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Abstract: In this paper, via describing function techniques, sliding mode control
of DC servo mechanisms is analyzed in the presence of unmodeled dynamics.
We first show that, a conventional sliding mode controller with signum function
will inevitably generate a limit cycle where a second or higher order unmodeled
dynamics exists. A fractional interpolation based smoothing scheme is then
proposed to eliminate the limit cycle, and maintain a reasonable tracking precision
bound. In particular, a DC servo motor with unmodeled stator and sensor
dynamics is taken into consideration. Both theoretical analysis and simulation
results verify the effectiveness of the proposed new fractional interpolation control
scheme.
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1. INTRODUCTION

It is well known that Variable Structure Control
(VSC) with sliding mode has superior robustness
to matched system uncertainties (Utkin, 1992)
(Young and Ozguner, 1993) (Xu et al., 1997) (Man
and Yu, 1997) (Xu et al., 2000). However, such
a SMC may lose its robustness when unmod-
eled system dynamics exist, as the discontinuous
switching will lead to limit cycles – the chattering
phenomenon.

There are two factors jointly generating a limit
cycle: a relative degree above two and an overhigh
control gain around the equilibrium. According
to classical control theory, a higher relative de-
gree implies the possibility of a large phase lag
beyond −180◦. Meanwhile a higher gain means a
less phase margin. Unfortunately, a typical dis-
continuous switching control in SMC possesses an
infinite gain in the equilibrium. When the system

is strictly positive real (relative degree one), a
phase margin of 90◦ is guaranteed. Limit cycles
occur mainly in two circumstances: either in the
presence of a sampling delay or an unmodeled
dynamics of relative degree above two.

Let us first look at the sampling delay. Since a
sampling mechanism generates a pure time delay,
the corresponding Nyquist curve will move spi-
rally towards the origin and cut cross the negative
real axis infinitely many times. Thus at certain
phase cross frequency the phase reaches −180◦
and limit cycles occur. As far as a servo system
is concerned, with a perfect switching mechanism
(infinite switching frequency available or equiva-
lently the sampling delay is infinitesimal), phase
crossover frequency is also infinity and the limit
cycle magnitude is zero owing to the low pass filter
nature of the servo. In practice when the sampling
frequency is limited, a common way to eliminate
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chattering is to incorporate a smoothing control
scheme to reduce the gain around the equilibrium.

In the presence of unmodeled dynamics, the chat-
tering problem will be worsened due to the ex-
tra phase lag, thereafter a rather lower phase
crossover frequency and a larger chattering magni-
tude. In particular when the unmodeled part has a
relative degree of two or above, limit cycles are in-
evitable even with a perfect switching mechanism.
Most SMC designs for servomechanism ignore two
kinds of dynamic factors in the motor stator cir-
cuit and sensor devices (encoder and tachogenera-
tor). They will present at least two first order low
pass filters cascaded to the mechanical part of the
servomechanism.

Here a question is, can we take those dynamic
factors into consideration in SMC design? The
first difficulty we have is the availability of internal
state variables corresponding to those unmodeled
dynamics. The second difficulty is the presence
of unknown parameters in unmodeled dynamics,
which hinders state estimation. Third, by taking
stator dynamics, encoder and tachogenerator dy-
namics into account, the system is of fifth order
(likely higher with state estimation), and the slid-
ing mode controller would be over complicated for
practical servo applications. On the other hand,
the unmodeled dynamics are stable and usually
less influential to matched disturbance rejection.
Thus we can extend the widely adopted chatter-
ing elimination approach – smoothing the control
input. Note that this way leads to a lower control
gain in servo mechanisms, consequently to certain
extent sacrifices control precision. However this
will be rewarded by the elimination of limit cycles
that usually generate a larger tracking error and
lead to fast wear and tear of torque transmission
device. Moreover, the SMC can be designed solely
based on the reduced order servo system, i.e. the
mechanical part without concerning the unmod-
eled dynamics.

In this work, a new fractional interpolation based
smoothing scheme is proposed to eliminate the
limit cycle in DC servo mechanisms. Because of
the nonlinear switching control in SMC, the de-
scribing function method, an extended version of
the frequency response method for linear systems
(Slotine and Li, 1991), is used to analyze and pre-
dict the limit cycle approximately. Through both
theoretical analysis and simulation of a typical
DC servo mechanism, it is verified that the limit
cycle occurs if a conventional SMC with signum
function is applied, and disappears when the SMC
is revised with an appropriate smoothing scheme.

