
  

     

 
 

 
 
 
 
 
 
 
 
 
 
 

NEURAL NETWORK GUIDANCE BASED ON PURSUIT-EVASION GAMES 
WITH ENHANCED PERFORMANCE 

 
 

Han-Lim Choi, Min-Jea Tahk, and Hyo-Choong Bang 
 
 

Division of Aerospace Engineering, Korea Advanced Institute of Science and Technology,  
373-1, Guseong-dong, Yuseong-gu, Daejeon,305-701, Republic of Korea. 

 
 
 

 
Abstract: This paper deals with a neural network guidance law based on pursuit-evasion 
games, and performance enhancing methods for the neural network guidance. Two-
dimensional pursuit-evasion games solved by using the gradient method are considered. 
The neural network guidance law in this work employs the range, range rate, line-of-sight 
rate, and heading error as its input variables. An additional network training method and a 
hybrid guidance method are proposed for the sake of the interception performance en-
hancement. Numerical simulations are accompanied for the verification of the neural 
network guidance law, and validation of the performance enhancement achieved by the 
proposed methods. Moreover, all proposed guidance laws are compared with proportional 
navigation. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
This study deals with missile guidance based on pur-
suit-evasion games. Pursuit-evasion game, which 
was introduced by Issacs (1967), became an attrac-
tive concept in missile guidance, as the need for de-
veloping a guidance law that provides good intercep-
tion performance against an smart target increased. 
Since pursuit-evasion game considers the worst-case 
design, it is expected to guarantee acceptable inter-
ception performance even when the target aircraft 
maneuvers in a very intelligent way. Pursuit-evasion 
game deals with a minimax optimization problem 
between the missile and the target. Namely, the mis-
sile makes an effort to minimize a specified payoff 
function, while the target maximizes it. Intercept 
time and/or miss distance is frequently chosen as the 
payoff of the game.  
 
It is needed to obtain a feedback guidance law for 
real-time implementation of the pursuit-evasion 
game. No one can expect a good interception per-
formance using programmed open-loop guidance 
when real engagement situation is not exactly same 

as that one considered before. Unfortunately, many 
solvers for pursuit-evasion game just give open-loop 
solutions. In this paper, a neural network is employed 
to synthesize a feedback guidance law from open-
loop solutions. The neural network provides an ap-
proximate functional relationship between the state 
variables and the game-optimal control inputs, 
throughout network training. 
 
This work shares the same basic idea with Choi et al. 
(2001a), in which a three-dimensional missile guid-
ance law is constructed using a neural network. They 
employed ten variables - three relative position com-
ponents, three relative velocity components, two line-
of-sight rates, missile's speed, and target's speed - as 
the neural network input variables. The performance 
of the neural network guidance law was compared 
with that of proportional navigation guidance. Al-
though results compared are very informative and 
impressive, most of the network input variables 
adopted are not measurable, or hardly obtainable. 
Moreover, they focused only on verifying the simi-
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larity of the neural network guidance law with the 
original optimal solutions.  
 
This paper makes up for insufficiencies of Choi et al. 
(2001a) in that the neural network input variables are 
selected more reasonably, and the interception per-
formance is enhanced even against the target maneu-
vering very strangely. This work establishes a neural 
network guidance law based on the two-dimensional 
pursuit-evasion game. Four variables, i.e. the range, 
range rate, heading error, and line-of-sight rate are 
selected for neural network input variables. In addi-
tion, two methods such as additional network train-
ing and hybrid guidance are proposed for the sake of 
improving the interception performance against non 
game-optimally maneuvering targets. Moreover, 
proposed guidance methods are compared with pro-
portional navigation in terms of the worst-case per-
formance.  
 
 

2. TWO-DIMENSIONAL PURSUIT-EVASION 
GAME 

 
Two-dimensional pursuit-evasion situation is consid-
ered as described in the fig. 1. The equations of mo-
tion of the missile or the target are expressed as fol-
lows: 
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where x, y are the missile's or the target’s position 
and v is the speed and γ the flight path angle, respec-
tively. u is the normalized control input, and R is the 
minimum turn radius. In addition, a is the lateral 
acceleration command. b and c are  related to the lift 
and/or drag coefficients. The values of R, b, and c for 
each player are given as follows: bM = 0.0875, cM = 
0.40, RM = 1515.15m, bT = 0, cT = 0.40, and RT = 
600m. The subscript 'M' denotes the missile, and 'T' 
the target. 
 

