
AN IMPROVED SPSA ALGORITHM FOR

STOCHASTIC OPTIMIZATION WITH BOUND

CONSTRAINTS 1

Dobrivoje Popović Andrew Teel ∗∗

Mrdjan Janković ∗∗∗

∗ United Technologies Research Center, 411 Silver Lane

MS129-15, East Hartford, CT 06118

e-mail:{popovidi}@utrc.utc.com.
∗∗ Department of Electrical and Computer Engineering,

University of California Santa Barbara, Santa Barbara,

CA 93106-9560, e-mail:{teel}@ece.ucsb.edu.
∗∗∗ Ford Motor Company, Research & Advanced

Engineering, P.O. Box 2053, MD 2036 SRL, Dearborn, MI

48121, e-mail: mjankov1@ford.com.

Abstract: We show that the Simultaneous Perturbation Stochastic Approximation
(SPSA) algorithm with projection may exhibit slow convergence in constrained
stochastic optimization problems when the optimum is situated on the constraints.
The cause of the slow convergence is a geometric interaction between the projection
operator and the SPSA gradient estimate. The effect of this interaction can be
described as “bouncing of iterates against the constraints.” We describe this on
two low dimensional noise-free examples, and present a new algorithm that does
not exhibit the bouncing effect and the consequent slow convergence. Copyright

c©2005 IFAC

Keywords: Stochastic approximation, algorithms, real-time, parameter
optimization, constrained parameters, engine efficiency.

1. INTRODUCTION

SPSA algorithm (?) is one of the most popu-
lar algorithms that uses finite difference gradient
estimation for stochastic optimization problems.
The main reason for this popularity is its efficient
gradient estimation: a typical SPSA implemen-
tation uses only two measurements of the cost
function per iteration. In contrast, classic Kiefer-
Wolfowitz-Blum Stochastic Approximation (SA)
requires 2p measurements, p being the number
of parameters (?). This measurement frugality
of SPSA indeed translates into a p-fold saving

1 An extended version of this paper is submitted to

Automatica.

in the total number of measurements needed for
optimization (?).

The work described here is motivated by an ap-
plication of SPSA to on-line optimization of au-
tomotive internal combustion engine (?). Math-
ematically, this is as an optimization problem
with bound constraints: min

x∈G
f(x), where G =

{x = [x1, x2, ..., xp]
⊤ ∈ R

p, with ai ≤ xi ≤ bi,
i = 1, 2, ..., p such that −∞ < ai < bi < ∞, i =
1, 2, . . . , p. Here, the constraints are hard, i.e.
noisy evaluations of the cost function f : R

p → R

are available only over the set G. The problem is a
perfect setting for SA algorithms with projection

- in the case of bound constraints, projection of
the iterates is a simple truncation.

An SA algorithm with projection can be described
as follows: Let the iterate xk be the kth estimate
of the optimal parameter values, g(xk) be the
gradient of f(·) at xk, and ĝk(xk) be an estimate
of g(xk). Then, xk+1 = πG{xk −akĝk(xk)}, where
the step size ak ↓ 0 as k → ∞, and πG : R

p → R
p

is the projection onto the set G, see for example
(?) for general SA algorithms and (?) for SPSA.

In our application (see §4), SPSA with projection
turned out to be significantly faster in reaching
the minimum than the classic SA with projec-
tion. However, this was only after the SPSA was
modified. We initially encountered problems that
the theory and previous experience did not sug-
gest. The problems are caused by an interesting
geometric interaction between the projection op-
erator and the SPSA gradient estimate. This in-
teraction happens when one or more components
of the current iterate reach the boundary of the
constrained set while the (negative) gradient field
is directed against the boundary. The effect of this
interaction can be described as “iterate bouncing
against the constraints:” the iterates first reach
the boundary of the constrained set; then, in the
next iteration they ”bounce” back, and the value
of the cost function increases (see Figure ?? for
a quick visual). The next iteration then forces
the iterates back towards the boundary, and they
bounce again. We will describe this in detail later.