The paper is organized as follows. Section 2 gives
the descriptions of the DC servo motor and the
unmodeled dynamics. In Section 3, via describ-
ing function techniques, the limit cycle problem

associated with SMC is first analyzed, then a
new smoothing function is introduced to eliminate
limit cycles. Section 4 considers a DC servo motor
and shows the validity of the analysis and the
effectiveness of the proposed control scheme.

2. PROBLEM FORMULATION

A. Mechanical Dynamics of DC Servo

A typical DC servo motor can be expressed as
below

Jθ̈ + bsθ̇ + ksθ = τ + τl (1)

where θ is the motor angular displacement, τ
and τl are the motor torque and load torque
respectively, J is the total inertia, bs is the viscous
friction coefficient and ks is the spring constant.
Defining x1(t) = θ and x2(t) = θ̇, the state space
form of (1) is

{
ẋ1(t) = x2(t),

ẋ2(t) = − 1
J
(ksx1 + bsx2) +

1
J
(τ + τl)

(2)

where x1(0) = θ(0) and x2(0) = θ̇(0). Note that
(1) or (2) represents the mechanical subsystem of
the DC servo. Often the sliding surface is designed
by taking this mechanical subsystem into account,
which is σ = e2 + c1e1 where e1 = x1 − xd,1,
e2 = x2 and xd,1 is a set point. The simplest
switching control is τ = −k sign(σ), where the
gain k is designed appropriately by taking all servo
system uncertainties into account. A convenient
design tool is the Lyapunov’s direct method with
the Lyapunov function candidate V = 1

2σ
2. It is

worthy to point out that the relative degree from
the system input τ to the extended output σ is
one. Hence the process is may have a phase margin
of 90◦

B. Unmodeled Dynamics

In practice the DC servo motor has a first order
stator electrical dynamics

İq =
1
Lq
(u−RIq), (3)

τ = ktIq ,

where Iq is the q-axis current, Lq is the q-axis
inductance, R is the stator resistance, u is the con-
trol input voltage and kt is the torque constant.
Define a new state x3(t) = Iq, (3) becomes

ẋ3 =
1
Lq
(u −Rx3), (4)

and its transfer function is



D1(s) =
τ(s)
u(s)

=
kt

Lq

s+ R
Lq

. (5)

Another source of unmodeled dynamics is related
to sensing devices. A sensor is truly a dynamic
system and the general dynamic structure of a
sensor is (Bernstein, 2001)

ż = f(z, x), x̂ = φ(z, x), (6)

where z is the internal sensor state, x is the
physical input to the sensor, and x̂ is the sen-
sor output. In the DC servo motor, the angular
displacement x1 is measured by encoder and the
angular velocity x2 by tachogenerator. By consid-
ering the sensor dynamics, we have the following
relationship

τ1 ˙̂x1 + x̂1 = k1x1, τ2 ˙̂x2 + x̂2 = k2x2,

where x̂1 and x̂2 are the acquired state variables
through sensor dynamics. In practice the sensor
DC gains k1 and k2 can be easily calibrated
through static tests. However it is not an easy task
to accurately measure time constants τ1 and τ2.

The transfer function from the applied switching
surface σ̂ to the theoretical one is

D2(s) =
σ̂(s)
σ(s)

=
k2s

τ2s+1 +
c1k1

τ1s+1

s+ c1

=
τ1k2s

2 + (k2 + c1k1τ2)s+ c1k1

[τ1τ2s2 + (τ1 + τ2)s+ 1] (s+ c1)
. (7)

Remark 1: It is a common practice to use low
pass filters to get rid of measurement noise. In
such case τ1 and τ2 should include these filter time
constants. In addition, there often exist a variety
of parasitic dynamics in practical systems and
they also account for the existence of unmodeled
dynamics.

Due to the existence of above two classes of
unmodeled dynamics, the system may not work
properly under a conventional sliding mode scheme
with signum function, or even under a smoothing
control scheme. This can be shown in the analysis
of the subsequent sections via describing function
techniques.

