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Abstract: The present paper deals with deconvolution for linear systems within a discrete 
time framework. The originality of the work stands in the integration of both a filtering 
step and a level constraint (positivity constraint) within the estimation algorithm. After 
setting the structure of the filter, an iterative scheme based on Lagrange multipliers 
optimization technique is developed. The regularized optimization criterion is based on 
the fit to filtered data principle, the positive signal to be restored is considered as the 
square of an exogenous unconstrained signal. An example shows the enhancement 
brought by this approach. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
The deconvolution problem is widely encountered in 
the engineering literature. The range of applications 
is covering seismology in Chi (1998), spectroscopy 
in Jain (1989), endocrinology in De Nicolao (1995), 
image processing in Ichioka, et al. (1981), 
mechanical structural dynamics in Fasana (1997) to 
mention a few. This entails the practical aspect of 
deconvolution. 
Therefore, in order to obtain physically meaningful 
results, one has to consider a priori information in 
the design (e. g. positivity constraints in hormone 
time series estimation in De Nicolao (1995)). The 
introduction of level constraints in the design of 
deconvolution techniques gives rise to nonlinear 

algorithms. The optimal solution to this nonlinear 
problem is obtain by iterative means (steepest 
descent in Ichioka, et al. (1981), conjugate gradient 
in De Nicolao (1995), Sekko, et al. (1996), Thomas 
(1991)). 
Another topic of interest is the noise sensitivity 
reduction within the restored signal. As a matter of 
fact, available data for signal restoration are 
generally noise corrupted. Most of estimation 
technique do not handle the measurement noise. 
Recent techniques have been developed in order to 
insert an optimal filtering step within the estimation 
algorithm in Neveux, et al. (2000), Sekko, et al. 
(1996) and  Sekko (1999). 
The combination of both level constraint and filtering 
has been treated in the continuous time case (Sekko, 



 

     

et al. (1996)) and in the discrete time framework 
(Neveux, et al. (2000)). In the latter, the constrained 
estimation was a sub-optimal constrained algorithm. 
Indeed, in order to keep the linearity of the estimate 
expression, an unconstrained estimate was computed 
and then projected onto the real positive value set. In 
the present paper, an optimal constrained technique 
with integrated filtering is presented in the discrete 
time framework.  
 
 

2. STATEMENT OF THE PROBLEM 
 
Let u(t) be the causal unknown signal to be restored 
and ym(t) the noisy measured output of a process 
supposed to be linear and described by its impulse 
response h(t) (fig. 1). This process is supposed to be 
stable and causal.  
 
 
 
 
 
Fig. 1. The distortion process 
 
Therefore, after discretization, the input-output 
relation can be written as : 
 

( ) v(k)-i)u(k-i)+w(kh(i).(k)y
N

i=
m += ∑

0

 (1) 

 
where : 
 
Ä h(i), u(i), w(i), ym(i) and v(i) are the discretised 

counter part of h(t), u(t), w(t), ym(t) and v(t) 
respectively ; 

Ä w(t) and v(t) are supposed to be independent 
gaussian white noises with variance σw

2 and σv
2 

respectively. 
 
In addition, the signals u, w and v are supposed to be 
mutually uncorrelated. 

 
Fig. 2. Block diagram of the proposed method 
 
So after M + 1 recorded samples, with M ≥ N, one 
gets the matrix relation : 
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with : 
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The objective of the present paper is to set an optimal 
deconvolution filter with a positivity constraint. 
Optimality is considered as the integration of the 
constraint within the iterative algorithm of restoration 
of the input signal u(t) (see fig. 2). 
 
 

3. MAIN RESULTS 
 
3.1. Optimal filter design 
 
In this section, the signal u is supposed to be known. 
Then, from the knowledge of u, ym and the variance 
of the noises, it is possible to define an optimal filter. 
Consequently, the following criterion is defined : 
 

( ) ( ){ }yy.yyEJ T
f −−= ˆˆ  (6) 

 
with the structural constraint for the optimal linear 
filter : 
 

uG.yF.y m +=ˆ  (7) 

 
The minimization of criterion (6) leads to the 
following expressions for the gain matrices F and G : 
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Proof 
 
The criterion (6) can be rewritten just as follows : 
 

( ) ( ){ } ( )( ){ }{ }TT
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The innovation which corresponds to the error of 
estimation is defined as : 

yy −= ˆε  (10) 

 
Using equations (2), (7) and (10), one obtains the 
expression : 
 