When the iterates are far away from the optimum,
the influence of the bouncing on optimization
speed is unclear: we encountered some situations
where the optimization speed was improved, and
some where it was slowed down. However, con-
sider the situation when the iterates reached a
neighborhood of the optimum, and the minimum
belongs to the boundary of the constrained set.
In this case, it can be expected that the iterates
produced by an algorithm with projection will be
frequently located on the boundary during the
rest of the optimization process. As a consequence,
the bouncing will then be happening with an
increased frequency as well; this time, however,
iterates will be bouncing around the optimum.
The consequence will be a slower convergence.

In our engine application, as we implied, we had
a case of the minimum located on the boundary
of the constrained set. The iterates usually ap-
proached the minimum quickly, but the bounc-
ing then slowed down the convergence. In this
situation, a sufficient reduction of the step-size
would bring the bouncing to acceptable levels.
But the step-size would need to be reduced much
more (and the optimization slowed down more)
than the noise in the problem actually required.
In applications that use constant step-size, such

as tracking of a time-varying optimum, reduction
of the step-size sometimes may not even be an
option.

The goal of this paper is to explain the bouncing
and introduce a simple modification to the SPSA
algorithm that does not suffer from it. This modi-
fication has the following properties: 1) Any user-
provided SPSA algorithm can easily be upgraded.
2) When all of the elements of xk are inside the
constrained set, it performs the same iteration as
would the original SPSA algorithm. 3) It requires
the same number of measurements per iteration
as the original algorithm. 4) Its theoretical con-
vergence properties can easily be established.

Other SA algorithms; more general types of con-

straints: In general, an algorithm that estimates
the gradient from just one finite difference will
exhibit the bouncing when constraints are present
and projection is used. Apart from SPSA, the
class of these algorithms includes, for exam-
ple, Random Direction Stochastic Approximation
(RDSA) algorithm by Kushner and Clark, (?,
p.58) for a unified treatment of all these algo-
rithms see (?). In the case of bound constraints,
these algorithms can be modified in a way very
similar to the one described here.

2. PROJECTION SPSA ALGORITHM AND
BOUND CONSTRAINTS

At a point xk, SPSA estimates the gradient vector
g(xk) of the function f(·) as follows (?):

(1) It randomly generates the perturbation vec-
tor Λk = [∆k1∆k2 . . . ∆kp]

⊤ ∈ R
p, where

∆ki, i = 1, 2, ..., p are mutually independent,
symmetric Bernoulli distributed (this is just
one possibility, though the most popular).

(2) Then, it collects two possibly noisy mea-

surements of the cost function: y
(+)
k =f(xk +

ckΛk)+η
(+)
k y

(−)
k =f(xk−ckΛk)+η

(−)
k where

η
(+)
k and η

(−)
k denote the noise, and ck is

a small positive number. It is said that the
parameters are simultaneously perturbed in
xk ± ckΛk since each component of Λk is
nonzero.

(3) It produces each component of the gradient
estimate as

ĝkm(xk) =
y
(+)
k − y

(−)
k

2ck∆km

, m = 1, 2, ..., p (1)

Possibly the two most important features of SPSA
are that it produces an estimate of the gradient
from only two measurements, and that each mea-
surement corresponds to a simultaneous pertur-
bation of every component of xk. These features
are the main causes of the efficiency of SPSA. As
we will see in the following elementary example,

however, they are also responsible for the bounc-
ing effect.

Example 1. A simple noise-free optimization

problem with bound constraints.. Consider

min
x∈G

f(x) = x2
1 + x2

2

with x = [x1, x2]
⊤, G = {x ∈ R

2| x2 ≥ 1}.
The minimum is achieved for x∗ = [0 1], with
f(x∗) = 1.

Take the following algorithm:

x̃k+1 =

= xk − a





1

Λk1
1

Λk2




f(xk + cΛk) − f(xk − cΛk)

2c

xk+1 = πG{x̃k+1}
(2)

where a = 4, c = 0.1, a and c are constant for
simplicity. Perturbation vector Λk can be either
[1 1]⊤ or [1 −1]⊤, with equal probability of 1

2 .

