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Abstract: The dual-mode strategy has been adopted in many constrained MPC
methods. The size of stabilizable regions of states of MPC methods depends on
the size of underlying feasible and positively invariant set and number of control
moves. These results, however, could be conservative because the definition of
positive invariance does not allow temporal leave of states from the set. In this
paper, a concept of periodic invariance is introduced in which states are allowed to
leave a set temporarily but return into the set in finite time steps. This approach
is novel in the sense that a set of different state feedback gains can be used to steer
the state back into the starting set. These facts make it possible for the periodically
invariant sets to be considerably larger than ordinary invariant sets. The periodic
invariance can be defined for systems with polyhedral model uncertainties. We
derive computationally very efficient MPC methods based on these periodically
invariant sets. Some numerical examples are given to show that the use of periodic
invariance yields considerably larger stabilizable sets with better performance than
the case of using ordinary invariance. Copym'ght© 2005 IFAC.
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1. INTRODUCTION

The ’dual-mode paradigm’ is known to be an
effective way to handle physical constraints in ac-
tuators.(Fukushima and Bitmead, 2005)(Lee and
Kouvaritakis, 2000) (Kothare et al., 1996) The
basic idea of the dual-mode paradigm is to use
feasible control moves to steer the current state
into a feasible and invariant set in finite time
steps. A constant state feedback control is as-
sumed to be used after the state belongs to the
positively invariant set. The feasible and posi-

tive invariance of a set is defined with respect
to a state feedback gain and it requires that the
state feedback control should satisfy the input
constraints for all the states in the set and states
should remain in the set when the state feedback
control is applied. This dual-mode strategy has
been adopted in many constrained MPC methods.
The size of stabilizable regions of states of MPC
methods depends on the size of underlying feasible
and positively invariant set and number of control
moves. These results, however, could be conserva-



tive because the definition of positive invariance
does not allow temporal leave of states from the
set. In the recent work of (Cuzzola et al, 2002),
a parameter dependent Lyapunov function has
been used to reduce the conservativeness of the
dual mode approach. But these works still assume
the use of a single feedback gain and requires
strict invariance in the definition of a positively
invariant set. Motivated by these considerations,
the concept of quasi-invariant sets was introduced
in (Lee, 2004), based on polyhedral type sets,
which allows the state to leave the set temporarily.
The result given in (Lee, 2004), however, provides
an analysis tool rather than a synthesis tool i.e.
no systematic way of obtaining underlying state
feedback gain is provided.

In this paper, a concept of periodic invariance is
introduced based on ellipsoidal type sets, in which
states are allowed to leave a set temporarily but
return into the set in finite time steps. Moreover,
the periodic invariance involves the use of more
than one state feedback gains as it was done for
unconstrained deterministic systems in Yan and
Bitmead(1991). These facts make it possible for
the periodically invariant sets to be considerably
larger than ordinary invariant sets and to yield
better performance.

The periodic invariance was deployed for LPV
systems in Lee, Kouvaritakis and Cannon(2005),
however, here we focus considerations on systems
with polyhedral model uncertainties. Applying
the concept of periodic invariance to uncertain
systems can enjoy novel characteristics that can
not be obtained for LPV cases. If a periodically
invariant target set is searched online. It can be
shown to be equivalent to using the convex hull
of all of the periodically invariant sets as a target
set and the resulting stabilizable region becomes
large. Instead of computing periodically invariant
sets online, we can use the convex-hull of pre-
computed periodically invariant sets as a target
set and the computational burden can be much
reduced without affecting the size of stabilizable
region much. The effect of computation reduction
becomes significant for high order plants. In both
of the methods, the cost indices are state depen-
dent and this fact allows using tight control to
yield good performance

In section 2, the periodic invariance is defined
and a MPC method that uses the convex hull
of periodically invariant sets as a target was
developed in Section 3. In section 4, an novel
method of reducing the computational burden is
proposed and an illustrative numerical example is
given in Section 5 to show that the use of periodic-
invariance yields much larger stabilizable set with
better performance.