3. DESCRIBING FUNCTION TECHNIQUES
BASED ANALYSIS

A. Limit Cycle Problem with Signum Function

The system in (1) can be rewritten as an extended
error dynamics




ė1(t) = e2(t),
ė2(t) = −a0e1 − a1e2 − a0e3 + bτ
ė3(t) = 0

(8)

where a0 = ks/J , a1 = bs/J , b = 1/J and
e3(t) = xd,1 is a constant. The switching control
with signum function is τ = −k sign(σ). The
block diagram of the system is shown in Fig.1,
where G(s) can be regarded as a low pass filter
without poles at the origin

G(s) =
σ(s)
τ(s)

=
b(s+ c1)

s2 + a1s+ a0
. (9)

Define Gd(s) = D1(s)G(s)D2(s) which is the
transfer function of the plant linear part.

Assume there exists a self-sustained oscillation
(limit cycle) of amplitude Ac and frequency ωc.
When ωc is sufficiently high in comparison with
the cut-off frequency of Gd(jωc), according to the
describing function analysis method the switching
surface can be approximately written as σ =
Acsin(ωct). Limit cycles exist if the Nyquist
curve of the linear plant Gd(jωc) intersects with
H(A,ω) = −1/N(A,ω), where N(A,ω) is the
describing function of the system nonlinear part.
The describing function of the signum function
is N(A) = 4k/πA. Thus H(A,ω) = −1/N(A) is
the whole negative real axis with the initial point
(0, 0) corresponding to A = 0.

There will be three possible classes of system
motions in terms of the intersection points as
shown in Fig.2. In the absence of unmodeled
dynamics D1 and D2, since the relative degree
of G(s) in (9) is one, there is an intersection at
(Ac = 0∪ωc =∞). This is exactly the ideal sliding
motion which has infinite switching frequency and
zero off-set. Owing to the theoretically larger
phase margin (90◦), any extra small phase lag
practically existing, such as sampling delay, will
produce a limit cycle with very small magnitude.
Next when the system linear part has relative
degree two, i.e. either GD1 or GD2 is under
consideration, the intersection point is still at
(Ac = 0 ∪ ωc = ∞). However, the phase margin
in this case could be zero, which implies that
the system may not be robust at all. Hence the
extra small phase lag may produce limit cycle with
relatively large magnitude. Finally, if a second
order unmodeled dynamics D1D2 is present, there
definitely exists one intersection at (Ac > 0 ∪
ωc < ∞), thereby limit cycle motion exists even
without considering any extra phase lag factors.

B. Limit Cycle Elimination with a New Fractional
Interpolation Smoothing Control Scheme

In order to eliminate the limit cycle problem
described above, a new fractional interpolation
smoothing control scheme below is proposed to
replace the signum function



Fig. 1. Block diagram of the DC servo motor with
signum function.

Fig. 2. Detections of the limit cycle in the DC
servo motor.

u = −k
(|σ|+ δ1)σ
(|σ| + δ)2

= −ke sign(σ), (10)

where the equivalent switching gain is

ke = k
(|σ|+ δ1)|σ|
(|σ| + δ)2

,

and δ and δ1 are two design parameters.

Proposition: The proposed control law (10) with

δ1 = 2δ + δ2

η , where η is a prespecified tracking
precision bound, ensures the following three prop-
erties. P1◦ The equivalent control gain ke ≥ k
when |σ| ≥ η, which means the equivalent gain is
adequate outside the precision bound. P2◦ The
switching control u is continuously differentiable
with respect to σ (smoothness property). P3◦

The equivalent switching control gain ke ⇒ k as
|σ| ⇒ ∞, i.e. maintains at a moderate level.

The new fractional interpolation smoothing scheme
is able to eliminate limit cycles, as given in the
following theorem.

Theorem: The Nyquist plot ofH(A,ω) = − 1
N(A) ,

where N(A) is the describing function of the
proposed controller, will be a line on the negative
real axis from the initial point (− δη

k(2η+δ) , 0) to the
end point (−∞, 0).

Proof: See Appendix.

Let γ be the maximum value of the magnitude
of |Gd(jω)| at the phase crossover frequency ωpc,
i.e. the leftmost point m in Fig.3, while the
unmodeled dynamics D1 and D2 take all possible
values. By properly selecting the parameters δ and

η such that δη/ [k(2η + δ)] > γ, we can achieve the
sliding mode without any limit cycle.

