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Abstract: This paper establishes a straightforward interconnection between the Kronecker
canonical form and the special coordinate basis of linear systems. Such an interconnection
enables the computation of the Kronecker canonical form, and as a by-product, the
Smith form, of the system matrix of general multivariable time-invariant linear systems.
The overall procedure involves the transformation of a given system in the state-space
description into the special coordinate basis, which is capable of explicitly displaying
all the system structural properties, such as finite and infinite zero structures, as well as
system invertibility structures. The computation of the Kronecker canonical form and
Smith form of the system matrix is rather simple and straightforward once the given
system is put under the special coordinate basis. The procedure is applicable to proper
systems and singular systems. Copyright c�2005 IFAC
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1. INTRODUCTION

The Kronecker canonical form has been extensively
used in the literature to capture the invariant indices
and structural properties of linear systems. It is now
well understood that the system structural properties
play a crucial role in the design of control systems.
In this paper, we consider a multivariable linear time-
invariant system characterized by
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where � � �
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� and � � �
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tively the state, input and output of the given sys-
tem. ��� � �
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���, � � �

��� and
� � �

��� are constant matrices. � is said to be
singular if rank��� 	 
. Otherwise, it is said to be
a proper system. It is well understood in the litera-
ture that the structural properties of �, such as the
finite and infinite zero structures, as well as the system

invertibility structures, can be fully captured by its
(Rosenbrock) system matrix defined as follows (see,
e.g., Rosenbrock (1970)):
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We recall that two pencils ��� ��� and ��� ���

of dimensions � � 
 are said to be equivalent if
there exist constant nonsingular matrices �� and �� of
appropriate dimensions such that
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It was shown in Gantmacher (1959) that any pencil
�� �� can be reduced to a canonical quasi-diagonal
form, which is given by
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In the context of this paper, we will focus on
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the (Rosenbrock) system matrix pencil associated with
�. In (4), the last term, i.e., �, is corresponding to
the case when there are redundant columns or rows
associated with the input matrices and measurement
matrices. � is in Jordan canonical form, and ���� has
the following �Æ

����� pencils as its diagonal blocks,
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� � � � � ��,
is an ��� � 	�� �� bidiagonal pencil, i.e.,
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��� , � � 	� 
� � � � ���, is an �� � ��� � 	� bidiagonal
pencil, i.e.,
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Finally, � is nilpotent and in Jordan canonical form,
and � � �� has the following � pencils as its diagonal
blocks,
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are finite elementary divisors at ��, � � 	� 
� 
 
 
 � Æ.
The index sets ���� ��� 
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 � ����
are right and left minimal indices, respectively. Lastly,
��	����� � � � 	� 
� 
 
 
 � �� are the infinite elementary
divisors. The definition of structural invariants of �
is based on the invariant indices of its system pencil.
In particular, the right and left invertibility indices are
respectively the right and left minimal indices of the
system pencil, the finite and infinite zero structures of
the given system are related to the finite and infinite
elementary divisors of the system pencil. We note that
these invariant indices are related to the invariant lists
of Morse (1973) as well. To be precise, the finite
elementary divisors are related to the list �� of Morse,
the right and left minimal indices are respectively
corresponding to the �� and �� lists of Morse, and
finally, the infinite elementary divisors are related to
the �� list of Morse.

The Smith form of the system matrix is another way to
capture the invariant zero structure of the given system

�. We recall the definition of the Smith form from the
classical text of Rosenbrock and Storey (1970). Given
a polynomial matrix ����, there exist unimodular
transformations���� and���� such that
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where

���� � diag
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and where each �����, � � 	� 
� � � � � �, is a monic
polynomial and ����� is a factor of �������, � �
	� 
� � � � � � � 	. Note that a unimodular matrix is
a square polynomial matrix whose determinant is a
nonzero constant. ���� of (10) is called the Smith
canonical form or Smith form of ����. We will show
in this paper that it is straightforward to obtain the
Smith form of ����� once it is transformed into the
Kronecker canonical form.

Traditionally, the computation of the Kronecker canon-
ical form was carried out through certain iterative
reduction schemes (see, for example, Beelen and
Dooren (1988), Gantmacher (1959), Lin (1988), Puerta
et al. (2002) and Dooren (1979), ), of which some
were based on the reduction of the system matrix to
a generalized Schur form (see, for example, Dem-
mel and Kagstrom (1993a), Demmel and Kagstrom
(1993b)). The main objective of this paper is to es-
tablish a straightforward interconnection between the
Kronecker canonical form and the special coordinate
basis of linear systems of Sannuti and Saberi (1987).
We will show that it is simple to derive a construc-
tive procedure for computing the Kronecker canonical
form, and as a by-product, the Smith form, of �����
by utilizing the special coordinate basis technique,
which was originally proposed by Sannuti and Saberi
(1987), and was recently completed by Chen (1998),
in which all the system structural properties of the
special coordinate basis were rigorously justified. The
software realization of the special coordinate basis
and other related decomposition techniques required
is readily available in Lin et al. (2004). Thus, the ad-
ditional cost for computing the canonical forms men-
tioned above is very minimal.

