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Abstract: This paper solves some synthesis problems for a class of linear systems,
to enforce the closed-loop states to take nonnegative values whenever the initial
conditions are nonnegative. In particular the following three problems are studied:
the synthesis of state-feedback controllers for positive closed-loop systems, includ-
ing the requirement of positiveness for the controller, the extension to uncertain
plants and the presence of control signals that are positively bounded. The pro-
vided conditions are solvable in terms of Linear Programming Problems. Copyright
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1. INTRODUCTION

Many physical systems involve quantities that
have intrinsically constant sign (For example, ab-
solute temperatures, level of liquids in tanks and
dimensions of objects are always positive). This
kind of systems which have the property that the
state is nonnegative whenever the initial condi-
tions are nonnegative referred in the literature as
positive systems(see Berman et al. (1989), Luen-
berger (1979) and Farina and Rinaldi (2000) for
general references). The stabilization problem for
this systems has been studied in Berman et al.
(1989), Leenheer and Aeyels (2001) and Kaczorek
(1999).

This paper studies a slightly different problem:
if the open loop system is not restricted in sign,
design a state feedback law that makes the closed-
loop system positive (maybe in the pressence of
uncertainty or positive controls). This problem

arises when the desired value of the states in
steady-state (z = 0) corresponds to minimum
desired value of the state. For example, consider
the process control problem of controlling an
endothermic chemical reaction in a reactor: the
temperature must always be maintained over a
minimum value to get a minimum yield; at the
same time this value corresponds to the most
economical working point for the plant.

This paper proposes different methods for the
stabilization of linear positive systems by means
of state feedback, that solve different problems
for these systems to enforce positiveness: nominal
stability, robust stability, stability with positive
controls, etc. This paper provides a new treatment
for the stabilization of positive linear systems,
following a common approach, where all the pro-
posed conditions are expressed in terms of Linear
Programming,.



The remainder of the paper is structured as fol-
lows: Section 2 gives some preliminary results.
Section 3 studies the stabilization problem. A
robust stabilization problem is addressed in Sec-
tion 4. The state-feedback synthesis problem with
bounded positive controls is considered in sec-
tion 5. Finally, section 6 gives some concluding
remarks.

Notation: R! denotes the non-negative orthant
of the n-dimensional real space R™. M7 denotes
the transpose of the real matrix M. For a real
matrix (or a vector) M, M > 0 (resp. M > 0)
means that its components are positive: M;; > 0
(resp. M;; > 0).

2. PRELIMINARIES

This section presents some definitions and prelim-
inary results which will be used throughout the

paper.

Consider the following autonomous linear system:

d_a: = Az,

l‘(O) = I € Ri

Let us state the following definition of positive
system (1):

Definition 2.1. Given any positive initial condi-
tion (0) = o € RY, the system (1) is said to be
positive if the corresponding trajectory x(t) € R’}
for all ¢ > 0.

Next, we need to find under which condition the
system (1) is positive. In fact, this condition is
provided by a classical result (see Luenberger
(1979)):

Lemma 2.1. The system (1) is positive if and only
if the off-diagonal elements of A are positive:

Aij >0, i#£7]

The above result permits to determine whether a
system is positive or not by simply looking at the
entries of the dynamic matrix of the system. In
connection with the above Lemma the following
definition will be used:

Definition 2.2. A real matrix M is called a Met-
zler matrix if its off-diagonal elements are positive
M;; >0, ©#j.

The analysis of the asymptotic stability of the
system (1) is presented in the following result
which is well-known and simple to proof:

Theorem 2.1. Assume that the system (1) is pos-
itive, or equivalently that the dynamic matrix
A is Metzler; then the following statements are
equivalent:

e (i) Ais a Hurwitz matrix: the real part of the
eigenvalues of A is strictly negative.

e (ii) System (1) is asymptotically stable for
every initial condition zo € R}

e (iii) System (1) is asymptotically stable for
some initial condition zy in the interior of
R’.

e (iv) There exists A € R" such that

AXN< 0, X > 0. 2)

3. STABILITY SYNTHESIS

This section studies the stabilization problem of
the following governed linear system:

dz Az + Bu,

.CL‘(O) = X9 € Ri,

where A € R"™™, B € R"¥P.

In the following, we consider first the case where
the control law u € RP is a state-feedback, not
restricted in sign. This control law must be de-
signed in such way that the resulting governed
system is positive and asymptotically stable. In
other words, with regard to the previous prelim-
inary results, the problem reduces to look for a
state-feedback law u = K=z, where the matrix
K € RP*™ has to be determined to satisfy the
following problem:

Find necessary and sufficient conditions on A €
R™™ and B € R™P such that there exists a
matrix K € RP*"™ satisfying:

e A+ BK is a Metzler matrix,
e A+ BK is a Hurwitz matrix.

