
OUTPUTMANEUVERING FOR A CLASS OF
NONLINEAR SYSTEMS

Roger Skjetne ∗,1 Thor I. Fossen ∗ Petar Kokotović ∗∗
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Abstract: The output maneuvering problem involves two tasks. The first, which is the
geometric task, is to force the output to converge to a desired path parametrized by a
continuous scalar variable θ. The second task is to satisfy a desired speed assignment
along the path. The main concern is to satisfy the geometric task. However, the speed
assignment will ensure that the output follows the path with sufficient speed. A recursive
control design technique is developed for nonlinear plants in vectorial strict feedback
form of any relative degree. First the geometric part of the problem is solved. Then an
update law is constructed that bridges the geometric design with the speed assignment.
An extra degree of freedom is provided for an operator to specify the speed θ̇. A computer
simulation with a marine vessel is performed to illustrate the design. Copyright c°2002
IFAC
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1. INTRODUCTION

In many applications it is of primary importance to
steer an object (ship,vehicle, robot arm, etc.) along
a desired path. The speed assignment along the path
may be less important. Vehicle control applications
of this type are described in (Micaelli and Samson,
1993), (Hauser and Hindman, 1997) and (Pettersen
and Lefeber, 2001), while an informative reference for
robotic manufacturing plants is (Song et al., 2000).

Rather than considering a single tracking problem as
a function of time, control problems for such appli-
cations are usually approached as two separate tasks.
The first task is to reach and follow a desired path as a
function of a scalar variable θ, left as an extra degree
of freedom for the second task. In the second task, θ
is used to satisfy an additional specification of speed
assignment.

1 Supported by the Norwegian Research Council through the
Strategic University Program on Marine Cybernetics

Hauser and Hindman (1995) introduced a procedure to
design amaneuver regulation controller which ensures
that the states converge to the desired path and then
proceed along the path. To determine the path variable
θ, they used a P -orthogonal projection from the cur-
rent state onto the path. The already at hand tracking
controller was then converted into a maneuver regula-
tion controller, and a quadratic Lyapunov function was
employed to guarantee that the states converge to the
path and move along the path.

The methodology of Hauser and Hindman (1995) ap-
plies to feedback linearizable systems, where the de-
sired path is specified for the full state. Encarnação and
Pascoal (2001) further showed how the methodology
of Hauser and Hindman (1995) can be extended to
solve the output maneuvering problem by backstep-
ping. However, for systems of relative degree higher
than two, their approach has the disadvantage that each
step of backstepping increases the number of time
derivatives of θ.
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The contribution of this paper is a maneuvering design
that is applicable to systems in vectorial strict feedback
form of any relative degree. In the n recursive steps, the
design solves the geometric part of the problem. It then
proceeds to construct an update law that ties together
the geometric design with the speed assignment. An
extra degree of freedom is provided for an operator to
select the speed of the maneuver variable θ.

1.1 An introductory example

To introduce the main idea of the design procedure
developed in Section 2, we look at the strict feedback
form system

ẋ1 = x2 + x
2
1

ẋ2 = u (1)

where y = x1 is the output and u is the control. We
want to design a controller to

1. force the output y to converge to the
path yd = sin(θ).

2. assign θ to t − φ, that is, make the output y to
oscillate with frequency 1 rad / s.

The design in Section 2 results in the control law
u=−2[x1 + x21 + x31 + x1x2 + x2

−yd(θ)− y0d(θ)−
1

2
y00d (θ)] (2)

where y0d(θ) = dyd
dθ (θ) = cos(θ) and y00d (θ) =

d2yd
dθ2

(θ) = − sin(θ). In the new coordinates
z1 = x1 − yd (θ) (3)
z2 = x1 + x

2
1 + x2 − yd (θ)− y0d (θ) (4)

ωs = 1− θ̇ (5)

the resulting closed-loop system is

ż1 =−z1 + z2 + y0d(θ)ωs (6)
ż2 =−z1 − z2 + [y0d(θ) + y00d (θ)]ωs (7)

For the Lyapunov function

V =
1

2
z21 +

1

2
z22 +

1

2
ω2s (8)

the derivative along the solutions of (6), (7) is

V̇ = −z21−z22+{z1y0d(θ) + z2 [y0d(θ) + y00d (θ)] + ω̇s}ωs
where an update law for ω̇s is yet to be assigned. To
make V̇ negative definite, we let

ω̇s = −ωs − z1y0d(θ)− z2 [y0d(θ) + y00d (θ)] (9)

and achieve global exponential stability (GES) of the
equilibrium (z1, z2, ωs) = 0.

