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Abstract: A system is frequently represented by transfer functions in an input-
output characterization. However, such a system (under mild assumptions) can
also be represented by transfer functions in a port characterization, frequently
referred to as a chain-scattering representation. Due to its cascade properties,
the chain-scattering representation is used throughout many fields of engineering.
This paper studies the relationship between poles and zeros of input-output and
chain-scattering representations of the same plant. Copyright c©2005 IFAC
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NOTATION

R[s]: polynomial ring
RP (s): proper real rational transfer function ma-
trices
C: field of complex numbers
Ω: subset in C
pole(G(s)): the set of all poles of G(s) ⊂ RP (s)
zero(G(s)): the set of all transmission zeros of
G(s) ⊂ RP (s)
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1. INTRODUCTION

The chain-scattering representation is used ex-
tensively in various fields of engineering to rep-
resent the scattering properties of a physical
system(Kimura, 1997), especially in circuit theory
where it has been widely used to deal with the
cascade connection of circuits originating in anal-
ysis and synthesis problems (Fettweis and Basu,
1991; Pauli, 1990; Maffucci and Miano, 2002). In
circuit theory, the chain-scattering representation
is also called a scattering matrix of a two-port
network(Zha and Chen, 1997). Compared with
the usual input-output (I/O) representation (Fig.
1), the chain-scattering representation (Fig. 2)
is in fact an alternative way of representing a
plant. Cascade structure is the main property of
the chain-scattering representation, which enables
feedback in the I/O representation (Fig. 3) to
be represented simply as a matrix multiplica-
tion in the chain-scattering representation (Fig.
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Fig. 4. Cascade connection in chain-scattering
representation

4). Duality of transformation between the chain-
scattering transformation and its inverse is its
another useful property in the analysis of such
systems(Kimura, 1995; Potirakis et al., 1996).
Due to these features, Kimura(Kimura, 1995) and
others(Lanzon et al., 2003; Le et al., 1998; Pugh
and Tan, 2002) used the chain-scattering repre-
sentation to provide a unified framework of cas-
cade synthesis for H∞ control theory. Within this
cascade framework, the H∞ control problem is
reduced to a factorization problem called a J-
lossless factorization.

Pole-zero analysis is one of the most elementary
tools of control theory to study the properties
of a system. It is consequently desirable to un-
derstand the connection between the poles and
zeros of an I/O representation with the poles
and zeros of the corresponding chain-scattering
representation. For example, in deriving necessary
and sufficient conditions for the solvability of the
H∞ control problem in terms of a J-lossless fac-
torizations, one would typically need to impose
certain conditions on the poles and zeros of the
chain-scattering plant(Kimura, 1997). It is natu-
ral to seek to understand what these conditions
correspond to in the I/O representation.

This paper will study the relationship between
poles and zeros of I/O and chain-scattering repre-
sentations in detail. Firstly, the I/O and chain-
scattering representations are presented. Sec-
ondly, some simple transfer function matrix re-
sults are given, which are needed for the pole-zero
study in the subsequent sections. Lastly, explicit

relationships between poles and zeros of I/O and
chain-scattering representations are derived.

2. I/O AND CHAIN-SCATTERING
REPRESENTATIONS

Consider a MIMO system with two kinds of inputs
(b1, b2) and two kinds of outputs (a1, a2), as shown
in Fig. 1, represented as

[
a1

a2

]
= P (s)

[
b1

b2

]
=

[
P11(s) P12(s)
P21(s) P22(s)

] [
b1

b2

]
.

The chain-scattering representation of P (s), as
shown in Fig. 2, is

[
a1

b1

]
= G(s)

[
b2

a2

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
b2

a2

]

where

G(s) := CHAIN(P (s))

=
[

P12 − P11P
−1
21 P22 P11P

−1
21

−P−1
21 P22 P−1

21

]

=
[

I P11

0 I

] [
P12 0

−P−1
21 P22 P−1

21

]

=
[

I P11

0 I

] [
P12 0
0 P−1

21

] [
I 0

−P22 I

]
(1)

and exists if P21(s) is invertible in RP (s).