Now, we are able to state the main theorem of this
section:

Theorem 3.1. The following statements are equiv-
alent:

e (i) There exists a state-feedback law u = Kz
such that the closed-loop system is positive
and asymptotically stable.

e (ii) There exists a matrix K € RP*™ such
that A+ BK is both a Metzler and a Hurwitz
matrix.



e (iii) There exist n+1 vectors d = [d;

R"™ and y1,...,yn € RP such that
n
Ad+B(Zyi) <0,
= (4)
d>0,

a;;jd; + byy; > 0 for ¢ # 7,

Moreover, the gain matrix K in conditions
(i) and (ii) can be calculated as follows

K =[d 'y, T

Proof: Regarding to the considerations discussed
previously the equivalence between (i) and (ii) is
straightforward. The proof will be completed by
showing that (ii) and (iii) are equivalent.

Assume that condition (iii) holds and define the
matrix K = [ki,...,ky] with k; = d; 'y; for i =
1,...,n. Then, by a simple calculation, BKd =

B(Zyi), which from condition (iii) leads to

i=1
(A+ BK)d < 0. Since d > 0 then by using
Theorem 2.1 we can conclude that A + BK is
Hurwitz matrix if it is proved that it is a Metzler
matrix. Now it is easy to see that A + BK is a
Metzler matrix since condition (iii) leads to

aij-i—bid;lyj = a;;+bik; = (A-i—BK)ij > 0 for i # j.

The implication (ii) — (7i7) and the rest of the
proof follow the same line of argument. a

The importance of the above result is relevant,
because it provides not only a checkable neces-
sary and sufficient conditions but also a simple
approach to address numerically the computa-
tion of the problem. Indeed, one can see that
the conditions in statement (iii) of Theorem 3.1
are linear, involving non-strict inequalities. Thus,
these conditions can be solved as a standard Lin-
ear Programming problem. In addition, based on
the same formulation we can take into account
the positiveness of the state-feedback control law
by just adding an additional constraint on the
variables y1, ..., yn. This is shown in the following
result, that is straightforward from Theorem 3.1:

Theorem 3.2. The following statements are equiv-
alent:

e (i) There exists a positive state-feedback law
u = Kx > 0 such that the closed-loop system
is positive and asymptotically stable.

e (ii) There exists a matrix K € RP*" such
that K > 0 and A + BK is both a Metzler
and a Hurwitz matrix.

e (iii) The following LP problem in the vari-
ables d = [d; d,)¥ € R™ and
Y1,--.,Yn € RP, is feasible

d,)T €

n
Ad+ B yi) <0,
(Xw)
d >0, (5)
y; >0fori=1,...,n,

aijdj + biyj > 0 for i # j.

(with A = [a;;] and BT = [pT" ... bI]).
Moreover, the gain matrix K in conditions
(i) and (ii) can be chosen as

K =[d 'y d;, yn)

where d and y,...,y, are given by any
feasible solution to the above LP problem.

At this stage some remarks are in order:

Remark 3.1. Note that if a negative state feed-
back control law is to be considered it suffices
to impose in the previous LP formulation that
y; <Ofori=1,... ,n.

Remark 3.2. We stress out that our conditions do
not impose any restriction on the dynamics of the
governed system; that is, there is no restriction on
the data matrices A € R"*™ and B € R"*P. For
instance, A is not necessarily a Metzler matrix;
in this case, the free system is not positive, so
that the synthesis problem can be interpreted as
enforcing the system to be positive.

Remark 3.3. Notice that in the specific case when
A is a Metzler matrix but not Hurwitz and B
is positive, then it impossible to stabilize the
system by any positive state-feedback control law,
because, regarding to the previous result, the
existence of such control necessarily implies that
Ad < 0, d> 0.Then, Theorem 2.1 implies that A
must be Hurwitz, which leads to a contradiction.

4. SYNTHESIS WITH UNCERTAIN PLANT

A nice extension of the proposed approach is the
possibility of handling the case when the dynamics
of the system are not exactly known, as it is now
presented:

Consider the following uncertain system
ilj_:n Az + Bu,
' (6)
z(0) = zo € R

Matrices A € R"*", B € R"™*? are supposed to
be not exactly determined but it is assumed that
they belong to the following convex set:

l l
(A B]EP::{Zai[Ai B | Yai=1, aiZO},(7)



where [A!
matrices.

B',...,[A" B'] are known given

Our robust synthesis problem consists in finding
a fixed matrix K such that the following closed-
loop system is positive and asymptotically stable
for every [A B] € P:

dx - =

pri (A+ BK)x (8)
Theorem 4.1. There exists a robust state-feedback
law v = Kz such that the resulting closed-loop
system (8) is positive and asymptotically stable
for every [A B] € P, if the following LP problem
in the variables d = [d; d,]T € R™ and
Y1,---,Yn € RP, is feasible:

Akd+Bk(Zyz) <0f0rk:1,‘_‘,l,
- (9)
d>0,
akid; + by; > 0for i £ j,k=1,...,1,
1,...,0).