Fig. 3. Detection of a limit cycle in the case of a
second order unmodeled dynamics.

Fig. 4. Detection of a limit cycle in the case
of a second order unmodeled dynamics and
sampling delay.

Remark 2: A sampled-data system with lim-
ited sampling frequency will inevitably incur a
pure time delay e−sTs with the sampling period
Ts. Fig.4 shows that the Nyquist plot of system
G(s)e−sTs approaches the origin in a spiral man-
ner, hence there are theoretically infinite intersec-
tions with the negative real axis, therefore infi-
nite number of limite cycles. Usually in practical
systems the sampling period is sufficiently small,
thus the m′ point, which corresponds to the limit
cycle with the maximum magnitude, will be very
near to the origin. This implies that limit cycles
due to sampling delay can be easily avoided by
introducing a smoothing function which moves
the rightmost point of H(0, ω) from origin to the
position a0. Note that a small η can achieve this
if a0 is small. As a consequence, a small Ts allows
a higher precision bound. It can also be seen from
Fig.4 that, to avoid the pointm we have to further
move a0 leftwards, leading to a rather larger η –
a lower tracking precision.

4. AN ILLUSTRATIVE EXAMPLE WITH DC
SERVO MOTOR

Consider the DC servo motor dynamics described
by (1), (3) and (7) jointly. The parameters are
J = 6.0 × 10−2 Kg · m, ks = 0.255 N · m/rad,
bs = 0.075 N · m · sec/rad, Lq = 11.6 × 10−3 H ,
R = 2.215 Ω, kt = 1, τ1 = 0.01, τ2 = 0.008 sec
and k1 = k2 = 1. The set point is θd = 2 rad. The
sampling interval is Ts = 0.001 sec. The sliding



surface is σ = e2 + 6e1. The initial values of the
states are x1(0) = 1 and x2(0) = −1. The initial
values of unmodeled dynamics are assumed to be
zero. The switching control gain can be calculated
as k = 5.3. G(s) in (9), D1(s) and D2(s) are

G(s) =
16.67(s+ 6)

s2 + 1.25s+ 4.25
, D1(s) =

86.2
s+ 190.93

D2(s) =
125s2 + 12585s+ 75000
(s2 + 225s+ 12500)(s+ 6)

.

The prior knowledge of the unmodeled dynamics
is that the parameters Lq, R, kt, τ1 and τ2 vary
±20% from their rated values.

Case 1: No Unmodeled Dynamics

First look at the SMC with signum function. As
shown in Fig.5, there exists a very small limit
cycle in the absence of unmodeled dynamics. This
limit cycle is due to sampling delay and can be
easily eliminated by the smoothing scheme (10)
with the tracking precision bound η = 0.08 (δ =
1), see Fig.6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−8

−6

−4

−2

0

2

Time(sec)

Sw
itc

hi
ng

 s
ur

fa
ce

 σ

(a)

1.5 1.52 1.54 1.56 1.58 1.6 1.62 1.64 1.66 1.68 1.7

−0.2

−0.1

0

0.1

0.2

0.3

Time(sec)

N
ea

r t
he

 e
qu

ilib
riu

m

(b)

Fig. 5. System performance under conventional
signum controller without unmodeled dy-
namics: (a) Switching surface; (b) Near the
equilibrium.
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Fig. 6. The evolution of the switching surface
under the proposed fractional interpolation
scheme (η = 0.08 and δ = 1).

Case 2: With Unmodeled Dynamics

Now still using the same smoothing control para-
meters η = 0.08 (δ = 1), we can see from Fig.7
that limit cycle occurs again. By drawing Nyquist
plot of Gd = GD1D2 and taking the ±20% para-
metric variations into account, we can see that

the two extreme points are at m (−0.034) and n
(−0.0176) as shown in Fig.8. On the other hand,
H(0,∞) = − δη

k(2η+δ) = −0.013 falls even right to
the n point, thus the limit cycle is inevitable, and
incurs rather larger tracking error σ ≈ 0.8.
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Fig. 7. System performance under the proposed
fractional interpolation control scheme (η =
0.08 and δ = 1) with the second order
stable unmodeled dynamics D1(s)D2(s): (a)
Switching surface; (b) Control profile.
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Fig. 8. The nyquist plot of the system Gd(s) =
D1(s)G(s)D2(s).