Then the mapping from chain-scattering represen-
tation to I/O representation is

P (s) = CHAIN−1(G(s))

=
[

G12G
−1
22 G11 −G12G

−1
22 G21

G−1
22 −G−1

22 G21

]

=
[

I G12

0 I

] [
0 G11

G−1
22 −G−1

22 G21

]

=
[

I G12

0 I

] [
G11 0
0 G−1

22

] [
0 I
I −G21

]
(2)

where G22(s) = P−1
21 (s) is invertible in RP (s).

3. SOME SIMPLE TRANSFER FUNCTION
MATRIX RESULTS

In this section, some simple transfer function
matrix results are given, which are needed for the
pole-zero study in the next section.

Poles and zeros of any real rational transfer func-
tion matrix are obtained from its so-called McMil-
lan decomposition(Zhou et al., 1996).

Lemma 1. (McMillan form) Let G(s) ∈ RP (s) be
any proper real rational transfer function matrix,



then there exist unimodular polynomial matrices
U(s), V (s) ∈ R[s] such that

U(s)G(s)V (s) = M(s)

:=




α1(s)
β1(s)

· · · 0 0

...
. . .

...
...

0 · · · αr(s)
βr(s)

0

0 · · · 0 0




(3)

and αi(s) divides αi+1(s) and βi+1(s) divides
βi(s), where αi(s) and βi(s) are scalar polyno-
mials. The roots of all the polynomials βi(s) in
the McMillan form for G(s) are called the poles
of G(s); the roots of all the polynomials αi(s)
in the McMillan form for G(s) are called the
transmission zeros of G(s).

From (3), it is easy to see that

G(s) = U−1(s)M(s)V −1(s)

where U−1(s) and V −1(s) are also unimodular
polynomial matrices.

The following lemma studies the poles and zeros
of a cascade connection of MIMO systems.

Lemma 2. Given a cascade connection G(s) =
G1(s)G2(s).

(i) If G1(s) has full column normal rank 3 OR
G2(s) has full row normal rank, then
zero(G(s)) ⊂ {zero(G1(s)), zero(G2(s))}.

(ii) pole(G(s)) ⊂ {pole(G1(s)), pole(G2(s))}.

Proof. (i) Suppose G1(s) has full column nor-
mal rank. Using Lemma 1, there exist unimodu-
lar polynomial matrices U1(s), V1(s), U2(s), V2(s)
such that

G1(s) = U−1
1 (s)

[
Ar×r

0

]
V −1

1 (s)

G2(s) = U−1
2 (s)

[
Bk×k 0

0 0

]
V −1

2 (s)

where Ar×r, Bk×k are diagonal square matrices
with full normal rank. Then

G(s) = G1(s)G2(s)

= U−1
1

[
A
0

]
V −1

1 U−1
2

[
B 0
0 0

]
V −1

2

= U−1
1


 AV −1

1 U−1
2

[
B
0

]
0

0 0


V −1

2 . (4)

3 The normal rank of G(s), denoted normalrank(G(s)), is
the maximally possible rank of G(s) for at least one s ∈ C.

It can be easily seen from (4) that the poles and
transmission zeros of G(s) are the same as the

poles and transmission zeros of AV −1
1 U−1

2

[
B
0

]

respectively. Since B has full normal rank,
[

B
0

]

has full column normal rank. Note that V −1
1 U−1

2

is a unimodular polynomial matrix and A has

full normal rank. Then AV −1
1 U−1

2

[
B
0

]
has full

column rank at s /∈ {zero(A), zero(B)}. Thus,

clearly AV −1
1 U−1

2

[
B
0

]
has full column normal

rank.

