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Abstract: This paper addresses the identification of non–linear dynamic systems.
A wide class of these systems can be described using non–linear time-invariant
regression models, that can be approximated by means of piecewise affine proto-
types with an arbitrary degree of accuracy. This work concerns the identification
of piecewise affine model structure through input–output data acquired from a
dynamic process. In order to show the effectiveness of the developed technique,
the results obtained in the identification of both a simple simulated system and a
real dynamic process are reported. Copyright c© 2005 IFAC.
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1. INTRODUCTION

The key step towards system analysis and con-
trol design is to find a suitable mathematical
description of the process under investigation. In
some cases system modelling based on insight on
the physical laws which govern the real process
behaviour might be cumbersome and practically
infeasible. On the other hand, input–output pro-
cess measurements can be successfully used to
infer an analytical description of the system in
the framework of a parametric structure which
possess approximation properties with respect
to the complex, non–linear, unknown analytical
functions that are amenable as candidate to de-
scribe the real behaviour of the observed process
(Juditsky et al., 1995). The problem of identi-
fication of hybrid dynamical systems, by using
hyperplanes and Wiener piecewise affine autore-
gressive exogenous models was also addressed in

(Roll et al., 2004). The approach suggested in this
work refers to non–linear processes that operate at
different regimes, as it usually assumed in several
engineering fields, in which distinct models are
associated to each admissible operating condition.
A switching function governs the transition among
different models or interpolations of models. Such
mathematical descriptions are referred in current
literature as piecewise models or hybrid models,
as suggested by several authors (Bemporad and
Morari, 1999; Sontag, 1981). The interpolation
properties of such models with respect to non–
linear discrete–time regression functions are ex-
ploited. Particular emphasis has been given to the
piecewise affine model identification when data
are acquired form a dynamic process. The pre-
sented approach differs from the cited bibliogra-
phy as it uses Error–in–Variables Models (EIV)
with the assumption suggested by Frisch (Frisch,



1934) and revisited by Kalman (Kalman, 1982)
regarding the stochastic characterisation of the
noises corrupting the data. In this context, it is
possible to generalise some basic results on single
model proposed in (Beghelli et al., 1990), which
regard model structure and parameter identifica-
tion with measurement noise rejection.

2. MODEL DESCRIPTION

The main idea underlying the mathematical de-
scription of non–linear dynamic systems is based
on the interpretation of single input–single out-
put, non–linear, time–invariant regression models
such as:

y(t+ n) = F
(
y(t+ n − 1), · · · , y(t),

u(t+ n − 1), · · · , u(t)
) (1)

for t = 0, 1, . . .. u(·) and y(·) belong respectively
to the bounded input U and output Y sets, n is the
finite system memory (i.e. the model order) and
F (·) is a continuous non–linear function defining
a hypersurface from a An to Y, being An the
Cartesian product Un × Yn. The identification of
the non–linear system can be translated to the
approximation of its mathematical model given
by Eq. (1) using a parametric structure that ex-
hibits arbitrary accuracy interpolation properties.
A piecewise model defined through the compo-
sition of simple models having local validity is
the natural candidate to perform this task, as it
combines function interpolation properties with
mathematical tractability. In the following the
proposed piecewise structure is defined and its
properties in terms of interpolation characteris-
tics of arbitrary non–linear functions are briefly
discussed. The piecewise model is formed by a
collection of parametric submodels of the type

y(t+ n) =

n−1∑
j=0

α
(i)
j y(t+ j) +

n−1∑
j=0

β
(i)
j u(t+ j) + b(i) (2)

in which the system operating point is described
by the input and output samples y(t + n −
1), · · · , y(t) and u(t + n − 1), · · · , u(t), that can
be collected with a vector xn(t) = [y(t), · · · , y(t+
n−1), u(t), · · · , u(t+n−1)]T , for t = 0, 1, . . .. The
switching function χi

(
xn(t)

)
, i = 1, . . . , M is:

χi

(
xn(t)

)
=

{
χi

(
xn(t)

)
= 1 if xn(t) ∈ A(i)

n

χi

(
xn(t)

)
= 0 otherwise

(3)

where {A(1)
n , . . . ,A(M)

n } is a partition of An,
whose structure will be characterised in the fol-
lowing. Thus, the output y(t + n) of the non–
linear dynamic system described by Eq. (1) can be
approximated by the piecewise affine model f(·)
in the form

y(t+ n) = f
(
xn(t)

)
=

M∑
i=1

χi

(
xn(t)

)
[xn(t), 1]

T a
(i)
n (4)

where the model parameters are collected in the
vector a(i)

n = [α(i)
0 , . . . , α

(i)
n−1, β

(i)
0 , . . . , β

(i)
n−1, b

(i)]T .