The main purpose of this example is to interpret how
the design specifications have been met. From the GES
property, it follows that z1(t) = y(t)− sin(θ(t))→ 0
and, hence, y converges to yd = sin(θ). To recognize

that the time assignment, θ(t) → t − φ has been met,
we integrate θ̇(t) = 1− ωs(t) and get

θ (t) = t+ θ(0)−
Z t

0

ωs (τ) dτ

where φ = limt→∞
h
θ(0)− R t

0
ωs (τ) dτ

i
exists be-

cause the convergence ωs(t)→ 0 is exponential. From
(9) we see that θ, and hence yd(θ), depends on the
system state. In this way, the desired transient to the
path and the speed along the path, are shaped by feed-
back system dynamics. This flexibility is due to the
fact that θ → t − φ is required to be attained only
asymptotically, rather than as an identity θ = t− φ.

For another interpretation, we represent the closed-
loop system in the space of (x1, x2, θ,ωs) as follows

ẋ1 = x2 + x
2
1 (10)

ẋ2 =−2
£
x1 + x

2
1 + x

3
1 + x2 + x1x2

¤
+sin(θ) + 2 cos(θ) (11)

θ̇= 1− ωs (12)
ω̇s =−z1 cos(θ)− z2 [cos(θ)− sin(θ)]− ωs(13)

It can be verified that this dynamical system has an
invariant manifold defined by

x1 = sin (θ)

x2 = cos (θ)− sin2 (θ)
ωs = 0

on which x1(t) and ẋ1(t) satisfy x21(t) + ẋ21(t) = 1.
Since this invariant manifold is globally attractive, y(t)
converges to the behavior of a harmonic oscillator as
required by the design specifications. The phase φ of
the oscillation is unspecified and depends on the initial
condition.

A further design step can be used to assign the phase
φ, for example to φ = 0. Introducing ωt = t− θ such
that

ω̇t = ωs (14)

and augmenting the Lyapunov function (8) by 1
2ω

2
t , a

new update law for ω̇s is selected to be

ω̇s = −ωs−ωt−z1y0d(θ)−z2 [y0d(θ) + y00d (θ)] (15)
Since the closed-loop (6), (7), (14), (15) becomes time-
varying with θ = t − ωt(t), we resort to LaSalle-
Yoshizawa (see Theorem 2.1 in Krstić et al. (1995)) to
establish global boundedness of (z1, z2, ωt, ωs) and
convergence (z1, z2, ωs) → 0. Using Theorem 1 in
(Fossen et al., 2001), it is straightforward to show that
the equilibrium (z1, z2, ωt, ωs) = 0 is indeed UGAS.
It follows that ωt(t) = t − θ(t) → 0 and, hence,
φ(t)→ 0.

1.2 Definitions and problem statement

Time derivatives of x(t) are denoted
ẋ, ẍ, x(3), . . . , x(i), and derivatives with respect to θ



of x(θ) are x0, x00, x(3
0), . . . , x(i

0). We denote x(1...i)
[or x(1

0...i0)] as a collection of derivatives of x(t) [or
x(θ)].

x̄i denotes the vector x̄i =
£
x>1 x>2 . . . x>i

¤>
.

A Parametrized Path is a geometric curve ξ ∈ <q,
q ≥ 1, that is parametrized by a continuous variable θ.
The Path Characterization Vector is the vector

ξcv (θ) ,
·¡
ξ0 (θ)

¢>
,
¡
ξ00 (θ)

¢>
, . . .,

³
ξ(n

0) (θ)
´>¸>

The Maneuvering Problem: design a controller that
solves the two tasks:

1. The Geometric Task: force the state x to con-
verge to a desired path ξ(θ),

lim
t→∞ [x (t)− ξ (θ(t))] = 0 (16)

for any continuous function θ(t).
2. The Speed Assignment Task: force the speed θ̇ to
converge to a desired speed υs,

lim
t→∞

h
θ̇ (t)− υs (θ, t)

i
= 0 (17)

The Output Maneuvering Problem is to solve the
maneuvering problem with respect to the output y
rather than the state x.

A more restrictive version of the asymptotic speed
assignment (17) is to satisfy it identically, θ̇ ≡ υs. In
particular, if υs = 1, then the maneuvering problem
becomes a tracking problem where the desired output
yd(θ(t))will be a prespecified time signal ỹd(t).Using
the asymptotic formulation (17), on the other hand,
allows for more flexibility, including the possibility to
let θ̇ depend on the system state.

