay being controller by a PD controller.
Figure 2 shows a formation graph and the Nyquist
plot of K(s)G(s) with the Laplacian eigenvalues.
The black ‘o’ locations in Figure 2 correspond to
the eigenvalues of the graph defined by the black
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Fig. 2. Formation Nyquist Plot

arcs in Figure 2, and the ‘x’ locations are for
eigenvalues of the graph when the dashed arc is
included as well. The Nyquist plot relative to −1
reveals a system with reasonable stability margins
— about 8 dB and 45 degrees. When one accounts
for the effects of the formation, however, one sees
that for the ‘o’ formation, the stability margins are
substantially degraded, and for the ‘x’ formation,
the system is in fact unstable. Interestingly, the
formation is rendered unstable when additional
information (its position relative to vehicle 6) is
used by vehicle 1. We shall return to this point
shortly.

5. LOCATION OF LAPLACIAN
EIGENVALUES

The location of Laplacian eigenvalues has emerged
as the parameter which enables formation stabil-
ity to be analyzed on the local level. A natural
question to ask is: how does formation structure
affect eigenvalue placement? We begin by consid-
ering simple formation structures and their eigen-
value placement.

(1) Complete graph. The complete graph is one
where every possible arc exists. In this case,
the eigenvalues of a graph with N vertices
are zero and 1 + 1

N−1 , the latter repeated
N −1 times. For large N , stabilization of the
complete graph is equivalent to stabilizing an
individual vehicle.

(2) Acyclic (directed) graph. This graph has all
eigenvalues at λ = 1. This can be seen from
the fact that the vertices can be ordered
such that L is upper triangular. This is
the “leader-follower” architecture discussed
in the introduction. In this case, stabilization
of the formation is equivalent to stabilizing
a single vehicle, since the Nyquist criterion
does not change. This is consistent with the

notion that in a leader-follower architecture,
the motion of the leader can be treated as a
disturbance on the follower.

(3) Two-periodic undirected graph. A graph of
this type would include a vehicle platoon
with bi-directional position measurement.
This graph will have an eigenvalue at 2, due
to its periodicity, and all other eigenvalues
will be real.

(4) Single directed cycle. This graph has eigen-
values at 1 − ej(i−1)/2π, i ∈ [1, N ].

Figure 3 shows various eigenvalue regions for −L
and the corresponding regions for −L−1. The
region bounded by the solid line is the Gershgorin
disc in which all eigenvalues must lie. Its inverse
is the LHP shifted by −0.5. The dashed region
is a bound in the magnitude of the nonzero
eigenvalues of L. It corresponds to a shifted circle
on the right hand side of Figure. Finally, the
dash-dot line corresponds to a bound on the real
component of the eigenvalues. The inverse of this
bound corresponds to a circle which touches the
origin.

Considering the complete graph and the single
directed cycle graph as representing two extremes
— one with all eigenvalues at a single location,
the other with eigenvalues maximally dispersed,
we see that eigenvalue placement can be related
to the rate of mixing of information through the
network. When the graph is highly connected,
the global component of an individual vehicle’s
dynamics are rapidly averaged out through the
rest of the graph, and thus has only a minor effect
on stability. When the graph is periodic, the global
component of the dynamics introduces periodic
forcing of the vehicle, and the rest of the network
never averages it out. This is represented on the
Nyquist plot by putting the inverse eigenvalues
nearer to the imaginary axis, thus degrading sta-
bility margins.

Aperiodicity has emerged as a desirable property
of formation interconnection topologies. With this
insight, it is clear why the system in Figure 2 loses
stability margin when a link is added. The “solid”
graph possesses two 3-cycles and two 2-cycles.
When the dashed link is added, an additional 3-
cycle is created, rendering the graph more nearly
3-periodic. This drives two of the eigenvalues
nearer to the positions they would occupy if the
graph were truly periodic, i.e., the −0.5 vertical.

6. CONCLUSIONS

This paper presents a Nyquist-like criterion for
assessing the effects of the interconnection topol-
ogy on the stability of a formation of vehicles. The
criterion is local, in that it is stated in terms of the
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dynamics of a single vehicle, and it gives insight
into the effects of graph structure on stability. To
be sure, many variants to the problem presented
here could be presented (e.g. weakly connected
graphs, mixed relative and absolute position ob-
jectives). Our goal in this paper is to motivate the
role graph-theoretic ideas can have in formation
controller analysis and design.

The results of this paper apply to a formation in-
terconnection structure consisting solely of sensed
information. A natural topic of interest is how sta-
bility (as well as disturbance rejection and other
measures of interest) can be improved through
transmission of information between vehicles. In
the extreme case, vehicles could share all in-
formation (assuming strong connectivity of the
transmitted information graph), and each vehicle
could essentially realize a centralized control law.
However, this approach has obvious drawbacks in
terms of bandwidth and computational complex-
ity. A companion paper (Fax and Murray, 2002),
presents strategies for sharing minimal amounts
of information between vehicles, and how that
information can be used to render the formation
more robust to changes in the various topologies.
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