It is worthwhile noting that the model is affine in
each A(i)

n , a(i)
n being the affine submodel parame-

ters.

It is worth noting that this piecewise affine func-
tion aims to interpolate an arbitrary non–linear
model, conceptually enabling us to capture the
behaviour of any physical process. Thus, it is
important to underline the approximation capa-
bilities of this piecewise affine model with respect
to the target function. On the other hand, since
the model in the form of Eq. (1) is supposed
continuous, f(·) is forced to be continuous over
the wholeAn. In such a case the parameter vectors
are constrained to satisfy the following relation:

lim
xn(t)→x̄n,xn(t)∈A(i′)

n

f
(
xn(t)

)
=

= lim
xn(t)→x̄n,xn(t)∈A(i′′)

n

f
(
xn(t)

)
(5)

x̄n being an accumulation point for both A(i′)
n

and A(i′′)
n , i.e. if

[x̄n(t), 1]
T a

(i′)
n = [x̄n(t), 1]

T a
(i′′)
n (6)

The straightforward application of Eq. (6) to all
the accumulation points common to neighbouring
regions leads to an infinite number of constraints.
However, the adoption of regions with straight
borders guarantees that only a finite number of
them is linearly independent. This results suggests
that regions whose boundaries are convex poly-
hedra should be considered. In this case, in fact,
continuity can be ensured simply by setting the
value of the local models only on the vertices of the
boundaries. In this case, the continuity constraints
(one for each polyhedral vertex) can be collected
in a finite matrix Cn such that:

CnAn = 0 being An =

[
a
(1)
n

T
. . . a

(M)
n

T
]T

. (7)

In particular, it is undoubtedly convenient to
“triangulate” the domain An, i.e. to partition
it into 2n–dimensional simplexes. Moreover, we
will assume that the triangulation is such that
two simplexes are either disjoint, or have in com-
mon a whole k–dimensional boundary, with k =
0, 1, . . . , 2n− 1. In this way, the local affine model
described by Eq. (4) can be forced to assume given
values at most in 2n + 1 vertices of each simplex,
which are affinely independent points.

3. LOCAL IDENTIFICATION

Let us assume that the input–output data u(t)
and y(t), (t = 0, 1, , . . . , Li) generated by a system
of the type of Eq. (2) are available. Restricting our
investigation to find order n and parameters a(i)

n

for local model in the form of Eq. (2) in region
A(i)

n , the following matrix should be defined:



X
(i)
k
=




y(k) xT
k (0) 1

y(k + 1) xT
k (1) 1

.

..
.
..

y(k +Ni − 1) xT
k (Ni − 1) 1




(8)

Σ
(i)
k
=

(
X

(i)
k

)T

X
(i)
k

with k + Ni − 1 ≤ Li and Ni is chosen so that
k+Ni−1 is large enough to avoid unwanted linear
dependence relationships due to limitations in the
dimension of the vector spaces involved.

To determine the model order n in region A(i)
n , it

is possible to consider the sequence of increasing–
dimension positive definite or positive semidefinite(
(2k + 2)× (2k + 2)

)
symmetric matrices

Σ
(i)
2 , Σ

(i)
3 , . . . Σ

(i)
k

, . . . (9)

testing their singularity as k increases. As soon
as a singular matrix Σ(i)

k is found then n = k,
and the parameters a(i)

n describe the dependence
relationship of the first vector of Σ(i)

n on the
remaining ones as

Σ
(i)
n

[
−1 a

(i)
n

T
]T

= 0 (10)

It is worth noting that the vectors xn(0) , xn(1),
. . ., xn(Ni − 1) in equation (8) must belong to
the region A(i)

n according to the partition defined
in equation (3). Note also that in the presence of
noise the above procedure described to determine
order and model parameters would obviously be
useless since matrices Σk would always be non–
singular (positive definite) (Beghelli et al., 1990).