2. PERIODIC INVARIANCE AND
FEASIBILITY

Consider the following input constrained lin-
ear uncertain system:

x(k+1) = Ax(k) + Bu(k), u(k)] <6, (1)

where the matrix functions A and B belong to the
polyhedral uncertainty class:

0= {(A,B)I(A,B) =S 4B, w0,

=1
an = 1} ) (2)
=1

We will consider a time-varying state feedback
control law as:

u(k) = K(k)x(k), 3)

which requires

lu(k)| = [K(k)x (k)| <. (4)

Provided that (4) is satisfied, use of u(k) =
K (k)x(k) would yield

x(k+1) = &(k)x(k), ®(k):= A+ BK(k).(5)

Consider the uncertain linear system described by
(1) and (2). A set Sp is defined to be feasible
and periodic-invariant with respect to the time
varying feedback control u(k) = K (k)x(k) of (3)
if there exists a finite positive number v such that
for any initial state x(k) € Sp, the future states
x(k+1) (i =1,---,v) of the system (5) satisfy the
input constraint (4)(feasible) and x(k+v) belongs
to Sp(periodic-invariant).

Consider an ellipsoidal set defined as:

So = {x|x'Pyx < 1}. (6)

The periodic-invariance of Sp would be checked
by considering propagation of the states in terms
of ellipsoidal sets. Assume that the closed-loop
dynamics of (5) makes x(k + 1) € S; for any
x(k) € Sp, where

S = {x|x'Pix < 1}. (7)

It is easy to see that the following relation:

Py — ®(k)'Pi®(k) >0,(l=1,---,np) (8)

guarantees that x(k + 1) € S; for any x(k) € Sp
and (4,B) € Q, where ®;(k) := A; + B/Kj.
Similarly, an ellipsoidal set Sz can be defined for
the ellipsoidal set S;. Relations



P —®(k+1)Pd(k+1)>0,(I=1,---,n,09)

would guarantee that x(k +2) € Sy for any x(k +
1) € S; and (4,B) € Q.

The above argument can be applied recursively to
yield ellipsoidal sets of states:

S; = {x|x'Pjx < 1}, (10)

and relations

Py —®(k+j) Pja®(k+j) >0, (11)

forl =1,2,---,np and j = 1,2,---,v — 1 with
P, := Py. On the other hand, it should be noted
that the above arguments hold true for the system
(1) provided that

|K;jx| <T@, Vxe8;, j=0,1,--,(v—1)(12)

Conditions (8), (9), (11) and (12) can be trans-
formed into LMIs using technique proposed in
(Boyd et al., 1994) and used in (Kothare et al.,
1996), which technique is well known and the cor-
responding LMIs are summarized in the following
theorem without proof:

THEOREM 1. Consider the constrained uncer-
tain system (1-2). An ellipsoidal set:

So = {x|x'Pyx < 1} (13)

is feasible and periodic-invariant with respect to
the time-varying control (3) provided that there
exist matrices Q; := P; '(> 0)(j =0,1,2,---,v),
and Y;, X;(j =0,1,2,---,v — 1) such that V; =
Kj-Qj,

{ Qj-1 (A4Q -1 + Ble—1)T] S0
(AiQj—1 + BiYj_1) Qj
(14)

for Il = 1,2,---,np, and j = 1,2,---,v with
Qv := Qo, and

X YJ:| =2
T >0, Xjiu <1, (15)
[Yj Q; ! !
for 5 = 0,1,2,---,v — 1, where X;; and u;
represent the i** (diagonal) element of X; and 1,
respectively.
|

From the periodicity of the relation between the
sets, i.e. So &> St = -+ = Sy_1 = So, all the
sets Sj, 7 =0,1,---,v — 1 are actually periodic-
invariant sets. Thus, we have the following Corol-
lary:

COROLLARY 1. Consider the constrained un-
certain system (1-2). If the set Sp of (13) is
periodic-invariant with subsequent series of sets
Sj, 7=1,2,---,v —1, which are defined as (10)

with P; = Q;l satisfying (14-15). Then, each of
the sets S, 7 = 1,2,---,v — 1 are also periodic-
invariant.