With the missile's and the target's dynamic models, 
the author takes into account a time-optimal differen-
tial game, which can be expressed as 
  

 
s.t. equations of motion
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uM(t) or uT(t) implies the time history of the missile's 
or target's control input. 
 
This kind of differential game can be solved by some 
numerical algorithms, such as indirect method, gradi-
ent-based method (Tahk et al., 1998), bilevel pro-
gramming (Ehtamo and Raivio, 2001), and co-
evolutionary methods (Kim and Tahk, 2001; Choi et 
al., 2002). This work employs the gradient-based 
method devised by Tahk et al. (1998), which is a 
direct optimization method based on control input 
parameterization. The control inputs of the missile 
and the target are discretized with time step δt (= 
tf/N) as the following:  
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uM,k and uT,k are the control input in the k-th interval, 
which are assumed constant during the corresponding 
time interval. Hence, the gradient-based method pro-
vides game-optimal parameterized control inputs. In 
other words, the open-loop solutions for game-
optimal control are available by using the gradient-
based method. 
 
 

3. STRUCTURE OF NEURAL NETWORK  
GUIDANCE LAW 

 
The neural network (NN) feedback guidance law 
implies an approximate functional relation between 
the state variables and the game-optimal control in-
puts. The guidance NN takes current state informa-
tion as its input and provides an optimal - strictly 
speaking, sub-optimal - guidance command to the 
missile. If it is possible to gather all the state infor-
mation, the best choice for the NN inputs are all, that 
is, both the missile's and the target's state variables. 
However, unfortunately, this choice is impossible in 
real implementation, since not all the state values can 
be measured. Instead, just a few variables are meas-
ured and the other variables are estimated based on 
the measurement. Therefore, it is reasonable to select 
NN input variables as those that can be measured or 
at least easily estimated. It is also important keep the 
approximation accuracy, though. The basic architec-
ture of the NN feedback guidance loop is given in fig. 
2. To a designer of the guidance law, selecting the 
neural network input vector, or XNN, is the most im-
portant issue.  
 
In this paper, it is assumed that the game-optimal 
guidance law mainly depends on the relative motion 
between the missile and the target. The key variables 
to represent the relative motion are the range, rate of 

Fig. 1. Two-dimensional pursuit-evasion situation 
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change of the range, line-of-sight (LOS) angle, and 
LOS angular rate.  
 
However, when the missile's guidance command is 
the lateral acceleration normal to the velocity vector, 
the absolute value of LOS angle matters little in de-
termining the guidance command. Instead, the head-
ing error, σM = γM –λ, is much more important, since 
it contains the information of the velocity direction. 
Therefore, the heading error replaces the LOS angle 
in this paper. Thus, the neural network input vector 
consists of the range, range rate, heading error, and 
LOS angular rate.  
 
In addition, the lateral acceleration aM is chosen as 
the NN output variable instead of uM, since the for-
mer contains more physical meaning.  
 
 

4. SYNTHESIS OF NEURAL NETWORK  
GUIDANCE 

 
4.1 Neural Network Training 
 
Pursuit-evasion games are solved by the gradient-
based method for 20 engagement scenarios, in which 
the initial γM varies 4 times, 0deg thru 30degs by 
10degs, and the initial γT varies 5 times, 30degs thru 
150degs by 30degs, while the initial positions and 
the speeds are fixed as (xM, yM, vM) = (0m, 0m, 
600m/s), and (xT, yT, vT) = (5000m, 0m, 200m/s).  
 
Afterwards, a neural network with 2 hidden layers, 
each of which has 10/6 neurons, is developed for 
training. Learning lasts until the normalized output 
MSE (mean squared error) decreases to 6×10-7 by 
using the Levenberg-Marquardt algorithm (Hagan 
and Menhaj, 1994). 
 
