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Abstract. In a number of applications, an admissible domain of the perturbed motion is 
associated with the domain of attraction of a stable equilibrium of the unperturbed 
system. If noise is weak, escape from the reference domain is a rare event associated 
with large deviations in the system. Despite the well developed large deviations theory, 
estimation of the statistical parameters for the multidimensional nonlinear systems 
remains difficult. This paper develops an asymptotic approximation of the mean escape 
time for a weakly perturbed Lagrangian system. The estimate is found explicitly, as a 
function of the kinetic and potential energy and the dissipation function of the system. 
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1. INTRODUCTION  
 
Stationary statistics of the Lagrangian dynamics can 
be found as a stationary solution of a relevant 
Kolmogorov equation, see, e.g., (Roberts and 
Spanos, 1990). However, an analysis of the 
nonstationary dynamics associated with the 
calculation of the mean escape time and escape 
probability encounters serious technical difficulties. 
This paper develops a procedure of the asymptotic 
approximation of the mean time until escape from a 
given domain for a weakly perturbed Lagrangian 
system.  
 
Let X(t) be a trajectory of the system, X(0) = 0. In the 
absence of perturbation the system is presumed to 
have an asymptotically stable equilibrium X = 0, with 
the domain of attraction Ga. An admissible domain of 
motion is usually associated with a bounded open set 
G ⊆ Ga. Whatever small noise may be, it induces 
escape of the process X(t) from the reference domain 
with a non-zero probability. 

 
 
 
 
A performance criterion of interest is the mean time 
ETε, where Tε = inf (t: X(t)∉G) is the first moment 
the process X(t) escapes the domain G. The 
parameter ε > 0 indicates the intensity of noise. The 
direct calculation of ETε  in the small noise limit 
requires consideration of a singular Dirichlet 
problem for a multidimensional system. Both 
analytic and computational approaches to the 
asymptotic solution of this equation are prohibitively 
difficult.    
 
Large deviations theory provides an alternative 
approach to the analysis of the weakly perturbed 
dynamics, see Varadhan (1984), Kushner (1987), 
Dupuis and Ellis (1997), Freidlin and Wentzell, 
(1998), and references therein. This theory gives a 
rough asymptotic of the mean escape time as ETε ~ 
exp(K/ε), as ε → 0. The parameter K is associated 
with the minimum of the action functional of the 
system. The derivation and calculation of this 



  
functional is the central point of large deviation 
theory. 
 
Freidlin and Wentzell (1998) considered in details 
the nondegenerate diffusion and derived the 
Hamilton-Jacobi equation associated with the 
minimization of the action functional. The mean 
escape time and escape probability can be computed 
directly from this equation. Despite the well 
developed theory, explicit solutions for 
multidimensional systems are few in number. 
Meerkov (1988) calculated the logarithmic 
asymptotic of the mean escape time for a 
multidimensional linear system. Freidlin and 
Wentzell (1998) estimated the mean escape time and 
escape probability for a class of nonlinear systems 
with the “quasipotential” nonlinearity. The 
quasipotential structure is typical for a one-
dimensional system, the recent advances in this field 
can be found in (Olivieri and Vares, 2005). However, 
the Lagrangian or Hamiltonian systems do not allow 
separation of the quasipotential nonlinearity. Then, 
the degenerate systems are more natural for 
applications.  
 
Kovaleva (2003) applied the stochastic averaging 
approach to a problem of controlling large deviations 
in a Hamiltonian system in the plane. The averaging 
procedure results in the decomposition of the slow 
and fast variables. This reduces the problem to the 
analysis of a slow component of the process as a one-
dimensional nondegenerate diffusion.  
 
In this paper we consider a multidimensional 
Lagrangian system as a system with the degenerate 
noise. Kushner (1987) and Dupuis and Kushner 
(1989) developed an extension of large deviation 
theory to systems with degenerate noise and derived 
a control procedure associated with minimization of 
the action functional. Yet the problem of calculating 
the mean escape time for a multidimensional system 
has not been resolved explicitly. The objective of this 
paper is to extend Kushner’s approach to the multi-
degree-of-freedom (MDF) Lagrangian systems and 
to show that, in the small noise limit, the Hamilton-
Jacobi equation for the associated variational 
problem can be resolved explicitly.  
 
The paper is organized as follows. In Section 2 we 
remind the main issues of large deviation theory 
requisite for the further analysis. We make use of 
Kushner’s definition of the action functional for a 
degenerate system and transform the mean escape 
time problem into a deterministic variational problem 
for the action functional. We present the Hamilton-
Jacobi equation for the variational problem 
associated with estimation of the mean escape time 
for a degenerate diffusion.   
 
For the sake of brevity, we employ a commonly used 
small white noise model as an approximation. 

However, small Gaussian (Kushner, 1987) or 
Markov perturbations (Freidlin and Wentzell, 1998, 
Kushner, 1987) can be investigated as well.  
 
Section 3 discusses the basic result of the paper. We 
derive an explicit solution of the Hamilton-Jacobi 
equation associated with the mean escape time 
problem for Lagrangian systems. We show that, 
under some non-restrictive assumptions, the solution 
can be expressed through the parameters of the 
Lagrangian function and the dissipation function of 
the system.  
 