Corollary 1 means that once a state found to be
inside of a periodic-invariant set, then it can be
steered into another periodic-invariant set.

REMARK 1. Assume that S and S are two
different periodic-invariant sets with correspond-
ing positive definite matrices P(= Q4~') and
P2(= Qg_l), respectively. Then another periodic-
invariant set S5 defined with the matrix P35 =
(A1Qd + X2Q32)7! is also periodic-invariant from
the relations (14-15), where Ay + A2 = 1 and
A1, A2 > 0. Thus, we can conclude that periodic-
invariant sets can be combined to produce another
periodic-invariant sets. ™

3. RECEDING HORIZON CONTROL BASED
ON THE PERIODIC INVARIANCE

We would like to propose a MPC method
using Sy as a target set following the dual-mode
paradigm. Our control strategy is to steer the
current state x(k) into Sp using a feasible control
move u(k), which requires:

x(k + 1|k)T Pox(k + 1|k) < 1, (16)

where x(k +1|k) := Ax(k) + Bu(k). Relation (16)
can be transformed into LMIs which is affine in
(A, B) and they are equivalent to the following
LMIs.

[ 1 (Aix(k) + Byu(k))T 50
(Aix(k) + Biu(k)) Qo
forl=1,2,--- n, (17)
and
diag(d — u(k)) > 0. (18)

The periodic-invariant set Sy has good properties
mentioned in Corollary 1 and Remark 1. Thus the
actual target set would be the convex-hull of every
periodic-invariant sets for the system (1) when
the target periodic-invariant set is searched on-
line. From the fact that ordinary invariant sets
are special cases of periodic-invariant sets, we can
expect that the size of target set (in turn the
size of stabilizable set) of our approach would be
much larger than those of earlier works based on
ordinary invariant sets.



The control input u(k) satisfying (17) and (14-15)
would not be unique. We would like to determine
the current control u(k) so that it steers x(k+1/k)
as close as possible to the origin while (14-15) are
satisfied. So, we introduce an additional variable
a such as:

a > x(k + 1k)T Pox(k + 1]k), (19)

which can be transformed into the following LMIs:

o (A;x(k) + Bpu(k))T

>0
(Aix(k) + Bru(k)) Qo
(20)
forl =1,2,---,n,. Note that (17) can be replaced

by (20) provided that o < 1. The control move
u(k) will be determined as:

min g
u*(k) =arg ¢ u(k) (21)
Qj7 Y]
subject to (14 — 15)(18) and (20).

We will use the control u*(k) of (21) in receding
horizon manner. Closed-loop stability of the re-
ceding horizon control based on u*(k) of (21) can
be established as per the following theorem:

THEOREM 2. Consider the uncertain system
(1-2). Assume that the problem of obtaining u* (k)
of (21) was initially feasible with @ < 1 then
the problem remains feasible and the use of the
optimal control u*(k) obtained at each time steps
guarantees the asymptotic stability of the closed-
loop system.

Proof : Feasibility : Because of the periodicity
of the relation (14), the problem remain feasible
once the state is steered into Sp at initial time
steps.

Stability : Assume that the problem of (21)
is feasible at time step k with feasible solution
{Qj, and K; =Y;Q7", j=0,1,---,v —1} with
the upper bound « . From (20), we have:

a>x(k+1k)7TQy x(k + 1|k). (22)

Because of the periodicity of (14), { Qj+1, Kjt1
= Yrj+1@;.ﬁ17 j =0,1,---,v — 1} will provide
another feasible solutions for (14-15). Consider the
control input u(k + 1|k) = Kox(k + 1|k) at time
step k + 1, then we have:

x(k +2|k) = (A + BKo)x(k + 1|k)  (23)

and

x(k+ 11k)TQy  x(k + 1|k) (24)

> x(k + 2|k)TQ 'x(k + 2|k)

from (14). From (24), it is clear that we could
have an upper bound & such that & < « at
time step k + 1. The above argument can be
applied recursively and the upper bound « can
be made monotonically decreasing, which in turn
guarantees the closed-loop stability. ]