Moreover, the gain matrix K of the robust con-
troller can be computed as

K = [dl_lyl . drzlyn]a

where d, yi1,...,yn correspond to any feasible
solution to the above LP problem.

Proof: By a simple convexity argument the proof
is straightforward. a

5. SYNTHESIS WITH POSITIVE BOUNDED
CONTROLS

This section considers the following constrained
system

dz

>0 and 0<u <1,

that is, the trajectory of the system is positive
and the input is constrained to be positive and
bounded by a given value u. (of course, if B has
positive components then A must be Hurwitz,
otherwise it is not posible to stabilize the system
with only positive controls).

Although the stabilitation of constrained plants
have been studied in the literature (Lin and Saberi
(1995), Dahleh et al. (1995), Stoorvogel et al.
(2002), Mesquine et al. (2004)), as far as the
authors’ knowledge, the application to positive
systems is presented here for the first time.

The aim here is to address the following problem:
Given 4 > 0 find Z > 0 corresponding to the set

of initial conditions x = {z(0) € R™*™ | 0 <
x(0) < Z} for which we can determine a positive
bounded state feedback control law 0 < uw =
Kz(t) < @ such that the resulting closed-loop
system is positive and asymptotically stable.

The following key role lemma will be used for our
purpose:

Lemma 5.1. Consider the trajectory z(t) of the
autonomous system & = Az; then, for a given
Z > 0 we have 0 < z(t) < Z for any initial
condition satisfying 0 < z(0) < Z if and only if
A is Metzler and Az < 0.

Proof: Sufficiency: notice that it suffices to prove

the inequality !4z < Z. Because, since A is

Metzler, then e*4 > 0,V > 0 so that if 0 < z(0) <

7 we have 0 < z(t) = e!42(0) < ez < 7,Vt > 0.
<

Now, it is shown that !4z < Z, or equivalently
t? tm
S(t) = (tA+ 5/12 +o+ AT+ )T <0,
! n!

One can see easily that S(t) = fot e™drAz. Since
e!4 > 0,Vt > 0and A% < 0 then we have S(t) < 0.
Necessity: the system is necessarily positive and
then A must be Metzler. Now, let 2(0) = Z then
all the components of the derivative of the state
at zero are negative ©(0) = AT < 0 because the
state must satisfy x(¢) < T at any time. O Now,
we state the main result of this section.

Theorem 5.1. Consider the following LP problem
in the variables z = [T z,]7 € R™ and
Yi,-.-,Yn € R?:

n

43+ B(>u) <o,

i=1
z >0,
y; >0fori=1,...,n, (11)
n

i=1

a;;T; + biy; > 0 for ¢ # 7,

Define the matrix

K="y ... z;'yal,
and consider the closed-loop system & = (A +
BK)xz under the state-feedback control u = K.
Then 0 < u(t) < @ for any initial state satisfying
0 < z(0) < Z. Moreover, the closed-loop system is
positive and asymptotically stable.

Proof: Assume that z = [z; ... ,]7 and
Y1,---,Yn 1S & solution to (11) and define K =
[Z7 'y ... &,'y,]. Since

aij—i—bia’:j_lyj = ai]’—l-bikj = (A-i—BK)ij >0 for i 75 Js



then the matrix A + BK is Metzler. The inequal-
n
ity Az + B(Zyl) < 0 is equivalent to (A +

i=1
BK)z < 0, then by Lemma 5.1 the trajectory
of the system & = (A + BK)z is such that
0 < z(t) < 7 for any initial condition satisfying
0 < z(0) < Z. Using this fact and recalling the
n

inequalities Zyl <da,y; >0fori=1,...,n, or

i=1

equivalently K > 0 and Kz < w, it is possible
to see that the state-feedback control u = Kx is
such that 0 < u(t) < KZ < @ for any initial state
satisfying 0 < z(0) < Z.

The closed loop system is positive because the off-
diagonal components of (A + BK) are positive.

n

Since AT + B(Zyi) < 0, T > 0 is equivalent

i=1
to (A+ BK)Z < 0, Z > 0 then Theorem 2.1 im-
plies that the closed-loop system is asymptotically
stable and the proof is complete. a

6. CONCLUSIONS

This paper have proposed a novel approach to
solve some synthesis problems linear systems to
transform them to positive systems. The stabiliza-
tion problem have been considered, and necessary
and sufficient conditions for its solvability have
been proposed, also for the uncertain case. More-
over, the synthesis problem with positive bounded
controls have been addressed. It has been shown
that all the proposed conditions are solvable in
terms of Linear Programming problems.
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