4.2 Verification of Neural Network Approximation 
 
Since the value of MSE can seldom say about the 
approximation performance of the NN guidance law, 
it is needed to reconstruct the trajectories by adopting 
the NN feedback guidance law in order to examine 
the approximation performance of it. The authors 
reconstruct the trajectories for 52 scenarios, 20 pat-
tern scenarios and 32 off-trained scenarios. The off-
trained scenarios are selected by changing the target's 
initial path angle 8 times - 40degs, 50degs, 70degs, 
80degs, 100degs, 110degs, 130degs, and 140degs - 
with the same configuration of the initial position, 
speed, and the missile's path angle as in the pattern 
scenarios.  
 
Fig. 3 shows the trajectories for representative four 
scenarios, and fig. 4 depicts the acceleration histories 
for the same scenarios. It is found that the trajectories 
constructed by using the NN guidance law are very 
similar to the original pursuit-evasion game trajecto-
ries. As for the control history, two histories are 
about the same for three scenarios. For the scenario 4, 
slight difference in the acceleration command is 
found near the final time; nevertheless, this amount 

is not so much that determines the success or failure 
in the interception. For all 52 testing scenarios, the 
miss distance is less than 0.2m, and the final time 
error is less than 2×10-3 sec. In the consequence, the 
guidance NN approximates the game-optimal solu-
tion to a satisfactory extent. 
 
 

5. PERFORMANCE ENHANCEMENT  
OF THE GUIDANCE LAW 

 
Although the NN guidance law described in the pre-
vious sections copies the game-optimal solutions 
well, it does not guarantee good interception per-
formance for all the engagement situations. Since the 
NN is trained using the trajectory data for the situa-
tions in which both the missile and the target take the 

Fig. 2. Basic architecture of neural network feed-
back guidance  
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game-optimal strategies, the missile often fails to 
generate appropriate guidance command if the target 
maneuvers in a different way from the game-optimal 
law. When the target maneuvers slightly differently 
from the game-optimal law, the feedback structure of 
the NN guidance law satisfactorily compensates the 
error, and leads to the success in the interception. 
However, the interception performance of the NN 
guidance law greatly degrades when the target ma-
neuvers in a very different way. For example, the 
missile using NN guidance law even fails to capture 
a dumb target in some cases.  
 
There might be two approaches to overcome this 
defect above; one is training the NN using additional 
pattern scenarios, and the other is to compensate or 
aid the NN guidance law in some ways. As for the 
first approach, this paper proposes two ways of se-
lection of additional training patters. For the second 
approach, a hybrid guidance scheme is proposed. 
 
5.1 Additional Network Training 
 
It is obvious that a nearly perfect neural network 
guidance law is obtained, if the network is trained 
taken into account all possible engagement situations. 
Unfortunately, this is impossible in the real design 
process. Instead, the designer selects some scenarios 
standing for the engagement situations that one 
wants to deal with. Actually, the pattern scenarios in 
the previous section were selected in this manner. 
However, the performance of the NN guidance law 
constructed from those scenarios is only guaranteed 
when the target maneuvers similar to the game solu-
tions, and the interception performance is not satis-
factory. This means the scenarios selected before 
does not contain all information that the authors 
wanted to consider. To supplement the lack of in-
formation, additional scenarios are required in the 
NN training. This section proposes two ways of sup-
plementing the pattern scenarios.  
 
Game Solutions along the Fictitious Trajectories; 
First of all, let assume that the authors are interested 
in improving the interception performance of the NN 
guidance law for a specific engagement in which the 
target maneuvers with constant uT , and initial γM and 
γT are 0 deg and 90 deg, respectively. Since the tar-
get's game solution for that initial engagement is not 
a constant input maneuver, it is impossible to obtain 
the exact trajectories expressing what happens when 
the game-optimally guided missile chases the target. 
Instead, the trajectories are available if the missile is 
assumed to take sampled-feedback guidance with a 
finite sampling step.  
 
Five cases of target's control commands – 1.0, 0.5, 0, 
-0.5, and -1.0 – are considered, and the missile is 
assumed to update its strategy every 2 seconds. In 
other words, the missile is open-loop guided using 
the game solution for 2 seconds, and then the game 
solution with a new initial condition is solved, and 
this solution is used for guiding the missile for the 
next 2 seconds.  