REMARK 2. One of the key points of this ap-
proach is that it provides more degrees of freedom
i.e. Pj, j =0,1,---,v — 1 than (Kothare et al.,
1996) in laying the upper bound, which would
result in non-conservative upper bound and better
performance. As the value v increases, we would
have better performances in addition to larger
stabilizable sets. u

4. REDUCTION OF COMPUTATIONAL
LOAD

The parameters to be searched in the prob-
lem of (21) would be Q; € R™*™, Y; € R™*",
X; € R™*™ and u(k) for j = 0,1,---,v. The
computational burden for obtaining these all pa-
rameters online might be excessive. Thus, in this
section, we provide an effective method to reduce
the online computational burden. The key idea is
to compute a set of periodic invariant ellipsoidal
sets offline and then to use the convex hull of the
ellipsoidal sets a target set of our online MPC
approach.

Assume that @;, j =0,1,---,v—1 satisfying (14-
15) are given. Consider a set of states defined as:

S:={x¢ R”|x'(i \Qj) Tx <1}, (25)

=0

where )\;s are variables satisfying the constraints:

v—1
dA=1, A >0 (26)

=0

It is clear that S contains all the Sj, § =
0,1,---,v — 1 as its subsets. Now the cost index
is defined as:

a>x(k+1k)7T

ZA Q)

which can be transformed into the following LMIs:

x(k + 1]k), (27)

a (AzX( )+Bz (k)"

(Aix(k) + Bru(k)) Z \Q; >0,
7=0



forl =1,2,---,np. Now the new MPC algorithm
can be formulated as:

w (k) =argd uk) © (29)
Aj
subject to (18) (26) and (28).

We will use the control u*(k) of (29) in reced-
ing horizon manner. The feasibility and stability
property of this receding horizon control can be
established as per the following theorem.

THEOREM 3. Consider the uncertain system
(1-2) and matrices Qj, Yjs satisfying (14-15).
Assume that the problem of obtaining u*(k) of
(29) was initially feasible with a < 1 and \;(>
0)s such that Z;’;& Aj = 1 then the problem
remain feasible and the use of the optimal control
u* (k) obtained at each time steps guarantees the
asymptotic stability of the closed-loop system.

Proof : The feasibility of the problem (29) at time
step k and the monotonicity of the cost index «
could be proved if we can show that there exist
a state feedback gain K and parameters A;s such
that:

(A+ BK)T(V_ 2;Q;)"" (A + BK)
7=0
< (X nQ)™ (30)
j=0
‘iij:L Aj>0 (31)
|Kx(k)| <1 (32)

The relation (30) can be transformed into:

{( Qo (A1Qo + BIKQy)" S 0.

AQo + BIKQ,) @
(33)

where Q, := Z;’:_Ol AjQj and Q) := Z;’:_ol AiQj-
On the other hand, summing up (14) for j =
1,2---,v after multiplying A;j_; to both sides it
would yields:

. @0 . (AIQO iBl?())T >0
(4iQy + BIKY ) Q, ’
(34)
where
5‘j:Aj+1 (j:()a]-a"'av_2) (35)

Avo1=Xo (36)

and Yo := Y7 \;¥;. Comparing (33) and (34),
we can see that assigning K as

K=Y,Q, ' (37)

would make them equivalent. The relations (35-
36) and (37) tells us how to choose S\js and K so
that conditions (30-31) are satisfied. Furthermore,
summing up (15) for j = 0,1,---,v — 1 after
multiplying A; to both sides of it results in:

>0, Xou <, (38)

where Xo := Y.V} \;X;. From (37) and (38),
we can see that u(k) = Kx(k) satisfy the input
constraint (32) for x(k) € Sp. |

Note that the number of the online parameters
does not depend on the system order n. Thus,
this method would be very effective for high or-
der systems. Furthermore the online parameters
Aj(j =0,1,--+,v — 1) can be used to adjust the
performance index so that the resulting control
would be as tight as possible. Thus the resulting
performance would not be much degraded com-
pared with the method of (21) as will be shown in
the simulation study.

