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Abstract: This paper deals with the modelling of a single-link flexible manipulator 
utilizing the singular perturbation method. Authors’ attention is focused on the 
robust regulation of the tip-position based on a new modelling approach under the 
assumption of norm-boundedness of the fast dynamics (deflection modes). In this 
approach, the deflection modes may be treated as norm-bounded disturbance. Hence, 
the controller synthesis is performed only for the certain dynamics of the system. 
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1  INTRODUCTION 

Flexible link manipulators are attractive because they 
avoid the large inertia forces associated with 
traditional, large-section, rigid-link manipulators. 
However, the introduction of flexibility and the 
consequent tendency of the links to oscillate during 
motion create a control problem for which a very 
accurate model of the flexible link system is 
required; see (Cannon and Schmitz, 1984; Hussain, 
et al., 1998). A new controller design for controlling 
a single-link flexible manipulator based on variable 
structure theory has been presented by (Qian and Ma, 
1992). Also, a singular perturbation approach in 
(Sicilano and Book, 1988) has been developed for 
the control of lightweight flexible-link manipulators.   
Singularly perturbed systems often occur naturally 
because of the presence of small parasitic parameters 
multiplying the time derivatives of some of the 
system states. Singularly perturbed control systems 
have been intensively studied for the past three 
decades; see (Kokotovic, et al., 1986). A popular 
approach adopted to handle these systems is based on 
the so-called reduced technique. The composite 
design based on separate designs for slow and fast 
subsystems has been systematically reviewed in 

(Saksena, et al., 1984). Also, the robust stabilization 
of singularly perturbed systems based on a new 
modeling approach has been investigated in (Karimi 
and Yazdanpanah, 2000). 
 
The system under consideration, with slow and fast 
dynamics is described in the standard singularly 
perturbed form by 
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According to (Karimi and Yazdanpanah, 2000), our 
objective is to view a portion of the fast dynamics as 
norm-bounded uncertainty. Therefore, we call it 
unmodeled dynamics. Although the term unmodeled 
refers to a subsystem whose dynamics are not 
known, it is used to emphasize that the complete 
characteristics of this subsystem will not be utilized 
in the controller synthesis. If this is feasible, then the 
synthesis has to satisfy the design specifications for 
only the known dynamics, hereafter referred to as the 
plant nominal dynamics. The unmodeled dynamics, 
on the other hand, may be considered as a subsystem 
that is connected to the plant nominal dynamics.  
 
We showed in (Karimi and Yazdanpanah, 2000) that 
a portion of the fast dynamics may be treated as 
norm-bounded uncertainty and the remaining part 
can be augmented to the slow dynamics. In this view, 
(1-3) will read: 
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In which is the vector of fast 
dynamics, which is to be treated as a norm-bounded 
uncertainty and  (in which 

 for i ) is the vector of dominant 
dynamics, where is the index of the first state of the 
uncertainty dynamics. The value of this index will be 
determined using the algorithm mentioned in (Karimi 
and Yazdanpanah, 2000). The vectors 

T
mii vvvv ),...,,( 1+=

sxX (=
T

iv )1− 1>

i

T
vx ),

η  and ξ  are 
the initial states. 
 
The stability problem (ε-bound problem) in 
singularly perturbed systems differs from 
conventional linear systems, which can be designed 
as: characterizing an upper bound 0ε of the positive 
perturbing scalar ε such that the stability of a 
reduced-order system would guarantee the stability 
of the original full-order system for all ),0( 0εε ∈ . 
Researchers have tried various ways to find either the 
stability bound ε or a less conservative lower bound 

for 

0

0ε , see (Chen and Lin, 1990; Karimi and 
Yazdanpanah, 2002b; Kokotovic, et al., 1986). 
Recently, the problem of robust stabilization and 
disturbance attenuation for a class of uncertain 
singularly perturbed systems with norm-bounded 
nonlinear uncertainties has been considered in 
(Karimi and Yazdanpanah, 2001). Also, the robust 
stability analysis and stability bound improvement of 
perturbed parameter ( )ε in the singularly perturbed 
systems by using linear fractional transformations 
and structured singular values approach ( µ ) has 
been investigated in (Karimi and Yazdanpanah, 
2002b). 
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The references (Karimi and yazdanpanah, 2002a; 
Karimi and Yazdanpanah, 2001) present the new 
results on control synthesis for robust stabilization 
and robust disturbance attenuation for linear state-
delayed singularly perturbed systems with norm-
bounded nonlinear uncertainties. The class of plants 
considered in this paper consists of systems in state-
space form with linear nominal parts and norm-
bounded nonlinear uncertainties only in the slow 
state variable.  
 
The proposed methodology in (Karimi and 
Yazdanpanah, 2000) may be applied to many 
physical systems. The principle behind the proposed 
methodology is that the system under control should 
possess a two-time scale separation, namely, low and 
high frequency subsystems. The restriction imposed 
is that the high frequency subsystem should be stable 
to result in the norm-bounded property. One of the 
practical applications that fit into this framework is 
the single-link flexible manipulator, which is studied 
in this section. In fact the rigid dynamics that 
characterize the dominant motion of the joints 
correspond to the low frequency subsystem and the 
deflection dynamics due to flexibility of the links 
correspond to the high frequency subsystem. 
Assuming that all damping including the flexural 
damping, are positive and nonzero, the high 
frequency subsystem is stable and hence norm-
bounded (Gawronski, 1993). The modelling 
approach is applicable to linear as well as nonlinear 
models of single-link flexible manipulators.  