2. OUTPUT MANEUVERING

Consider the general nonlinear system in strict feed-
back form with vector relative degree n

ẋ1 =G1 (x̄1)x2 + f1 (x̄1)

ẋ2 =G2 (x̄2)x3 + f2 (x̄2)

.

.

. (18)
ẋn =Gn (x̄n)u+ fn(x̄n)

y= h (x1)

where xi ∈ <m, i = 1, . . . , n, y ∈ <m is the
output and u ∈ <m is the control. The state dependent
matrices Gi(x̄i) and ∂h

∂x1
(x1) are invertible for all x̄i,

and Gi, fi and h are smooth.

The control objective is to design a maneuvering con-
troller that solves the output maneuvering problem
with respect to a desired parametrized output path

Yd = {yd(θ)| yd ∈ <m, θ ∈ <} (19)

where yd is n times differentiable with respect to θ.

2.1 Design procedure

In the recursive procedure that follows, the first two
steps are separated from steps 3 through n since the
first two steps involve ∂h

∂x1
. The design procedure

borrows much from adaptive tracking developed by
Krstić et al. (1995), and the notion of a tuning function
is used also in this design.

Step 1:

The new variables
ωs , υs − θ̇ (20)
z1 , y − yd(θ) (21)
zi , xi − αi−1, i = 2, . . . , n (22)

are introduced, where υs is a bounded Cn−1 signal,
and αi−1 are virtual controls to be specified later.
Differentiating (21) with respect to t results in
ż1 = ẏ − y0dθ̇
=

µ
∂h

∂x1
(x1)

¶
G1(x1)z2 + (∇h(x1))G1(x1)α1

+

µ
∂h

∂x1
(x1)

¶
f1(x1)− ν1υs + ν1ωs

where ν1 , y0d. Using p1 > 0, define the first
Lyapunov function as

V1 , p1z>1 z1 (23)
whose time derivative is

V̇1 = 2p1z
>
1

·µ
∂h

∂x1

¶
G1α1 + (∇h) f1 − ν1υs

¸
+2p1z

>
1

µ
∂h

∂x1

¶
G1z2 + 2p1z

>
1 ν1ωs

Then the first virtual control is picked as

α1 =G
−1
1

µ
∂h

∂x1

¶−1
[−C1z1 − (∇h) f1 + ν1υs]

= fα1(x1, yd, y
0
d, υs) (24)

where C1 = C>1 > 0. Let Q1 , 2p1C1 and define the
first tuning function, τ1 ∈ <, as

τ1 , 2p1z>1 ν1 (25)
Finalizing Step 1, the result is

V̇1 =−z>1 Q1z1 + 2p1z>1
µ
∂h

∂x1

¶
G1z2 + τ1ωs

ż1 =−C1z1 +
µ
∂h

∂x1

¶
G1z2 + ν1ωs

where z2 and ωs are left for the next step. In aid of next
step, let

α̇1 = σ1 + ν2θ̇ (26)
where σ1 is defined as the terms in α̇1 not containing
θ̇, and ν2 as those multiplying θ̇, that is

σ1 ,
∂α1
∂x1

ẋ1 +
∂α1
∂υs

υ̇s (27)

ν2 ,
∂α1
∂yd

y0d +
∂α1
∂y0d

y00d (28)

Steps 2 and i=3,...,n are summarized in Tables 1 and 2.



Table 1. Step 2

ż2= ẋ2−α̇1
= G2 (x̄2) z3+G2 (x̄2)α2+f2 (x̄2)−σ1−ν2θ̇

V2, V 1+p2z>2 z2

V̇2= −z>1 Q1z1
+2z>2

½
G>1
³

∂h

∂x1

´>
p1z1+p2 [G2α2+f2−σ1−ν2υs]