Finally to eliminate limit cycle we have to further
reduce the control gain with η = 0.3, δ = 1.5. Now
H(0, ω) = − δη

k(2η+δ) = −0.04 which is again left
to m. We are able to produce very smooth con-
trol responses and smooth control input profiles
shown in Fig.9. The actual error at steady state
is 0.049, which is far lower than the preceding
circumstance.

5. CONCLUSIONS

In this paper, describing function techniques are
applied to analyze the sliding mode control of
the DC servo mechanisms. In the presence of
unmodeled dynamics, especially when the unmod-
eled part has a relative degree of two or above,
the limit cycle problem will happen when using
conventional SMC scheme with switching mech-
anism. The proposed new fractional interpola-
tion smoothing scheme, which is used to avoid
high switching chattering, effectively eliminate the
limit cycle. Moreover, the new smoothing scheme
can be easily designed based on the reduced order
servo mechanical system.
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Fig. 9. System performance with proposed con-
troller (η = 0.3 and δ = 1.5) in the case of
the second order stable unmodeled dynamics:
(a) Switching surface; (b) Control profile.
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APPENDIX: PROOF OF THEOREM .

Consider the input of the control function (10) is
−σ = Asin(ωt), then the output is

u(t) =
k[|Asin(ωt)|+ δ1]Asin(ωt)

[|Asin(ωt)|+ δ]2
. (11)

Define r = Asin(ωt) for simplicity. In case of
A ≤ δ, (11) can be expressed by series expansion

u(t) =
k(|r| + δ1)r
(|r|+ δ)2

= −k(|r|+ δ1)r
δ

d

d|r| (
1

1 + |r|
δ

)

=
i=∞∑
i=1

(−1)i+1 [iδ1 − (i− 1)δ] kr|r|i−1

δi+1

=
i=∞∑
i=1

hi, (12)

where hi = (−1)i+1 [iδ1−(i−1)δ]kr|r|i−1

δi+1 . The output
in (11) can be expanded as a Fourier series, with
the fundamental being

u1 = ā1cos(ωt) + b̄1sin(ωt).

Because u(t) is an odd function with respect to σ,
ā1 = 0. The coefficient b̄1 is

b̄1 =
1
π

π∫
−π

j=∞∑
j=1

hjsin(ωt)dωt =
j=∞∑
j=1

bj. (13)

The integrations of the first three parts are b1 =
Akδ1

δ2 , b2 = − 2A2k(2δ1−δ)
πδ3 and b3 =

A3k(3δ1−2δ)
4δ4 .

From (12), it is easy to know that the jth (j > 3)
parts left in (13) will be bj = Ajdj , j > 3, where
dj is the coefficient composed of the parameters
k, δ1 and δ. Then

b̄1 =
Akδ1

δ2
− 2A2k(2δ1 − δ)

πδ3
+

A3k(3δ1 − 2δ)
4δ4

+
∞∑

j=4

Ajdj .

Therefore, when A ≤ δ is satisfied, the describing
function of the proposed control scheme is

N(A) =
b̄1
A
=

kδ1

δ2
− 2Ak(2δ1 − δ)

πδ3

+
A2k(3δ1 − 2δ)

4δ4
+

∞∑
j=4

Aj−1dj .

H(A,ω) |A=0 =− 1
N(A)

|A=0= − δη

k(2η + δ)
.

From (13), H(A,ω) can also be expressed as

H(A,ω) =− 1
N(A)

= −A

b̄1

=− π

4k
∫ π

2
0

v(A,ωt)dωt
,

where v(A,ωt) = [|Asin(ωt)|+δ1]sin2(ωt)

[|Asin(ωt)|+δ]2
. ∀A1 > 0,

v(A1, ωt) < v(0, ω) because

v(A1, ωt)− v(0, ωt) = − sin(ωt)2|A1sin(ωt)|
δ2 [|A1sin(ωt)|+ δ2]2

·
[
(2δ +

δ2

η
)|A1sin(ωt)|+ (3δ2 +

2δ2

η
)
]
< 0.

Then ∀A ∈ (0,∞), H(A,ω) < H(0, ω) =
− δη

k(2η+δ) < 0.