In order to solve the problem in a mathematical
framework, it is necessary to characterise the noise
affecting the input-output data. Following com-
mon assumptions (Frisch, 1934; Kalman, 1982;
Beghelli et al., 1990), the noises ũ(t) and ỹ(t) are
assumed additive on input-output data u∗(t) and
y∗(t) and region independent, so that{

u(t) = u∗(t) + ũ(t)
y(t) = y∗(t) + ỹ(t).

(11)

Obviously, only u(t) and y(t) are available for the
identification procedure, and moreover every noise
term ũ(t) and ỹ(t) is modelled with a zero–mean
white process and is supposed to be independent
of every other term. These structures are also
commonly known as Error–In–Variables (EIV)
models. Under these assumptions, and ¯̃σu and ¯̃σy
being the input and output noise variances re-
spectively, the generic positive definite matrix Σ(i)

k
associated with the input-output noise-corrupted
sequences can always be expressed as the sum of
two terms Σ(i)

k = Σ∗(i)
k + ¯̃Σk where

¯̃Σk = diag[¯̃σyIk+1, ¯̃σuIk, 0] ≥ 0. (12)

Thus, it is again possible to determine the or-
der and parameters of the model in region A(i)

n

from the analysis of the sequence of increasing–
dimension

(
(2k+2)×(2k+2)

)
symmetric positive

definite matrices

Σ
(i)
2 , Σ

(i)
3 , . . . Σ

(i)
k

, . . . (13)

The solution of the above identification problem
requires the computation of the unknown noise
covariances ¯̃σu and ¯̃σy, that can be achieved
solving the following relation:

Σ
∗(i)
k

= Σ
(i)
k

− Σ̃k ≥ 0. (14)

in the variables σ̃u, σ̃y, where Σ̃k = diag
[

σ̃yIk+1,
σ̃uIk ,0

]
. It is worth noting that the set of values

of variables σ̃u, σ̃y which make matrix Σ∗(i)
k posi-

tive semidefinite forms a curve. Unfortunately the
relation (14) admits for any k an infinite solution
set describing a curve Γ(i)

k (σ̃y, σ̃u) = 0 in the first
orthant of the noise plane whose concavity faces
the origin. In (Beghelli et al., 1990) a constructive
methodology to numerically compute this curve
is given. Since determination of the system order
requires the increasing values of k to be tested, it is
relevant to analyse the behaviour of the associated
curves when k varies. As proven in (Beghelli et
al., 1990), the solution sets of condition (14) for
different values of k are non–crossing curves in the
noise plane (σ̃y, σ̃u).

It is also important to observe that, since we
assume that a system described by Eq. (2) has
generated the noiseless data, for k ≥ n all the
curves in the form of Eq. (14) have necessarily
at least one common point, i.e. point (¯̃σu, ¯̃σy)
corresponding to the true variances of the noise
affecting the input and the output data. The
search for a solution for the identification problem
can thus start from the determination of this point
in the noise space. This task can be achieved
on the basis of the following properties: With
reference to the diagonal non–negative definite
matrices ¯̃Σk, the following properties hold: (i) If
k < n the matrices Σ∗(i)

k are positive definite. (ii)
If k > n the dimension of the null space of Σ∗(i)

k

and consequently, the number of eigenvalues equal
to zero is (k−n+1). (iii) For k = n, matrix Σ∗(i)

k

is characterised by a linear dependence relation
among its 2k+2 vectors, and the coefficients which
link the first vector of Σ∗(i)

k to the remaining ones
are the parameters a(i)

n , of the system described
by Eq. (2) which has generated the noiseless
sequences. (vi) For k ≥ (n + 1), all the k − n +
1 linear dependence relations among the vectors
of the matrix Σ∗

k are characterised by the same
2n+2 coefficients a(i)

n . Figure (1) shows the above
properties for a system in the form of Eq. (2) with
n = 3. The point marked by a circle corresponds
to the input-output noise variances ¯̃σy and ¯̃σu

affecting the measurements.
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Fig. 1. Singularity curves in the noise space.

4. GLOBAL MODEL IDENTIFICATION

In the previous section we discussed a procedure
for the identification of the noise variances ¯̃σu and
¯̃σy and of the system order n, with respect to a
particular region A(i)

n .