Now suppose z0 ∈ C is a transmission zero of G(s)

and hence also of AV −1
1 U−1

2

[
B
0

]
. Then there

exists a 0 6= u0 ∈ Ck (Zhou et al., 1996) such

that
(

AV −1
1 U−1

2

[
B
0

])

s=z0

u0 = 0. If z0 is not a

transmission zero of B, then 0 6=
[
B(z0)

0

]
u0 ∈ Cr

and thus 0 6=
(

V −1
1 U−1

2

[
B
0

])

s=z0

u0 ∈ Cr. Since
(

AV −1
1 U−1

2

[
B
0

])

s=z0

u0 = 0 implies

A(z0)

[(
V −1

1 U−1
2

[
B
0

])

s=z0

u0

]
= 0, z0 must be

a transmission zero of A. Hence a transmission

zero of AV −1
1 U−1

2

[
B
0

]
is a transmission zero of

either A or B. This is equivalent to the statement
that a transmission zero of G(s) is a transmission
zero of either G1(s) or G2(s). Thus,

zero(G(s)) ⊂ {zero(G1(s)), zero(G2(s))}.
Similarly, a dual result can be proved that if G2(s)
has full row normal rank, then

zero(G(s)) ⊂ {zero(G1(s)), zero(G2(s))}.

(ii) It is trivial to show that

pole(G(s)) ⊂ {pole(G1(s)), pole(G2(s))}.

Since the I/O and chain-scattering representa-
tions of a plant are often presented in the form of
block transfer function matrices, pole-zero analy-
sis of several block transfer function matrices are
studied as follows.

Lemma 3. Given a proper real rational transfer
function matrix with the following block matrix
partitioning

G(s) =
[

G11(s) G12(s)
G21(s) G22(s)

]
.



Then

pole(G(s)) ⊂ {pole(G11(s)), pole(G12(s)),
pole(G21(s)), pole(G22(s))},

pole(Gij(s)) ⊂ pole(G(s)), i, j = 1, 2.

If furthermore G12(s) = 0 and G21(s) = 0 such
that

G(s) =
[

G11(s) 0
0 G22(s)

]
,

then

pole(G(s)) = {pole(G11(s)), pole(G22(s))},
zero(G(s)) = {zero(G11(s)), zero(G22(s))}.

Proof. This proof is trivial.

Lemma 4. Given a proper real rational transfer
function matrix with the following block matrix
partitioning

G(s) =
[

I G12(s)
0 I

]
.

Then

pole(G(s)) = pole(G12(s)),
zero(G(s)) = pole(G12(s)).

Proof. Using Lemma 3, it is clear that

pole(G(s)) = pole(G12(s)).

Since

G−1(s) =
[

I −G12(s)
0 I

]
,

it is easy to see that pole(G−1(s)) = pole(G12(s)).
Hence

zero(G(s)) = pole(G−1(s)) = pole(G12(s)).

Lemma 5. Given a proper real rational transfer
function matrix with the following block matrix
partitioning

G(s) =
[

G11(s) G12(s)
0 G22(s)

]
.

(i) If G22(s) has full column normal rank, then
zero(G11(s)) ⊂ zero(G(s)).

(ii) If G11(s) has full row normal rank, then
zero(G22(s)) ⊂ zero(G(s)).

Proof. Follows easily after some tedious algebra.
Full proof will be published elsewhere.

4. POLE-ZERO RELATIONS BETWEEN I/O
AND CHAIN-SCATTERING SYSTEMS

In this section, pole-zero relations between I/O
and chain-scattering representations are studied.

Theorem 6. The poles and transmission zeros of
chain-scattering system G(s) = CHAIN(P ) have
the following relations with the poles and trans-
mission zeros of I/O system P (s):

(i) zero(G(s)) ⊂ {pole(P11(s)), zero(P12(s)),
pole(P21(s)), pole(P22(s))},

(ii) pole(G(s)) ⊂ {pole(P11(s)), pole(P12(s)),
zero(P21(s)), pole(P22(s))},

(iii) zero(P21(s)) ⊂ pole(G(s)),
(iv) zero(P12(s)) ⊂ zero(G(s)).