The rest of the paper is organized as follows: In
Section 2, we present the main results of this paper,
i.e., the computational procedures for the Kronecker
canonical form and Smith form of the system matrix,
�����. The interconnection of the Kronecker canon-
ical form and the special coordinate basis will be
clearly displayed in the procedure. The results will
be illustrated by a numerical example in Section 3.
Finally, some concluding remarks will be drawn in
Section 4.



2. COMPUTATION OF KRONECKER AND
SMITH FORMS OF THE SYSTEM MATRIX

Before proceeding to present our main results, we first
show that the computation of the Kronecker canonical
form and Smith form of the system pencil of singular
systems can be done by converting the singular system
into an auxiliary proper system. This can be done as
follows. Without loss of generality, we assume that �
is in the form of,
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and thus�,� and� can be partitioned accordingly as
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Rewriting the system pencil of (5) as
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it is simple to see that the invariant indices of � are
equivalent to those of a proper system characterized by
���� ��� ��� ���. Thus, without loss of generality, we
focus on the computation of the Kronecker form and
Smith form of the system matrix of a proper system
characterized by
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i.e., the following matrix pencil,
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throughout the reminder of this manuscript. We next
recall that the Kronecker canonical form of the system
matrix of �, i.e., �����, is invariant under nonsingular
state, input and output transformations, 

, 
� and


, and is invariant under any state feedback and
output injection. Such a fact follows directly from the
following manipulation:
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where � ��� ��� ��� ��� is the transformed system and is
given by
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�# and �" are respectively the state feedback and output
injection gain matrices under the coordinate of the
transformed system, and finally, �KF characterized by
the quadruple ��KF� �K� �F� ��� is the resulting trans-
formed system under the state feedback and output
injection laws.

We are now ready to show that the Kronecker canoni-
cal form of ����� can be obtained neatly through the
special coordinate basis of �. The following is a step-
by-step algorithm that generates the required nonsin-
gular transformations and ! for the canonical form:

STEP KCF.1. Computation of the special coordinate
basis of �.
Apply the result of Sannuti and Saberi (1987) (see
also Chen (2000)) to find nonsingular state, input
and output transformations,
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and 

 � �
���, such that the given system � of

(15) is transformed into the special coordinate basis
as given in Theorem 2.4.1 of Chen (2000) or in the
following compact form:
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where ���� � �
����� , �� � �

����� and �� �
�
����� have the following forms,
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with ��� , ��� and ��� , � � 	� 
� � � � ���, being
given as follows:
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Also, we assume that ��� � �
����� is already in

the Jordan canonical form, i.e.,
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where ����, � � 	� 
� � � � � $, are some 
��
� Jordan
blocks:
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and ����� ���, with ��� � �
����� and �� �

�
����� , is in the form of the observability struc-

tural decomposition (see, for example, Brunovsky
(1970), Theorem 2.3.1 of Chen (2000), and Luen-
berger (1967) for its dual version), i.e.,
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Finally, ����� ���, with ��� � �
����� and �� �

�
����� , is assumed to be in the form of the con-

trollability structural decomposition, i.e.,
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STEP KCF.2. Determination of state feedback and
output injection laws.
Let
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It is straightforward to verify that the resulting �KF

is characterized by
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STEP KCF.3. Finishing touches.
It is now simple to verify that the (Rosenbrock) sys-
tem matrix associated with �KF has the following
form:
(1) The corresponding term associated with ���� is

given by
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which is already in the format of (6).
(2) The corresponding term associated with the

pair ������� ����� is given by
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which is in the format of (7).
(3) The corresponding term associated with the

pair ������� ����� is given by
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which is in the format of (8).
(4) Lastly, the corresponding term associated with
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Let
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Then, we have
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which is now in the format of (9).
The Kronecker canonical form of the system

matrix of �KF, or equivalently the system matrix
of �, i.e., (16), can then be obtained by taking
into account the additional transformations given
in (37) and (40) together with some appropriate
permutation transformations. This completes the
algorithm.

Next, we proceed to compute the Smith form of the
system matrix, �����. In what follows, we will show



that it is also straightforward to obtain the Smith
form of ����� by using the special coordinate basis
technique.

STEP SMITH.1. Determination of the Kronecker
form of �����.
Utilize the special coordinate basis of � to deter-
mine the Kronecker canonical form of ����� as
given in the previous algorithm. However, for the
computation of the Smith form of �����, we need
not to decompose ��� into the Jordan canonical
form, which might involve complex transforma-
tions. Instead, we leave��� as a real-valued matrix.
Note that the transformations involved in the Kro-
necker canonical form are constant and nonsingular,
and thus unimodular.

STEP SMITH.2. Determination of unimodular trans-
formations.
(1) Using the procedure given in the proof of Theo-

rem 7.4 in Chapter 3 of Rosenbrock and Storey
(1970), it is straightforward to show that the
term �� � ���� in (36) can be deduced to the
following Smith form:
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In general, following the procedure given in
Rosenbrock and Storey (1970), we can com-
pute two unimodular transformations �����
and ����� such that �� � ��� is transformed
into the Smith form, i.e.,
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Clearly, these polynomials are related to the
invariant zero structures of the given system �.