 
In this way, the authors can obtain 22 more game 
solutions. In fig. 5, at the marked position ( o : mis-
sile, x : target), the pursuit-evasion game solutions 
are evaluated using the gradient-based method. These 
22 scenarios – 3 for uT is 1.0, 3 for uT is 0.5, 5 for uT 
is 0.0, 6 for uT is -0.5, and 5 for uT is -1.0 – are added 
to the training patterns, and total 42 pattern scenarios 
are trained. The network training proceeds until the 
MSE converges to 2×10-5. Let denote this NN as 
NNB, while denote the original NN constructed in the 
previous section as NNA. 
 
General Geometries for Shorter-Range Engage-
ments; Although selecting the additional pattern sce-
narios along the fictitious trajectory for intercepting a 
specific target is reasonable approach, it requires 
some tedious labors; solve the game solution and 
propagate it for one guidance step, and solve a new 
game solution at that position, and so on. Instead of 
this, just choosing more scenarios in shorter-range 
engagements can be helpful. For the shorter-range 
cases, the guidance commands vary more rapidly 
than for the longer-range ones. Thus, it is expected 
for the NN guidance law to compensate the errors 
more promptly if it contains the information of 
shorter-range engagements. 
 
Twenty scenarios are selected in the engagements 
with initial range of 3km, while the missile's and the 
target's path angles change in the same manner with 
the engagements with initial range of 5km. Hence, 
total 40 pattern scenarios are trained until the MSE 
reaches 2×10-5. Let denote this network as NNC. 
 
Performance Comparison; Table 1 shows the inter-
ception results (final time and miss distance) of the 
three NNs against a constant-radius turning target. It 
is found that NNB provides good intercepting per-
formance as a whole, while NNA does not give good 

Fig. 5. Additional training scenarios for intercept-
ing the target with constant control input 
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performance when uT is 0.0 and 1.0. Although NNC 
fails to intercept the target when uT is -1.0, it is much 
better than NNA. The bold number imply the worst-
case for each NN in the manner of the miss distance. 
 
 
5.2 Hybrid Guidance 
 
This section introduces another algorithm, called as a 
hybrid guidance method, for enhancing the intercep-
tion performance of the NN guidance law. The hy-
brid guidance (HG) means a combination of the NN 
guidance law and an existing guidance law, such as 
PN (proportional navigation) and APN (augmented 
PN). The reason why the NN guidance fails to inter-
cept is the target moves very differently from what 
the missile expects. Therefore, it is reasonable to 
adapt the missile's guidance algorithm to the target's 
maneuvering technique; if the target seems to behave 
game-optimally, then use the NN guidance, if not, 
use the PN guidance. This paper proposes the follow-
ing adaptation scheme: 
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where t is current guidance step, G(t) is current guid-
ance scheme that is initially set as NN, ∆aT is the 
difference in target acceleration between the game-
optimal command and the actual command 
( T T Ta a a∆ = − ), aa is the allowable threshold of 
∆aT , and n is a specified integer. In other words, if 
the missile successively observes the target com-
mand differ from (or is similar to) the game-optimal 
one for n guidance steps, then change the guidance 
scheme from NN to PN (or from PN to NN). Here, to 
select α and n is a critical issue. α can be chosen 
after some testing of the NN guidance law, and n has 
to be selected to accomplishing the interception not 
causing a chattering problem. In this work, α is 0.5g 
and n is 3. Fig. 6 illustrates basic structure of the 
proposed hybrid guidance. 
 
 

Table 1. Interception performance improvement  
by additional network training 

NNA NNB NNC uT 
tf (s) rf (m) tf (s) rf (m) tf (s) rf (m)

1.0 8.313 17.159 8.279 4.377 8.274 0.176
0.5 8.542 11.037 8.503 9.825 8.486 0.923
0.0 12.186 52.537 12.269 4.4901 12.537 0.230
-0.5 13.952 8.024 13.965 0.263 14.042 0.599
-1.0 12.333 1.749 12.373 0.132 12.324 15.140

In addition, in order to evaluate ∆aT, target's actual 
and game optimal acceleration are required. When 
using a target tracking filter, the actual acceleration is 
available after 1 guidance step. As for the game-
optimal acceleration, this thesis uses one more NN 
for the missile to estimate the target's game-optimal 
acceleration command. The game-optimal target ac-
celeration is assumed as a function of the range, 
range rate, LOS, and LOS rate. Namely, 

, ( , , , )T T NNa a r r λ λ≈ . Then, an approximate value of 
the nominal target acceleration is available using one 
more neural network.  
 