Proof. (i) From (1),

G(s) =
[

I P11

0 I

] [
P12 0
0 P−1

21

] [
I 0

−P22 I

]
.

Since both
[

I P11

0 I

]
and

[
I 0

−P22 I

]
have full nor-

mal rank, using Lemma 2,

zero(G(s)) ⊂ {zero(
[

I P11

0 I

]
),

zero(
[

P12 0
0 P−1

21

]
), zero(

[
I 0

−P22 I

]
)}.

Using Lemma 3 and 4, it is easy to see that

zero(
[
I P11

0 I

]
) = pole(P11),

zero(
[
P12 0
0 P−1

21

]
) = {zero(P12), pole(P21)},

zero(
[

I 0
−P22 I

]
) = pole(P22).

Thus,

zero(G(s)) ⊂ {pole(P11), zero(P12),
pole(P21), pole(P22)}.

(ii) Using Lemma 3 and 4, it is clear that

pole(
[

I P11

0 I

]
) = pole(P11),

pole(
[

P12 0
0 P−1

21

]
) = {pole(P12), zero(P21)},

pole(
[

I 0
−P22 I

]
) = pole(P22).

Then using Lemma 2,

pole(G(s)) ⊂ {pole(P11), pole(P12),
zero(P21), pole(P22)}.

(iii) Note that

G(s) =
[

P12 − P11P
−1
21 P22 P11P

−1
21

−P−1
21 P22 P−1

21

]
.

Then using Lemma 3, pole(P−1
21 ) ⊂ pole(G(s)).

That is



zero(P21(s)) ⊂ pole(G(s)).

(iv) Using Lemma 1, there exist unimodular poly-
nomial matrices U(s), V (s) such that

P11(s) = U−1(s)M(s)V −1(s)

= U−1




α1(s)
β1(s)

· · · 0 0

...
. . .

...
...

0 · · · αr(s)
βr(s)

0

0 · · · 0 0




m×n

V −1

where M(s) is the McMillan form for P11(s) and
αi(s), βi(s) are scalar polynomials. If suppose

Nα :=




α1(s) · · · 0 0
...

. . .
...

...
0 · · · αr(s) 0
0 · · · 0 0




m×n

,

Nβ :=




β1(s) · · · 0 0
...

. . .
...

...
0 · · · βr(s) 0
0 · · · 0 I




n×n

,

then

P11(s) = U−1NαN−1
β V −1.

And then from (1),

G(s) =
[
I P11

0 I

] [
P12 0

−P−1
21 P22 P−1

21

]

=
[
I U−1NαN−1

β V −1

0 I

] [
P12 0

−P−1
21 P22 P−1

21

]

=
[
U−1 0

0 V Nβ

] [
I Nα

0 I

] [
U 0
0 N−1

β V −1

]

·
[

P12 0
−P−1

21 P22 P−1
21

]
. (5)

Thus,

[
U 0
0 N−1

β V −1

]
G(s)

=
[

I Nα

0 I

] [
U 0
0 N−1

β V −1

] [
P12 0

−P−1
21 P22 P−1

21

]
(6)

=
[

I Nα

0 I

] [
UP12 0

−N−1
β V −1P−1

21 P22 N−1
β V −1P−1

21

]
.