( )[ ] ( ) vFwHIFuGHIF +−++−=ε  (11) 
 
So : 
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(12) 

The estimate should be unbiased, then it turns out 
that : 

{ } ( )[ ] { } ( )[ ] { } { } 0=+−++−= vFEwEHIFuEGHIFE ε  (13) 
 
Then, from the initial assumptions, the expression of 
G is easily obtained : 

( )HFIG −=  (14) 
 
Introducing (14) in equation (12), one obtains the 
new expression of the criterion : 

( )[ ] { }( )[ ] { }{ }TTTT
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The optimal value of F is such that : 
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From equations (15) and (16), the following 
expression is obtained : 

( )[ ] { } { } 022 =vvFE+HwwEHIF
F

J TTTTTf −=
∂

∂
 (17) 

 
So one can extract the expression of F : 
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But, by definition : 
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Then, the final expression of F is obtained : 
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This completes the proof. 
 
 
3.2. Constrained deconvolution using Lagrange 
multipliers 
 
The constrained deconvolution problem can be set as 
follows: 

{ }Ω∈−= u  uH.yu
u

withˆminargˆ
2

 (21) 

 

For the expression of the filtered data, one gets the 
following modified criterion: 
 

{ }Ω∈−= u  uF.H.yF.u m
u
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2

 (22) 

 
where ||.||2 stands for the euclidian norm and is a 
subset of ℜM+1 where the constraint is satisfied. 
Considering a positivity constraint one sets: 

1+
+ℜ≡Ω M .  

 
The optimization technique based on the Lagrangian 
multipliers are used to find the solution to the 
constrained problem set in criterion (21). In order to 
introduced the positivity constraint into the 
optimization, the signal u is supposed to be the 
square of an unconstrained synthetic signal. 
Hence, the optimization technique can be described 
as:  
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with: λ = (F.H)T.(F.ym-F.H.u) 
where λ is the Lagrange multipliers vector, ∇ is the 
gradient operator. 
 
Remark: The positivity constraint can be introduced 
differently within the optimization scheme. For 
example, Sekko et al. (1996) have proposed the 
following function as a projection operator in 
continuous time framework: 

( )[ ]qqu += cosh2ln5.0  (24) 
Thus, the formulation (23) of the optimal solution 
has to be modified in order to match with the 
positivity projection operator. 
 
 

4.  EXAMPLE 
 
In order to test the proposed method, let us consider a 
synthetic system described by the following transfer 
function :  

( )
102

1
2 ++

=
ss

sH  (25) 

 
The objective is the reconstruct the synthetic positive 
input signal from the output (fig. 3). Such signal can 
be found in calorimetric reactor testing. 
 
To obtain meaningful simulation results, for noise w 
and v, 20 different realization have been considered. 
Hence, the presented results showed in fig. 4 and fig. 
5 represent the mean behavior of the proposed 
deconvolution filter. 
 



 

     

The estimation error has been quantified in term of 
the mean square error in dB defined as:  
 

MSEdB = 10 log10 || u – û ||2 (25) 
 
The results obtained with the proposed technique 
show that for any SNR, it is possible to find a 
parameter β such that the input estimation is 
enhanced (fig. 4). For each SNR value, an optimal 
value of the parameter β can be estimated, says βopt. 
From fig. 5, it is clear that as the SNR is increasing, 
the enhancement is lessening. This, clearly sets the 
fact that as noise is not significant in regard with the 
output signal, it is not necessary to insert a filtering 
step into the restoration technique. 
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Fig. 3. Input signal (solid line) – Noise free output 

signal (bold solid line) 

 
Fig. 4. Evolution of MSEdB with β and SNR 
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Fig. 5. Evolution of MSEdB, no filtering step (solid 

line) – filtering step with βopt (dashed line) 

5.  CONCLUSIONS 
 
An iterative constrained method for the inverse 
problem of deconvolution has been presented. In 
inverse problem, the measurement noise corrupting 
the data is the source of instability. The proposed 
method tackled the problem of data filtering by 
integrating an optimal filter within the structure of 
the estimator. As a matter of fact, an optimality 
criterion based on the filtered data has been set up. 
The positivity constraint under consideration has 
been introduced in the optimization scheme 
considering the signal to be restored as the square on 
an unconstrained synthetic signal. The optimization 
scheme is based on Lagrangian multipliers. However, 
other method can be used in order to considered level 
constraint in the signal to be restored. The technique 
showed its ability to bring an important enhancement 
for low SNR. 
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