5. NUMERICAL EXAMPLES

Consider the uncertain system (Lee and Kou-
varitakis, 2000b)(Kothare et al., 1996) with poly-
hedral set Q defined by (2) with w =1

A [0934705104] - [0.0591 0.2641
17 10.3835 0.8310 27 1 1.7971 0.8717
—1.4462
b= [—0.7012} ' (39)

Fig.1 shows a series of ellipsoidal sets Sp,S1 and
S> which correspond to a particular choice of
feasible solutions Qg, )7 and Q- with n;,, = 3.
Stabilizable sets of the proposed MPC method
with nj,, = 1, 3, and 5 are given in Fig.2.
The stabilizable sets of the work (Kothare et al.,
1996) is also given in Fig.2. This figure shows
that we can get much larger stabilizable sets than
(Kothare et al., 1996) does in any case.

6. CONCLUSIONS

A receding horizon control strategy was de-
veloped for input constrained linear uncertain sys-
tems based on periodically invariant sets. The
definition of periodically invariant set allows state
to leave the set temporarily. An ellipsoidal set is
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Fig. 1. Ellipsoidal sets Sp, S1 and Sy correspond-

ing to a set of feasible solutions Qg, 1 and
()2, respectively.
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Fig. 2. Stabilizable sets with v = 1,3 and 5(solid

lines) and stabilizable set of work (Kothare
et al., 1996)(dotted line).

said to be periodically invariant if there is a series
of feedback gains such that the use of these gains
guarantees that all the states in the set return into
the set in finite time steps.

A receding horizon control strategy in which the
current state is steered into a periodically invari-
ant set was proposed. This method is equivalent
to use the convex hull of all of the periodically
invariant sets as a target set and the resulting
stabilizable region become large. Instead of com-
puting periodically invariant sets online, we can
use the convex-hull of pre-computed periodically
invariant sets as a target set and the computa-
tional burden can be reduced considerably with-
out affecting the size of stabilizable region much.
In both of the methods, the cost indices are state
dependent and this fact allows using tight control
to yield good performance. The invariant set used
in this paper contains the ellipsoidal invariant sets
in the earlier works (Kothare. et. al 1996)(Lu and
Arkun, 1999) as a special case. It will provide a
larger invariant set and larger stabilizable set in
turn.

20

10} Sets
0
_10l
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Fig. 3. Stabilizable region of the reduced compu-
tation method with v = 9(Outer region) and
corresponding 9 periodic invariant sets

References

Boyd, S. , L., Ghaoui, E.I., Feron, E. and Balakr-
ishnan, V. (1994), Linear matrix inequalities in
systems and control theory, SIAM, Philadelphia,
1994.

Cuzzola, F.A. | Geromel, J.C. and Morari, M.
(2002), ”An improved approach for constrained
robust model predictive control,” Automatica,
Vol.38, pp.1183-1189.

Fukushima, and Bitmead, R.R. (2005) ”Robust
constrained predictive control using comparison
model,” Automatica, Vol.41, pp.97-106.

Kothare, M.V., Balakrishnan,V. and Morari, M.
(1996), "Robust constrained model predictive
control using linear matrix inequalities,” Auto-
matica, Vol.32, No.10, pp.1361-1379.

Lee, Y.I. and Kouvaritakis, B. (2000), ”A linear
programming approach to constrained robust pre-
dictive control,” IEEE Transactions on Automatic
Control, Vol.45, No.9, pp.1765-1770.

Lee, Y.I. (2004), ”"Receding horizon control for
input constrained linear parameter varying sys-
tems,” TEE Proceedings-Control Theory and Ap-
plication, Vol.151, Issueb, September, pp.547-553.

Lee, Y.I., Kouvaritakis, B, and Cannon, M.
(2005), ”Extended invariance and its use in Model
Predictive Control, submitted to Automatica.

Lu, Y. and Arkun, Y. (1999), ” A scheduling quasi-
minmax MPC for LPV systems,” proceedings of
american control conference 1999, pp.2272-2276.

Yan, W., and Bitmead, R.R., (1991) ”Periodic
receding horizon LQ regulators for discrete-time
systems, Proc. 30th Conf. Decision and Control,”
pp- 2301-2306.