We next show the first three iterations of this
algorithm starting from x0 = x∗; we assume that
the first three perturbation vectors are generated
as Λ1 = Λ2 = Λ3 = [1 − 1]⊤, an event that can
happen with probability 1

8 . These three iterations
are shown in Figure 1. We get:

x̃1 = [0.40 0.60]⊤, f(x̃1) = 0.52, x1 = [0.40 1]⊤,
f(x1) = 1.16, x̃2 = [0.64 0.76]⊤, f(x̃2) = 0.99,
x2 = [0.64 1]⊤, f(x2) = 1.41, x̃3 = [0.78 0.86]⊤,
f(x̃3) = 1.35, x3 = [0.78 1]⊤, f(x3) = 1.61. (For
now, assume that the experiments to measure f(·)
can be performed even if xk +cΛk is outside of G).
So, for k = 0, 1, 2 we have f(x̃k+1) < f(xk), but

θ
0
−c Λ

0

θ
0
+c Λ

0

minimum
θ

0
 θ

1
θ

3
θ

2

Nonfeasible
set: θ

k2
<1

θ
k1

θ
k2

 projection

θ
2
 before projection

1

θ
1
+c Λ

1

1.5

0.5

2

2.5

3

3.5
4

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Fig. 1. Minimizing x2
k1 + xk

2
2, xk2 ≥ 1 with the

algorithm (2); the three iterations are shown,
starting from the minimum x0 = x∗ = [0 1]⊤.
Perturbation vectors are Λ1 = Λ2 = Λ3 =
[1 − 1]⊤.

f(xk+1) > f(xk). The iterates wander away from
the optimum. Note that effects would be similar
if Λ1 = Λ2 = Λ3 = [1 1]⊤, which can also happen
with probability 1

8 �

What is the cause of this? First, we have f(xk +
cΛk) − f(xk − cΛk) ≈ 2c g(xk)⊤Λk, and around

the optimum, 2c g(xk)⊤Λk is primarily produced
by the components of the gradient corresponding
to the parameters located on the boundary - in
the above example that is ∂f

∂x2

(∂f
∂x1

is close to

zero around the minimum [0 1]⊤). Now, SPSA
estimates each component of the gradient from
the same finite difference; from (1) it is obvious
that the less dominant components of the gradient
can be estimated with the wrong sign (especially
so around a minimum on the boundary). Conse-
quently, the corresponding components of xk can
be updated in the wrong direction. When there
are no constraints, this doesn’t matter, since xk+1

is, in general, still better than xk. However, when
the constraints are present as in our example, the
updates of the elements of xk that would produce
the improvement in f(·) may end up truncated
by the projection. At the same time the (wrongly
calculated) updates to the less dominant elements
may still be kept.

This may produce variations of the iterates
around the optimum, as it can be seen in Figure
??. This is a prolonged version simulation of the
Example 1, but now Λk varies randomly.

origin1

time (k)

it
er

a
te

s

time (k)

co
st

0 5 10 15 200 5 10 15 20

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

-1

-0.5

0

0.5

1

1.5
xk2

�
�� xk1

�
���

Λk2
C
CCO

Fig. 2. Variation of the iterates and the cost func-
tion during minimization of x2

k1 +x2
k2, xk2 ≥

1 with SPSA. The perturbation vectors Λk

are randomly chosen between [1 1]⊤ and
[1 − 1]⊤; only Λk2 is shown (not to scale:
Λk2 = ±1).

When each component of the gradient is estimated
from a separate finite difference, projection will
not produce bouncing in the case with bound
constraints. Therefore, one solution to eliminate
bouncing would be to switch from SPSA to full
gradient estimation when the iterates reach the
boundary, and use p finite-differences to estimate
p gradient components. This can be an expensive
solution (which we demonstrate in the full ver-
sion of this paper), For, what if we have many
parameters, but just one or two elements of the
current iterate xk are on the boundary of the
constraint set? The idea is to appropriately change
the pool of perturbation vectors. In the simplest
case represented by Example 1, the algorithm
select Λk between [0 1]⊤ and [1 0]⊤ when xk2 is
on the boundary. The simulation outcome shown

in Figure ??. We proceed to describe the new

time (k)

it
er

a
te

s

time (k)

co
st

0 5 10 15 200 5 10 15 20

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

-0.5

0

0.5

1

1.5

xk2
�
��

Λk

�
��

xk1
A
AK

Fig. 3. Minimization with the modified SPSA
(Section 3, Algorithm 1), c.f. Figure ??.

algorithm.