For the same pattern scenarios with NNA, the target 
acceleration estimating NN are trained. A two-
hidden-layer NN with 10/6 neurons is trained until 
the training error decreases to 3×10-6. 
 
 

6. COMPARISON WITH PROPORTIONAL 
NAVIGATION 

 
Neural network guidance laws described so far are 
compared with PN guidance. For the initial condition 
of (xM, yM, γM, vM) = (0m, 0m, 0deg, 600m/s), and (xT, 
yT, γT, vT) = (5km, 0m, 90degs, 200m/s), six guidance 
laws (NNA, NNB, NNC, Hybrid, PN3, PN4) are com-
pared with each other. PN3 and PN4 denote the PN 
guidance with gain 3 and 4, respectively, while 'Hy-
brid' guidance law is a combination of NNA and PN4. 
In order to test the performance, six target maneuvers 
are considered; differential game maneuver (DG), a 
dumb target (Dumb), maximum turn maneuver 
(Max), time-optimal maneuver against PN3 (Opt3), 
time-optimal maneuver against PN4 (Opt4), and anti-
PN maneuver with gain 5 (Anti5). The time-optimal 
solutions against PN guidance are obtained using co-
evolutionary augmented Lagrangian method 
(CEALM) (Tahk and Sun, 2000;  Choi et al, 2001b). 
 
Table 2 shows the final time for each engagement. 
The bold character denotes the worst case perform-
ance of the corresponding guidance law, and the un-

Fig. 6. Basic structure of the hybrid guidance
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derline means the failure in the interception. The 
miss distance for 'NNA vs Dumb' is 52.539m, and 
that for 'NNC vs Max' is 15.140m, while for all other 
cases miss distances are less than 10.0m. Among the 
NN guidance laws, NNB provides the best perform-
ance succeeding in interception all the targets. It is 
also noted that the NNB provides the best worst-case 
performance among all the guidance laws. Moreover, 
the fact that the worst case of NNB occurred in the 
engagement versus DG implies that NNB approxi-
mates the differential game strategy very well. It 
cannot be overlooked that the hybrid guidance guar-
antees good performance as a whole, providing better 
worst-case performance than PN guidance. This 
shows the feasibility of application of hybrid guid-
ance scheme in real situations.  
 
 

7. CONCLUSIONS 
 
A neural network guidance law adopting the range, 
range rate, line-of-sight rate, and heading error as its 
input variables is established by using the game solu-
tions solved by the gradient-based method. In order 
to enhance the interception performance of the neural 
network guidance law against non game-optimal 
target maneuvers, two techniques for selecting addi-
tional training scenarios and a hybrid guidance 
scheme are proposed. Numerical simulations are 
performed for verifying the neural network approxi-
mation, and for examining the performance im-
provement due to the proposed performance en-
hancement schemes. All proposed neural network 
guidance methods are compared with proportional 
guidance in the aspect of worst-case performance. 
The neural network guidance law reinforced by addi-
tional fictitious scenarios and the hybrid guidance 
law provide outstanding performance.  
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Table 2. Performance comparison of neural network 

guidance laws and PN guidance (final time) 
 NNA NN B NN C Hybrid PN3 PN4

DG 14.391 14.391 14.391 14.391 14.634 14.846
Dumb 12.186 12.269 12.536 11.641 11.621 11.587
Max 12.333 12.373 12.324 12.630 12.581 12.725
Opt3 14.295 14.300 14.298 14.423 14.946 14.924
Opt4 14.270 14.273 14.274 14.521 14.658 15.353
Anti5 14.289 14.291 14.241 14.526 14.157 13.947
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