(2) The term corresponding to ������� ����� given
in (37) has a constant Smith form:
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Note that the first term on the right-hand side
of the above equation is a unimodular matrix.

(3) Similarly, the Smith form for the term corre-
sponding to ������� ����� given in (38) is also a
constant matrix:
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is a unimodular matrix.

(4) Lastly, the Smith form for the term correspond-
ing to ���� � ��� � ���� given in (40) is an iden-
tity matrix:
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Once again, the last term of the equation above
is a unimodular matrix.

Finally, in view of (43) to (47) together with some
appropriate permutation transformations, it is now
straightforward to obtain unimodular transforma-
tions���� and���� such that
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������diag
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and where 
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� ��� ���.

3. ILLUSTRATIVE EXAMPLE

We illustrate the results of Section 2 with the follow-
ing example.

Example 3.1. Consider system characterized by (15)
with
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which is already in the form of the special coordinate
basis with an invariant zero at 	, and 
� � 
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� � 	. Following the algorithm given in Steps KCF.1
to KCF.3, we obtain

�# �

�
	 �� �	 �	
	 � �	 �

�
� �" �

�
��

� 	
�	 �	
�	 �

� �

�
	
 �

�KF �

�
��
	 � � �
� � � �
� � � �
� � � �

�
	
 �

and �K � �, �F � �, �� � �, and the required two
nonsingular transformations,
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which transform ����� into the Kronecker canonical
form, i.e.,
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Next, following the algorithm given in Steps SMITH.1
and SMITH.2, we obtain two unimodular matrices,
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with det������ � �	 and det������ � 	, which
convert ����� into the Smith form, i.e.,
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Clearly, the polynomial in the entry (4,4) of the above
Smith form of �����, i.e., � � 	, results from the
invariant zero of �.

4. CONCLUSION

In this paper, we have presented a computational
procedure for computing the well known Kronecker
canonical form and Smith form of the system ma-
trix of a general multivariable linear system, either
proper or singular. The proposed method is based the
structural decomposition techniques of linear systems,
namely, the special coordinate basis. The intercon-
nection between the Kronecker canonical form and
the special coordinate basis has been established in a
straightforward manner. The results have been imple-
mented in an m-function in MATLAB.

REFERENCES

Beelen, T. and P. Van Dooren (1988). An improved al-
gorithm for the computation of kronecker canon-
ical form of a singular pencil. Linear Algebra and
Its Applications 105, 9–65.

Brunovsky, P. (1970). A classification of linear con-
trollable systems. Kybernetika (Praha) 3, 173–
187.

Chen, B. M. (1998). On properties of the special
coordinate basis of linear systems. International
Journal of Control 71, 981–1003.

Chen, B. M. (2000). Robust and �� Control.
Springer. New York.

Demmel, J. and B. Kagstrom (1993a). The general-
ized schur decomposition of an arbitrary pen-
cil &�'(: robust software with error bounds and
applications. part 1: theory and algorithms. ACM
Transactions on Mathematical Software 19, 160–
174.

Demmel, J. and B. Kagstrom (1993b). The general-
ized schur decomposition of an arbitrary pen-
cil & � '(: robust software with error bounds
and applications. part 2: software and applica-
tions. ACM Transactions on Mathematical Soft-
ware 19, 175–201.

Dooren, P. Van (1979). The computation of kro-
necker’s canonical form of a singular pencil. Lin-
ear Algebra and Its Applications 27, 103–140.

Gantmacher, F. R. (1959). Theory of Matrices.
Chelsea. New York.

Lin, W. W. (1988). The computation of the kronecker
canonical form of an arbitrary symmetric pencil.
Linear Algebra and Its Applications 103, 41–71.

Lin, Z., B. M. Chen and X. Liu (2004). Linear Systems
Toolkit. Technical Report. Department of Electri-
cal and Computer Engineering, University of Vir-
ginia.

Luenberger, D. G. (1967). Canonical forms for linear
multivariable systems. IEEE Transactions on Au-
tomatic Control 12, 290–293.

Morse, A. S. (1973). Structural invariants of linear
multivariable systems. SIAM Journal on Control
11, 446–465.

Puerta, X., F. Puerta and J. Ferrer (2002). Global
reduction to the kronecker canonical form of a c-
r-family of time-invariant linear systems. Linear
Algebra and Its Applications 346, 27–45.

Rosenbrock, H. H. (1970). State Space and Multivari-
able Theory. Nelson. London.

Rosenbrock, H. H. and C. Storey (1970). Mathematics
of Dynamical Systems. Wiley. New York.

Sannuti, P. and A. Saberi (1987). A special coordinate
basis of multivariable linear systems – finite and
infinite zero structure, squaring down and decou-
pling. International Journal of Control 45, 1655–
1704.