3. MODIFICATION TO PROJECTION SPSA
FOR BOUND CONSTRAINTS

The new algorithm below, like SPSA, uses two
measurements and one finite difference to esti-
mate the gradient. However, at each iteration, it
first separates those xki, i = 1, ..., p, that are
on the boundary of the feasible set G from the
ones that belong to the interior of G. Then, it
randomly decides whether it will perturb just one
of xki located on the boundary, or simultaneously
perturb all of those that are in the interior of
G. This additional randomization is such that it
produces an unbiased estimate of the gradient.
This is implemented via the following modifica-
tion of SPSA: At each iteration, the algorithm
first generates an additional random variable, and
then computes indicators that signal which xki are
on the boundary, and which are not. Based on the
value of the random variable and the values of the
indicators, two simple formulas alter the original
SPSA perturbation vector and the SPSA gradient
estimate. One iteration of the new algorithm looks
as follows (we assume that an SPSA algorithm is
already provided by the user):

Algorithm 1. Let k be the current iteration and
xk the current iterate.

(1) Generate positive numbers ak and ck, as in
the original SPSA algorithm.

(2) Randomly generate perturbations ∆k1, ∆k2,...,
∆kp as in the original SPSA algorithm.

(3) Generate a discrete random variable Hk that
assumes a value from the set {1, 2, ..., p} with
uniform probability equal to 1

p
. Compute the

switching variables κki, i = 1, 2, ..., p :

κki =

{
1, if Hk = i

0, otherwise .

(4) Let δi(xk), ı = 1, 2, ...p be an indicator that
signals when xki is on the boundary of G:

δi(xk) =

{
0, ai < xk < bi

1, xk = ai or xk = bi
.

We will use shorthand notation δki := δi(xk).
(5) Now, produce the perturbation vector Λk :

Λk =

(
p∑

i=1

κki(1 − δki)

)




(1 − δk1)∆k1

(1 − δk2)∆k2

...
(1 − δkp)∆kp





+





κk1 δk1∆k1

κk2 δk2∆k2

...
κkp δkp∆kp




.

For example, if only xk2 and xk4 are on
the boundary of G, H, Λk can be either
[∆k1, 0, ∆k3, 0, ∆k5, ∆k6, . . . , ∆kp]

⊤ with prob-
ability p−2

p
, or either

[0, ∆k2, 0, 0, . . . , 0]⊤ or [0, 0, 0, ∆k4, 0, 0, . . . , 0]⊤

with probabilities 1
p

. Recall that p represents
the number of optimized parameters.

(6) Collect two measurements, y +
k and y −

k :

y +
k = f(xk + ckΛk) + η +

k

y −

k = f(xk − ckΛk) + η −

k ,

where η +
k and η −

k represent noise.
(7) Estimate each component of the gradient as

follows, for m = 1, 2, ..., p:

ĝkm(xk) =
[p (1 − δkm)

p −
p∑

i=1

δki

(
p∑

i=1

κki(1 − δki)

)

+ p κkm δkm

]y +
k − y −

k

2ck∆km

.

(3)

If all of the estimates are on the boundary the
above formula produces division by zero, and
the following formula should be used instead:

ĝkm(xk) = p κkm

y +
k − y −

k

2ck∆km

.

Note that when none of the elements of xk

is on the boundary, the term in brackets
in formula (3) is equal to one and Λk =
[∆k1 ∆k2...∆kp]

⊤; hence, the algorithm per-
forms an iteration of the original SPSA algo-
rithm.

(8) Finally, update the iterate:

xk+1 = πG{xk − akĝk(xk)} , (4)

where πG{·} is the projection operator onto
the set G.

We now introduce the following assumptions
about Algorithm 1.

Assumption 1. Let Ω = {ω} be the sample space
generating random sequences {∆ki}, i = 1, 2, ..., p,
{Hk},{η +

k }, {η−

k }, and {xk} (via recursion 4).
Assume that for all k ≥ 0:

(1) ∆k = [∆k1, ∆k2 . . . ∆kp]
⊤ is such that ∆ki, i =

1, ..., p are mutually independent, zero mean
random variables, and {∆k} is a mutually in-
dependent sequence, with ∆k independent of
x0, x1, . . . , xk. It also holds that |∆ki| ≤ α0,
and |∆ki|−1 ≤ α1.