 

2  SINGLE-LINK FLEXIBLE MANIPULATOR 
DYNAMICS 

Only the linearized model of a single-link flexible 
manipulator in the modal coordinates will be 
considered. The model is given by (Cannon and 
Schmitz, 1984) 
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α  denotes the corresponding pole of 
the rigid dynamics, ),( ii ξω are the frequency and 
damping ratio of the i th deflection mode, L  is the 
length of the link, Ι is the total inertia about the 
rotation axis and 

T
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3   A SINGULARLY PERTURBED MODEL 

Consequently, for simplicity of design, the first state 
is taken as the output, i.e., the tip-position. Taking 
the output as the first state implies that the first row 
of A should be changed (Yazdanpanah, et al., 1997). 
The state space model in this case is 

Following (Sicilano and Book, 1988), a singularly 
perturbed model of (9-10) can be obtained as 
follows, where the singularly perturbed parameter  
is defined as 
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denote the part of the 
state that is to be treated as uncertainty 
corresponding to unmodeled dynamics. The certain 
dynamics in this setting corresponds to the state 
vector . Therefore, the state-
space representation of the system is in this form 

X

To apply the modelling approach of (Karimi and 
Yazdanpanah, 2000) to (12-13), we arrange the state 
of fast dynamics (12), on the basis of decreasing 
order of their performance levels. Let  
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Using in (12-13), we obtain the balanced system 
in this form 
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In the above representation form, the subsystem (21) 
may play the role of an uncertainty coupled to the 
certain subsytem (20) provided that the norm of 
the uncertainty is bounded. The above representation 
is shown schematically in Figure 1. The plant has 
two inputs and two outputs . The first 
input  represents the disturbances to be 
rejected. The second input is the control input u that 
is used for feedback design. The controlled output Z 
represents a penalty variable, which may include a 
tracking error, as well as a cost of the control input, 
needed to achieve the prescribed goal. The second 
output is the measurement output that is made on the 
system. This is used to generate the control input, 
which in turn is the tool we have to minimize the 
effect of the exogenous input on the controlled 
output. A constraint that is imposed is that the 
mapping from the measurement to the control input 
should be such that the closed-loop system is 
internally stable. The effect of the exogenous input 
on the controlled output after closing the loop is 
measured in terms of their energies and the worst-
case disturbance of the closed-loop system. Our 
measure is the closed-loop  norm, which is 
simply the  induced norm. Suppose the objective 
is to only stabilize the system, i.e., the system has no 
exogenous input. By virtue of the small gain 
theorem, if the plant is stable, the overall system 
would remain stable if the product of the  gains of 
the plant and unmodelled dynamics is less than one. 
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4.1 The state feedback control 
Consider =γ  and according to Theorem A1, we 
apply the state feedback controller to nominal system 
(20). Figure 2, depicts the regulation of tip-position 
( ) and other states of the nominal system, also 
Figure 3, depicts the regulation of uncertainty 
dynamics ( ∆ ). The controller has been depicted in 
Figure 4 and Figure 5 depicts correctness of the 
attenuation level of uncertainty dynamics on the 
controlled output. 
 
4.2  Two-Time Scale Sliding-Mode Control 
To illustrate the methodology proposed in this paper 
and its performance we compare it with at least one of 
the robust control design approaches according to 
(Alvarez-Gallegos and Silva-Navarro, 1997). 
Therefore, we consider the singularly perturbed system  
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Suppose that both slow and fast subsystems are 
stabilizable and slow switching surface ss xS  
and fast switching surface  with constant 
matrices  and are such that 
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Then the two-time scale sliding-mode control 
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stabilizes the singularly perturbed system 
asymptotically. Select  and  as positive definite 
matrices such that 
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We apply the two-time scale sliding-mode control to 
single-link flexible manipulator. Figure 6, depicts the 
regulation of tip-position ( ), also Figure 7, 
depicts the regulation of other states of the system. The 
controller has bin depicted in Figure 8.  
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5  CONCLUSION 
In this paper the modelling of a single–link flexible 
manipulator utilizing the singular perturbation 
method was presented. The robust regulation of the 
tip-position was considered based on a new 
modelling approach under the assumption of norm-
bounded ness of the fast dynamics. In this approach, 
norm-bounded disturbances and their effect on the 
tip-position are minimized. Hence, the controller 
synthesis was performed only for the certain 
dynamics of the singularly perturbed system. In the 
comparison between the results obtained with state 
feedback control and two-time scale sliding-mode 
control, it was observed that the methodology 
proposed in this paper achieved a desirable 
performance. 
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Fig. 7. Two-time sliding-mode control 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 8. Fast subsystem dynamics under sliding-mode 

control 
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Appendix  
 
Theorem A1 (Green and Limebeer, 1996) 
Under the following assumptions on the nominal 
system (4-8): 
i.  is stabilizable-detectable. )( 2CBA XX

)( 1CAA XvXii.  is stabilizable-detectable. 
iii. Rank of matrix  is  and rank of matrix 

is 
12D k 21D

r . 
Then, the algebraic Riccati equation  
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has a positive semi-definite solution  such  that 

  is  asymptotically  stable. 
Then the control law 
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