Since U(s) is a unimodular polynomial matrix and
N−1

β V −1P−1
21 has full normal rank, using Lemma

5, it is clear that

zero(P12) = zero(UP12) ⊂

zero(
[

UP12 0
−N−1

β V −1P−1
21 P22 N−1

β V −1P−1
21

]
). (7)

Since
[

I Nα

0 I

]
is also a unimodular polynomial

matrix and
[

U 0
0 V −1N−1

β

]
has full normal rank,

using Lemma 2 from (6), it is easy to see that

zero(
[

UP12 0
−N−1

β V −1P−1
21 P22 N−1

β V −1P−1
21

]
)

= zero(
[

U 0
0 N−1

β V −1

]
G(s))

⊂ {zero(
[

U 0
0 N−1

β V −1

]
), zero(G)}. (8)

Combining (7) and (8),

zero(P12) ⊂ {zero(
[
U 0
0 N−1

β V −1

]
), zero(G)}. (9)

Since U(s), V (s) are unimodular polynomial ma-
trices and N−1

β has no transmission zeros but
poles, using Lemma 3, it is clear that

zero(
[

U 0
0 N−1

β V −1

]
) = { }.

Hence from(9), zero(P12(s)) ⊂ zero(G(s)).

Theorem 7. (Dual result) The poles and transmis-
sion zeros of I/O system P (s) have the following
relations with the poles and transmission zeros of
chain-scattering system G(s) = CHAIN(P ):

(i) zero(P (s)) ⊂ {zero(G11(s)), pole(G12(s)),
pole(G21(s)), pole(G22(s))},

(ii) pole(P (s)) ⊂ {pole(G11(s)), pole(G12(s)),
pole(G21(s)), zero(G22(s))},

(iii) zero(G22(s)) ⊂ pole(P (s)),
(iv) zero(G11(s)) ⊂ zero(P (s)).

Proof. The proof is similar to that of Theorem 6
from (2).

In order to visualize the relationship between
poles and zeros of I/O and chain-scattering repre-
sentations, next analyze situations where P (s) or
G(s) has no poles or zeros in some region in the
complex plane C. Suppose Ω is a subset of C, as
shown in Fig. 5, which can be any region of the
s-plane.

Fig. 5. Subset Ω in C



Theorem 8. Suppose P (s) has no poles in Ω. Then
the following results hold:

(i) G(s) has no transmission zeros in Ω if and
only if P12(s) has no transmission zeros in Ω;

(ii) G(s) has no poles in Ω if and only if P21(s)
has no transmission zeros in Ω.

Proof. Easily follows from Theorem 6. Full proof
will be published elsewhere.

Theorem 9. (Dual result) Suppose G(s) has no
poles in Ω. Then the following results hold:

(i) P (s) has no transmission zeros in Ω if and
only if G11(s) has no transmission zeros in
Ω;

(ii) P (s) has no poles in Ω if and only if G22(s)
has no transmission zeros in Ω.

Proof. Just a dual result of Theorem 8. Full proof
will be published elsewhere.

Now a slightly different result is given, which
requires a milder assumption in the theorem state-
ment. This result does not give separate necessary
and sufficient conditions for G(s) to have no poles
OR no zeros in Ω. Instead, it considers the situa-
tion where G(s) has neither poles nor zeros in Ω
and gives a necessary and sufficient condition for
the case.

Theorem 10. . Suppose P21(s) has no poles in Ω.
Then G(s) has no poles nor transmission zeros
in Ω if and only if P (s) has no poles in Ω and
P12(s), P21(s) have no transmission zeros in Ω.

Proof. Easily follows from Theorem 6 and 8. Full
proof will be published elsewhere.

Theorem 11. (Dual result) Suppose G22(s) has no
poles in Ω. Then P (s) has no poles nor transmis-
sion zeros in Ω if and only if G(s) has no poles in
Ω and G11(s), G22(s) have no transmission zeros
in Ω.

Proof. Just a dual result of Theorem 10. Full
proof will be published elsewhere.

5. CONCLUSIONS

This paper studies the relationship between poles
and zeros of input-output and chain-scattering
representations. Duality properties between the
mapping from an I/O representation to a chain-
scattering representation and its inverse are ex-
ploited to obtain the required results.

If P12(s) rather than P21(s) is invertible in RP (s),
a dual chain-scattering representation of P (s)
exists, denoted DCHAIN(P (s)). Dual results on
poles and zeros of I/O and dual chain-scattering
systems can very easily be derived in the same
way.
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