(2) Random variables Hk, k = 1, 2, ... are uni-
formly distributed over the set
{1, 2, ..., p} and mutually independent; Hk is
independent of ∆ki, i = 1, 2, ..., p, and also
independent of x0, x1, . . . , xk.

(3) For the measurement noise, it holds that

E
(
η+ − η− | x0, x1, . . . , xk, ∆k, Hk

)
= 0 ,

and there exists a positive constant γ such
that E

(
(η+ − η−)2

)
≤ γ .

(4) G := {x = [x1, x2, ..., xp]
⊤ ∈ R

p | ai ≤ xi ≤
bi, i = 1, 2, ..., p} .

(5) Function f is twice continuously differen-
tiable on an open set containing Go, defined
as: Go = {xo ∈ R

p | min
x∈G

|xo − x| ≤ α0
√

p } .

Note that by these assumptions, Algorithm
1 evaluates f(·) only within the domain Go,
which contains G.

We can relax these assumptions to hold almost
surely, and for k ≥ K, K ≥ 0, as it was done
in, for instance, (?, Lemma 1). Note also that
conditions |∆ki| ≤ α0, and |∆ki|−1 ≤ α1 are
stronger than standard SPSA conditions; these
can be relaxed, but are not restrictions because in
applications perturbations are controlled by user.
The following lemma is stated without proof to
save space:

Lemma 2. Let Assumption ?? hold. Then, there
exist positive constants K1 and K2 such that for
each component of the gradient estimate (3), i.e.
for m = 1, 2, ..p, and for any xk ∈ Go, it holds
that E

(
ĝ 2

km(xk)
)
≤ K1

c2

k

and
∣∣∣E
(
ĝkm(xk) − gm(xk)

∣∣∣ xk

)∣∣∣ ≤ K2 ck .

Theorem 3. Let Assumptions ?? and hold for
Algorithm 1, the function f(·), and the set G.
Assume that For all k, ak > 0, lim

k→∞
ak = 0, ck >

0, and lim
k→∞

ck = 0. In addition,
∑∞

k=0 ak = ∞,

∑∞

k=0

(
ak

ck

)2

< ∞ .

Let C be the set of all Karush-Kuhn-Tucker points
of f(·) on G. Then, the sequence xk generated
by Algorithm 1 converges to the set C. with
probability one.

Proof. The proof is similar to the proof of (?,
Proposition 1) and uses Lemma ?? and (?, Theo-
rem 5.3.1); therefore, it is omitted to save space.

�

Modification for hard constraints In our develop-
ment, we implicitly assumed that we can perform
experiments over the set Go, which strictly con-
tains G. If the constraints are hard, experiments
are restricted to G. Appropriate modifications for
that case can be adopted from (?) in a straight-
forward way.

4. ON-LINE ENGINE OPTIMIZATION

In this section we present an application of SPSA
to an automotive engine optimization problem
(?). Our engine was a dual-independent variable
cam timing (diVCT) engine installed in a Ford
dynamometer test cell. In this engine, the con-
trol system can on-line and independently change
three timing (angle) parameters, which are speci-
fied relative the position of the crank-shaft: 1) the
timing of the the intake valves opening (ivo), 2)
the timing of the exhaust valves closing (evc), and
3) the spark timing (spark). For a given operat-
ing point, specified by engine speed and output
torque, these parameters need to be optimized
to achieve the lowest fuel consumption. The cost
function that maps the parameters to the fuel
consumption is unknown.

The idea of the on-line optimization (also called
extremum seeking in the controls literature) is
to have an optimization algorithm, in this case
SPSA, in control of the engine parameters. The
algorithm then performs the optimization on-line
by measuring the cost, and adjusting the parame-
ters towards reducing that cost. The cost here is
the steady-state Brake Specific Fuel Consumption
(BSFC = Fuelflow

Speed×Torque
).

The following details place this optimization prob-
lem within the framework of this paper 1) The
parameters were constrained by hardware: in this
case, ivo could be varied within the interval of
[−30...30] degrees, and evc within [0...40] degrees;
2 2) for many operating points, the optimal para-
meter values were located on the boundary of the
constrained set. Consequently, it can be expected
the bouncing will appear when the standard SPSA
is applied, but that it can be eliminated with the
modified algorithm. We will demonstrate this with
simulations on a on a dynamical model of our
engine (for the experimental results, consult (?).