¾
+2p2z

>
2 ν2ωs+τ1ωs+2p2z

>
2 G2z3

α2= G
−1
2

·
−C2z2−p1

p2
G>1
³

∂h

∂x1

´>
z1−f2+σ1+ν2υs

¸
= fα2

¡
x̄2, yd, y

0
d, y

00
d , υs, υ̇s

¢
Q2, 2p2C2, C2= C

>
2 > 0

τ2, τ1+2p2z
>
2 ν2

⇓
V̇2= −

P2

j=1
z>j Qjzj+2p2z

>
2 G2z3+τ2ωs

ż2=− p1
p2
G>1
¡
∂h
∂x1

¢>
z1−C2z2+G2z3+ν2ωs

α̇2= σ2+ν3θ̇

σ2,
∂α2

∂x1
ẋ1+

∂α2

∂x2
ẋ2+

∂α2

∂υs
υ̇s+

∂α2

∂υ̇s
ϋs

ν3,
∂α2

∂yd
y0d+

∂α2

∂y0
d

y00d+
∂α2

∂y00
d

y
(30)
d

Table 2. Step i = 3,...,n

żi= ẋi−α̇i−1
= Gi (x̄i) zi+1+Gi (x̄i)αi+f i (x̄i)−σi−1−νiθ̇

Vi, V i−1+piz>i zi

V̇i= −
i−1X
j=1

z>j Qjzj

+2z>i
©
G>i−1pi−1zi−1+pi [Giαi+f i−σi−1−νiυs]

ª
+2piz

>
i νiωs+τ i−1ωs+2piz

>
i Gizi+1

αi= G
−1
i

h
−Cizi−pi−1

pi
G>i−1zi−1−f i+σi−1+νiυs

i
= fαi

³
x̄i, y

(00...i0)
d

, υ
(0...i−1)
s

´
Qi, 2piCi, Ci= Ci> 0

τ i, τ i−1+2piz>i νi
⇓

V̇i= −
Pi

j=1
z>j Qjzj+2piz

>
i Gizi+1+τ iωs

żi= − pi−1
pi

G>i−1zi−1−Cizi+Gizi+1+νiωs

α̇i= σi+νi+1θ̇

σi=
∂αi

∂x1
ẋ1+ . . .+

∂αi

∂xi
ẋi+

∂αi

∂υs
υ̇s + . . .+

∂αi

∂υ
(i−1)
s

υ
(i)
s

νi+1=
∂αi

∂yd
y0d+

∂αi

∂y0d
y00d+ . . .+

∂αi

∂y
(i0)
d

y
(i+10)
d

Upon the completion of Step n the choice of the control
law is

u= αn

=G−1n [−Cnzn−
pn−1
pn

G>n−1zn−1

−fn+σn−1+νnυs] (29)

results in
V̇n = −

nX
j=1

z>j Qjzj + τnωs (30)

żn = −pn−1
pn

G>n−1zn−1 − Cnzn + νnωs (31)

This implies that, if ωs = 0, then z = [z>1 , . . . , z>n ]>
will converge to z = 0 as t → ∞. Hence, y(t) →
yd(θ(t)) for any continuous θ(t), and the geometric
task (16) is solved.

2.2 Speed assignment

To solve the speed assignment task (17), augment the
Step n Lyapunov function to

V = Vn +
1

2µ1
ω2s, µ1 > 0 (32)

The time derivative of (32) is

V̇ = V̇n +
1

µ1
ωsω̇s

=−
nX
j=1

z>j Qjzj +
·
τn +

1

µ1
ω̇s

¸
ωs

where the update law for ω̇s is yet to be constructed.
To make V̇ negative definite, choose the ω̇s-update law

ω̇s = −λωs − µ1τn (33)

λ > 0, which gives

V̇ = −
nX
j=1

z>j Qjzj −
λ

µ1
ω2s < 0 (34)

Consequently, as t →∞, ωs(t) = υs(θ, t) − θ̇(t) →
0, and the speed assignment (17) is satisfied. From (33)
it follows that ωs(t), and therefore yd(θ(t)), is depen-
dent on the system state x(t) through the final tuning
function τn. Hence, feedback is introduced from the
system state to the desired output. This feedback gives
the overall system certain good properties compared to
a pure tracking design.

2.3 The main result

To obtain the closed-loop system in vector form, let
Az (x̄n−1) and F (x̄n, υ

(0...n−2)
s (θ, t)) be as below

Az (x̄n−1) =

−C1
³

∂h

∂x1

´
G1 0 0 · · · 0

−p1
p2
G>1
³

∂h

∂x1

´>
−C2 G2 0 · · · 0

0 −p2
p3
G>2 −C3 G3 · · · 0

...
. . .

...
0 · · · −pn−1

pn
G>n−1 −Cn


F (x̄n, υ

(0...n−2)
s (θ, t)) =

I 0 0 · · · 0
∂α1

∂yd
(t)

∂α1

∂y0
d

(t) 0 · · · 0

∂α2

∂yd
(t)

∂α2

∂y0
d

(t)
∂α2

∂y00
d

(t) · · · 0

...
...