If the noise characteristics are common to all
the regions A(i)

n , since the physical nature of the
process generating the noise is independent of the
model structure and of the partition of An, and
all assumptions regarding the Frisch scheme are
fulfilled, a common point (¯̃σy, ¯̃σu) in the noise
plane exists for the singularity curves. When the
order n has been determined, the parameters
a(i)

n , i = 1, . . . ,M can be identified solving the
following equation:

(Σ
(i)
n − ¯̃Σn)a

(i)
n = 0 for i = 1, . . . , M. (15)

The previous result can be fully applied when
the assumptions behind the Frisch scheme are
satisfied (independence between input–output se-
quences, additive noise, noise whiteness).

In real applications, we are forced to relax these
assumptions, thus no common point can be de-
termined among curves Γ(i)

n = 0 in the noise
plane and a unique solution to the identification
problem can be obtained only by introducing a
criterion to select a different noisy point for each
region as best approximation of the ideal case.
With reference to the identification of the system
order n in the i–th region A(i)

n , it must be noted
that the Γ(i)

n+1 = 0 curve has a single point in com-
mon with the Γ(i)

n = 0 curve in ideal conditions,
which corresponds to a double singularity of the
matrix Σ∗(i)

n+1. In real cases, the order n can be
computed finding the point (σ̃u, σ̃y) ∈ Γ(i)

n+1 = 0
that makes Σ∗(i)

n+1 closer to the double singular
condition (i.e. minimal eigenvalue equal to zero
and the second minimum eigenvalue near to zero).
As n is unknown, increasing system orders k must
be tested, and the value of k associated to the
minimum of the second eigenvalue of the matrix
Σ∗(i)

k+1 corresponds to the order n. This criterion is
consistent as it leads to the common point of the

curves when the assumptions of the Frisch scheme
are not violated.

Note that since the order n of the piecewise model
described by Eq. (4) is region independent, it
can be determined by choosing k that fulfil the
following inequality

max
i=1,...,Mk

λ
(i)
k

< ε (16)

when ε is an arbitrary positive constant and λ
(i)
k is

the minimal eigenvalue different from zero of ma-
trix Σ∗(i)

k+1. This result led to derive the following
algorithm for selection of the model order: (i) fix ε,
k and Mk (k is the initial hypothesis on model or-
der). (ii) Construct partition {A(1)

k , . . . ,A(Mk)
k }.

(iii) Cluster data into partition. Compute matri-
ces Σ∗(i)

k+1 from data clustered in region A(i)
k . (vi)

Compute test (16): If success: n = k, exit else
k = k + 1, goto (ii).

Once the model order n is selected, the parameters
a(i)

n , i = 1, . . . ,M cannot be computed from Eq.
(15), as the curves Γ(i)

n = 0 do not share the com-
mon point (¯̃σu, ¯̃σy). In this case, for each region a
different noise (¯̃σ(i)

u , ¯̃σ(i)
y ) must be considered and

relation (14) should be rewritten as

Σ
∗(i)
n = Σ

(i)
n − Σ̃(i)

n ≥ 0 (17)

where Σ̃(i)
n = diag[¯̃σ(i)

u In+1, ¯̃σ
(i)
y In, 0]. The val-

ues (¯̃σ(i)
u , ¯̃σ(i)

y ) can be computed by solving an
optimisation problem which minimises both the
distances between (¯̃σ(i)

u , ¯̃σ(i)
y ) and (¯̃σ(j)

u , ¯̃σ(j)
y ) with

i 
= j and the continuity constraints described by
Eq. (7)

J
(
(¯̃σ

(1)
u , ¯̃σ

(1)
y ), . . . , (¯̃σ

(M)
u , ¯̃σ

(M)
y )

)
=

d
(
(¯̃σ

(1)
u , ¯̃σ

(1)
y ), . . . , (¯̃σ

(M)
u , ¯̃σ

(M)
y )

)
+ (CnAn)

T HCnAn

(18)

H being a definite positive weighting matrix and
d(·) a distance defined as

d
(
(¯̃σ

(1)
u , ¯̃σ

(1)
y ), . . . , (¯̃σ

(M)
u , ¯̃σ

(M)
y )

)
=

=

M∑
i=1

M∑
j=i+1

√
(¯̃σ

(i)
u − ¯̃σ

(j)
u )2 + (¯̃σ

(i)
y − ¯̃σ

(j)
y )2.