2 These numbers represent the corresponding crankshaft

angle; this angle is equal to zero degrees when the piston

is at the top dead center.

The simulations are noise-free to make the bounc-
ing effect more clear. Namely, the bouncing looks
random due to the inherent SPSA randomness,
and in real conditions it may be easily confused
for noise.

The engine model represents the engine at 1500
rpm. The model includes the torque-to-throttle
feedback mechanism that to any change reacts
with readjusting the fuel flow (the air/fuel ratio is
constant) to maintain the desired torque. Figure
?? shows a two-dimensional representation of the
cost function: BSFC is plotted for different ivo and
evc pairs and their maximum brake torque spark
timing (this is the optimal spark for the selected
ivo and evc). Note that this BSFC map has two

Fig. 4. BSFC of a diVCT engine for optimal spark
vs. cam timing (1500 rpm; 62.5 Nm).

local minima which are located on the boundary of
the constrained set; in the model they are located
at (ivo, evc) = (−30, 40) and (ivo, evc) = (30, 40).

In the first simulation, Figure ??, the engine
is optimized by the standard SPSA algorithm
with projection. Note that the effect of “bouncing
of the estimates against the constraints” starts
around t ≈ 400, when the estimates reach the
neighborhood of the optimum. In the second sim-

time (sec)

a
n
g
le

(d
eg

)

time (sec)

B
S
F
C

200 400 600 800 1000 200 400 600 800 1000
0.3

0.31

0.32

0.33

0.34

0.35

-30

-20

-10

0

10

20

30

40

50

60

ivo
��	

evc@@I

spark
��	

Fig. 5. On-line optimization of the diVCT engine
model with standard SPSA with projection
(ak = const). Note that the bouncing pre-
vents the iterates from reaching the mini-
mum.

ulation, Figure ??, the engine is optimized by
the modified SPSA algorithm, and the bounc-
ing is eliminated. In both simulations the ini-
tial parameter values were (ivo, evc, spark) =
(−15, 10, 30), an the sought local minimum is

time (sec)

a
n
g
le

(d
e
g
)

time (sec)

B
S
F
C

200 400 600 800 1000 200 400 600 800 1000
0.3

0.31

0.32

0.33

0.34

0.35

-30

-20

-10

0

10

20

30

40

50

60

ivo
��	

evc@@I

spark
��	

Fig. 6. On-line optimization of the diVCT engine
model by the modified SPSA. The bouncing
is eliminated, and the iterates converge to
the minimum, c.f. Figure ??.

θ∗ = (−30, 40, 48). Each measurement (two per
iteration) was obtained by assigning step com-
mands to the input, and waiting for four seconds
for the dynamics to settle down. The step-size was
fixed, i.e. ak = const.

5. CONCLUSIONS

In this paper we described an undesirable inter-
action between the projection operator and the
SPSA algorithm. The interaction can appear in
constrained stochastic optimization problems, and
can slow down the convergence when the opti-
mum lies on the boundary of the constrained set.
The effect of this interaction can be described
as “bouncing of iterates against the constraints.”
We showed an engine optimization problem where
this bouncing was a serious issue, which had to
be resolved. To eliminate bouncing, we designed
a modified SPSA algorithm. The modification is
created to be simple, and alter the original, user
provided, SPSA as little as possible. A modifica-
tion for more complicated constraints is a subject
of our future research.

REFERENCES

Dippon, J. (2003). Accelerated Randomized Sto-
chastic Optimization. Annals of Statistics.

Kushner, H. J. and D. S. Clark (1978). Stochas-

tic Approximation Methods for Constrained

and Unconstrained Systems. Springer-Verlag.
New York, NY.

Popović, D., M. Janković, S. Magner and A. Teel
(2003). Extremum seeking methods for opti-
mization of variable cam timing engine opera-
tion. In: American Control Conference. Den-
ver, CO. pp. 3136–3141.

Sadegh, P. (1997). Constrained optimization via
stochastic approximation with a simultaneous
perturbation gradient approximation. Auto-

matica 33(5), 889–892.
Spall, J. C. (1992). Multivariate stochastic ap-

proximation methods. IEEE Transactions on

Automatic Control 37(3), 332–341.