...
. . .

...
∂αn−1
∂yd

(t)
∂αn−1
∂y0

d

(t)
∂αn−1
∂y00

d

(t) · · · ∂αn−1
∂y

(n−10)
d

(t)





Define the path characterization vector as

ξcv (θ) ,
·
(y0d (θ))

>
(y00d (θ))

>
. . .

³
y
(n0)
d (θ)

´> ¸>
which gives the relationship

τn = 2ξ
>
cv(θ)F

>(x̄n, υ
(0...n−2)
s (θ, t))Pz.

with z = [z>1 , . . . , z>n ]> and P , diag(p1I, p2I, . . . ,
pnI). In vector form, the closed-loop equation is

ż =Az(x̄n−1)z + F (x̄n, υ(0...n−2)s )ξcv (θ)ωs

(35)
ω̇s =−2µ1ξ>cv (θ)F>(x̄n, υ(0...n−2)s )Pz − λωs

(36)
Under the following assumption

(A1) There exist a positive real, r1 > 0, such that
the path characterization vector ξcv(θ) is upper
bounded, uniformly in θ, that is,

0 ≤ |ξcv(θ)| < r1 <∞, ∀θ ∈ <
we have the result:

Theorem 1. The closed-loop output maneuvering sys-
tem consisting of the plant (18), the control (29) and
the ωs-update law (33), where ωs is given by (20), has
a Uniformly Globally Exponentially Stable (UGES)
equilibrium (z,ωs) = (0, 0). This means in particu-
lar that global exponential output maneuvering of the
output path (19) is achieved:

lim
t→∞ [y(t)− yd(θ(t))] = 0

lim
t→∞

h
θ̇(t)− υs(θ(t), t)

i
= 0

Remark 1. In the case of constant υs(θ, t) = υ0 6= 0,
all derivatives υ(i)s = 0, i ≥ 1, and the closed-loop
system, (35) and (36), is time-invariant. It follows that
limt→∞ θ(t) = υ0t− φ, where
φ = limt→∞

h
θ(0)− R t

0
ωs(τ)dτ

i
exists because the

convergence ωs(t)→ 0 is exponential.

2.4 Phase assignment

For the constant υs(θ, t) = υ0 6= 0 case, it is possible
to introduce a design step to assign the phase φ. Let
ωt = υ0t − θ − φ0 where φ0 is a desired constant
phase shift, for example φ0 = 0. The time derivative
is

ω̇t = ωs (37)

and augmenting the Lyapunov function (32), to

V = Vn +
µ0
2
ω2t +

1

2µ1
ω2s, µ0 ≥ 0 (38)

a new update law for ω̇s is constructed as

ω̇s = −λωs − µ1 [τn + µ0ωt] (39)

This gives the negative semi-definite derivative of (38)
along the solutions of (35), (37) and (39)

V̇ = −z>Qz − λ

µ1
ω2s ≤ 0 (40)

Note that µ0 = 0 is acceptable in order to switch off
the regulation of the phase. Under the assumptions

(A2) The path yd(θ) is uniformly bounded in θ.
(A3) The map h(x1) is a local diffeomorphism.

we have the following result:

Theorem 2. The closed-loop output maneuvering sys-
tem consisting of the plant (18), the control (29), the
update law (39) and (37), with υs(θ, t) = υ0 6= 0, has
a Uniformly Globally Asymptotically Stable (UGAS)
equilibrium (z,ωt,ωs) = (0, 0, 0). In particular, this
means that global asymptotic maneuvering of (19) is
achieved:

lim
t→∞ [y(t)− yd(θ(t))] = 0

lim
t→∞

h
θ̇(t)− υ0

i
= 0

In addition, any constant phase specification φ0 is sat-
isfied, that is

lim
t→∞ [θ(t)− υ0t+ φ0)] = 0

Proof. First, notice that with υs(θ, t) = υ0 and θ(t) =
υ0t− ωt(t)− φ0, the closed-loop equations (35), (39)
and (37) are time-varying. From assumption A3 and
the smooth virtual controls αi, there exist a continuous
map Ψ : (z, t)→ x which is uniformly bounded since
z(t) is exponentially converging and the time-variation
only enters through either yd(θ(t)) or ξcv(θ(t)), which
due to assumptions A1 and A2 are uniformly bounded.
Resorting to Theorem 1 in (Fossen et al., 2001) where
x1 = col(z,ωs) and x2 = ωt, it can be verified that
all assumptions are satisfied and that, therefore, the
equilibrium (z,ωt,ωs) = (0, 0, 0) is UGAS. It follows
that as t → ∞, z1 = y(t) − yd(θ(t)) → 0,ωs(t) =
υ0 − θ̇(t)→ 0 and ωt(t) = υ0t− θ(t)− φ0 → 0.