(19)

It is worth observing that the matrix An collects
the parameters a(i)

n , i = 1, . . . ,M which depend
on (¯̃σ(i)

u , ¯̃σ(i)
y ).

Minimisation of cost function described by Eq.
(18) can be computationally difficult, as it de-
pends on 2M independent variables. Therefore, in
order to decrease the complexity of the problem,
a common parametrisation can be defined for all
the curves Γ(i)

n (¯̃σ(i)
u , ¯̃σ(i)

y ) = 0 by introducing polar
coordinates {

¯̃σ
(i)
u = ρ(i) cos

π

2
q

¯̃σ
(i)
y = ρ(i) sin

π

2
q

(20)



where ρ(i) is determined so that Γ(i)
n

(
ρ(i) cos π

2 q,
ρ(i) sin π

2 q
)
= 0 and q ∈ [0, 1]. In such a way, the

cost function has the form:

J(q) = d
(
(¯̃σ

(1)
u (q), ¯̃σ

(1)
y (q)), . . . , (¯̃σ

(M)
u (q), ¯̃σ

(M)
y (q))

)
+

+(CnAn)
T HCnAn.

(21)

The parametrisation chosen to simplify the min-
imisation problem leads to consistent results. In
fact, when the data are generated by a continuous
piecewise affine dynamic system, all assumptions
regarding the Frisch scheme being fulfilled and
noise being region-independent, the curves Γ(i)

n =
0 share a common point in the noise plane. In
these conditions, cost function J(q) = 0 and the
variances (¯̃σu, ¯̃σy) are identified exactly.

Finally, one should note how once the parameter
q minimising the cost function in the form of
Eq. (21) is computed, the matrices Σ̃(i)

n can be
built and the model parameter a(i)

n , i = 1, . . . , M
determined by means of relation:

(Σ
(i)
n − Σ̃(i)

n )a
(i)
n = 0 for i = 1, . . . , M. (22)

This completes the multiple model identification
procedure.

5. APPLICATION EXAMPLE

To summarise the results which have been pro-
posed in the previous sections, the identification of
a piecewise affine model for an industrial dynamic
process is considered. The process under consider-
ation is a 40l laboratory fermenter which contains
25l of water. At the bottom of the fermenter, air
is fed into the water at a specified flow rate which
is kept at a desired value by a local mass–flow
controller. The air pressure in the head space can
be controlled by the position of an outlet valve at
the top of the fermenter as shown in figure (2).
This process has two inputs: the position of the
outlet valve, denoted by u(t), and the inlet air
flow rate and one output, i.e. the pressure in the
head space, denoted by y(t). The inlet flow rate
can be kept constant, in which case the process is
a single–input, single–output system. Because of
the underlying physical mechanisms, and because
of the non–linear characteristic of the outlet valve,
the process has a non–linear behaviour.

Two series of data (N = 380) were acquired
from the process. The first one has been used for
model identification and the second one, has been
exploited for the validation task.

According to the algorithm derived in Section 4
for the selection of the model order, the initial
value of k = 1 and ε = 10−7 have been fixed.

Under these assumptions, the triangulation of the
2-dimensional domain U × Y into simplexes has

Inlet air flow

Mass-flow
controller

Outlet valve

u(t)

Controlled
pressure

y(t)

Water

Fig. 2. The fermentation tank.

been performed. The partition of the domain was
obtained by exploiting the MATLAB c© toolbox
for piecewise linear approximation of multidimen-
sional mappings. As shown previously, the parti-
tion of the domain for the real process with k = 1
has been achieved by considering the Cartesian
product of the intervals IU

i and IY
i .