3. APPLICATION TO SHIP MANEUVERING

For ship maneuvering, a dynamical model where the
surge mode is decoupled from the sway and yaw
modes is used. See Skjetne and Fossen (2001) and
references therein. Let η = [x y ψ]> be the earth-fixed
position vector and ν = [u v r]

> be the body-fixed
velocity vector. The kinematics and dynamics is given
by

η̇ =R(ψ)ν (41)
ν̇ =M−1N(ν)ν +M−1GT (42)

where M = M> > 0 and T = [Tu, δ1, δ2]
> is the

control vector. The dynamical system (41) and (42) are
then in the form of (18) where η is the output and T is
the control. Let a desired output path be

ηd (θ) =

·
xd(θ) yd(θ) arctan(

y0d
x0d
)

¸>
(43)

where xd(θ) and yd(θ) are three times differentiable
with respect to θ. The control objective is:

1. force the ship to converge to and follow the path.
2. let the ship speed be adjustable online.



Using the design procedure of Section 2, we ensure
convergence to the path by forcing the convergence of
the error state, z1(t) → 0. To solve the problem of
online adjustable speed, let u0 be a constant desired
set-point for u.We then have the feedforward terms

υs(θ) =
u0q

(x0d(θ))
2
+ (y0d(θ))

2
(44)

υ̇s =
− [x0d(θ)x00d(θ) + y0d(θ)y00d (θ)] θ̇
[(x0d(θ))2 + (y

0
d(θ))

2]3/2
u0 (45)

The design procedure of Section 2 gives the following
signals
z1 = η − ηd (θ)

z2 = ν − α1
¡
η, ηd(θ), η

0
d(θ),υs(θ)

¢
α1 =R

>(ψ) [−Kpz1+η
0
d(θ)υs(θ)]

σ1 = Ṙ
>(ψ)R(ψ)α1+R

>(ψ)
£−KpR(ψ)ν + η0d(θ)υ̇s

¤
ν2 =R

>(ψ)
£
Kpη

0
d(θ) + η00d(θ)υs(θ)

¤
The control law is given by

T =G−1M [−Kdz2 − P−12 R>(ψ)P1z1
−M−1Nν + σ1 + ν2υs(θ)] (46)

and the update law for ω̇s is
ω̇s = −λωs − 2µ1

£
z>1 P1η

0
d(θ) + z

>
2 P2ν2

¤
(47)

The simulation are done for a container ship of length
L = 175m, and the numerical values are taken from
Appendix E.1.3 in (Fossen, 1994). The desired output
path are given by (43) where xd(θ) = θ and yd(θ) =
500 sin( 2π

4000θ). The controller settings are as follows:
Kp= diag(0.1, 0.25, 0.25), Kd= diag(0.4, 0.02,
0.02), P1 = diag(0.001, 0.01, 0.01), P2 = diag(5,
20, 20), λ = 0.1 and µ1 = 0.005. Initial conditions
are η(0) = [400, 0, π2 ]

>, ν(0) = [4, 0, 0]>, θ(0) = 0
and ωs(0) = −1. In Figure (1) it is shown how the
ship accurately converges to and follows the path.

Fig. 1. Simulation of a container ship following a
desired sinusoidal path on the ocean surface.

In Figure (2) it is shown how the surge speed u, by
the command of an operator, is first controlled to u0 =
4m / s and then at t = 400 s to u0 = 10m / s .

4. CONCLUSION

As defined in section one, the maneuvering problem
is separated into two tasks, the geometric task and
the speed assignment task. The recursive design pro-
cedure developed in this paper shows one solution
to the maneuvering problem for nonlinear systems in
vectorial strict feedback form. In n recursive steps,
the geometric task was solved. Finally, an update law

Fig. 2. Plot of the surge speed u in the container ship
simulation.

was constructed to satisfy the speed assignment as an
asymptotic limit rather than as an identity. This update
law introduced feedback from the system state to the
desired output. In the case of constant desired speed,
θ̇ = υ0, a further design step was introduced to assign
a constant desired phase φ = φ0.
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