In can be also shown that M1 = 3 regions
only contain enough data Ni (i = 1, 2, 3) for
applying Eqs. (8) and to perform the identifi-
cation task. Three models have therefore been
estimated. In this case, x1(t) = [y(t), u(t)]T

and the data belonging to the domain U × Y
have been clustered into the considered partition
{A(4)

1 ,A(6)
1 ,A(7)

1 } (k = 1, M1 = 3), the Σ∗(i)
2 ma-

trices in Eq. (17) (i = 4, 6, 7) have been computed
and the test of Eq. (16) performed. In such a
case, maxi=4,6,7 λ

(i)
k = 2.4765×10−9. This value is

below the selected accuracy ε, so the model order
can be estimated as n = 1. In such a situation,
with H = 0.01 I3 the parameters for the identified
piecewise models are a(4)

1 = [6.73 · 10−1, 9.33 ·
10−4, 3.37 · 10−1]T , a(6)

1 = [8.17 · 10−1, 3.17 ·
10−3, 2.51 · 10−2]T and a(7)

1 = [9.13 · 10−1, 5.69 ·
10−1,−3.02 · 10−1]T .

The identified model with n = 1 can be there-
fore represented by the following piecewise affine
system, y(t + 1) = f

(
y(t), u(t)

)
, defined as:

y(t+ 1) =




6.73 · 10−1 y(t) + 9.33 · 10−4 u(t)+

+3.37 · 10−1 if x1(t) ∈ A(4)
1

8.17 · 10−1 y(t) + 3.17 · 10−3 u(t)+

+2.51 · 10−2 if x1(t) ∈ A(6)
1

9.13 · 10−1 y(y) + 5.69 · 10−1 u(t)+

−3.02 · 10−1 if x1(t) ∈ A(7)
1

(23)

The standard deviation of the noise on the iden-
tification input data was estimated to be 14%
with respect to the standard deviation of the mea-
surement of the input sequence. For the output
sequence, a value of 21% was identified. In such



case, with identification data, the mean square
error between measured and simulated outputs
is 0.0044. On the other hand, figure (4) shows
the comparison between the output y(t) acquired
from the real process and the output yest(t) given
by the first order estimated piecewise affine model
given by Eq. (23) when they are both driven by
the validation input u(t). Using validation data,
the mean square error between measured and sim-
ulated outputs is equal to 0.0066. It is worth-

yest(t)

y(t)

Samples

Fig. 3. Comparisons between the process and the
estimated model outputs with identification
data.

yest(t)

y(t)

Samples

Fig. 4. Comparisons between the process and
the estimated model outputs with validation
data.

while noting how the validation was performed
on a different data set than the one used for
identification. The estimated output was obtained
from the input in full simulation: yest(t + 1) =
f
(
yest(t), u(t)

)
, which imposes stronger require-

ments on its accuracy than the one–step–ahead
prediction which uses the process output y(t) in-
stead of the predicted value yest(t). From figure
(4) one can see that the identified model follows
the measured process output with a reasonable
accuracy.

Finally, more experiments were performed by in-
creasing the order k of the considered model and
the number of the domain partition Mk. The
results are reported in table 1.

Table 1. Mean square errors when order
and number of clusters vary.

Clusters/Order k = 1 k = 2 k = 3

Mk = 1 0.0405 0.0456 0.0454
Mk = 2 0.0078 0.2313 0.1037
Mk = 3 0.0066 0.1748 0.1234
Mk = 4 0.0089 0.2239 0.0768

Mk = 5 0.0117 0.7869 0.9463

It is worth noting how the identified model de-
scribed by Eq. (23) represents a trade–off between
simulation accuracy (also dependent on the avail-
able data in each region) and structure complex-
ity.

6. CONCLUSION

In this paper an off–line procedure was proposed
for the approximation of a non–linear, discrete–
time, continuous dynamic system from real data,
using a multiple model approach. The multiple
model consists of several local affine models each
describing a different operating condition of the
process. The identification approach exploited to
estimate order and parameters of the local affine
models is based on the Frisch scheme method
for EIV models. Furthermore, an optimisation
technique taking into account both continuity
constraint fulfilment and EIV noise assumptions
was considered.

REFERENCES

Beghelli, S., R. P. Guidorzi and U. Soverini (1990).
The Frisch scheme in dynamic system identi-
fication. Automatica 26(1), 171–176.

Bemporad, A. and M. Morari (1999). Control
of systems integrating logic, dynamics, and
constraints. Automatica 35(3), 407–428.

Frisch, R. (1934). Statistical Confluenece Analy-
sis by Means of Complete Regression Systems.
publication n. 5 ed.. University of Oslo, Eco-
nomic Institute.

Juditsky, A., H. Hjalmarsson, A. Beneviste, B. De-
lyon, L. Ljung, J. Sjöberg and Q. Zhang
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