In Section 4 we consider some physically meaningful 
examples. 

 
 

2. BASIC METHODOLOGY  
 
Consider the non-perturbed system in the form 

 
X& = f(X),  X(0) = 0 ∈ G                      (1) 

 
where G is an open bounded set in Rm with a 
piecewise differentiable boundary Γ.    
 
The perturbed system satisfies the equation 

 
=X& f(X) + ε∆ (t),  X(0) = 0 ∈ G          (2) w&

 
where w(t) ∈ Rr is standard Wiener process, ∆ is an 
m×r - matrix.  
 
We assume that  
 
(i) f(X) is continuous and satisfies the Lipschitz 
condition in G ∪Γ ;  
 
(ii) system (1) has a unique asymptotically stable 
point X = 0 in G and all trajectories originating in the 
domain G ∪Γ  tend to X = 0.  
 
(iii) system (2) can be written in the form   
 

X& 1 = f1(X) 
 

X& 2 = f2(X) + ε∆2 w& 2(t)                         (2a) 
 
where the partition X = (X1, X2) is of the same 
dimension as f = (f1, f2), dimensionalities of the 
vectors f2, w2 and the matrix ∆2 are compatible, the 
matrix Σ22 = ∆2′∆2 is positive definite. Here and 
below the prime denotes transpose of a vector or a 
matrix. 
 
Following (Kushner, 1987), we introduce a 
stochastic counterpart of the action functional. At the 
first stage, we consider the transformation 
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Since for a Gaussian zero-mean process G(t) we have 
EexpG = expEG2, the function F can easily be 
calculated and written as 

F(X, α) = α1′f1(X)α1 + α2′f2(X)α2 + 
2
1 α2′Σ22α2   (4) 

where the partition α  = (α1, α2)  is of the same 
dimension as  f = (f1, f2).  

Integrand in the left hand side of relation (3) can be 
interpreted as the Hamiltonian function associated 
with system (2). In the deterministic case (Σ22 = 0) 
function (4) coincides with the Hamiltonian function 
constructed for system (1). 
 
Let the function F and its first derivative be 
continuous in X. Introduce the dual Cramer 
transformation (also called the Legendre 
transformation) C   
 

C(X, β) = [β′ α - F(X, α)]                  (5) 
α

sup

Consider the partition  β  =  (β1, β2), where β1, β2 
have the same dimension as  f1,  f2. Then 
               

C(X,β) = (β2− f2(x))′Σ22
-1(β2− f2(x)) 

 
if β1 = f1(x)                                 (6a) 

 
C(X, β) = ∞ otherwise                        (6b) 

 
with an admissible set U2(X) = {β2: C(X,β2) < ∞}.  
 
If ϕ(t) is an absolutely continuous function, then 
introduce the action functional as 
 

S(T,ϕ) =  dt                      (7) ∫
T

C
0

),( ϕϕ &

where C(ϕ,ϕ& ) is defined by relation (6a). If ϕ(t) is 
not absolutely continuous, then we set S(T,ϕ) = ∞.   

Let ϕ(t) be an extremal of the functional (7) leading 
from an origin 0 to a point X, that is  

S(X) = inf {S(T,ϕ): ϕ (0) = 0, ϕ (T) = X)      (8) 
 
In a deterministic system the extremal depicts an 
orbit leading from an origin to a given point X 
(Arnold, 1989). Following large deviation theory, 

this extremal approximates the exit orbit of system 
(2) with probability close to 1.  
 
Under these assumptions, the mean time needed to 
reach the boundary Γ of the domain G from an initial 
point X = 0 obeys the estimate (Kushner, 1987, 
Freidlin and Wentzell, 1998) 

 

0
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ε 2 ln (ET 
ε) = S(X) = S

Γ∈X
inf 0               (9) 

 
The minimum condition in equality (9) implies that 
an exit orbit intersects the boundary Γ at the minimal 
distance from the attracting point X = 0.          
 
Estimation of the escape time is thus reduced to 
minimization of functional (7). The variational 
problem (6a) – (8) can be resolved in a standard way. 
Freidlin and Wentzell (1998) constructed the 
functional S and a relevant Hamilton – Jacobi 
equation in case the matrix ∆ is nondegenerate. If the 
matrix ∆ is degenerate and allows partition (2a), the 
Hamilton–Jacobi equation for the deterministic 
variational problem (6a) – (8) takes the form  
 

(f1(X),
1X

S
∂
∂ ) + (f2(X),

2X
S

∂
∂ ) + 

2
1 (∆2

2X
S

∂
∂ ,∆2

2X
S

∂
∂ )  = 0,    S(0) = 0             (10) 

 
Suppose that  
 
(iv) equation (10) has a unique continuous and 
continuously differentiable solution S(X) > 0.  
 
Then, under assumptions (i) – (iv), condition (9) 
holds.  
 
 

3. LARGE DEVIATIONS FOR LAGRANGIAN 
SYSTEMS 

 
We employ Eq (10) in order to estimate the mean 
time of escape from a given domain for a Lagrangian 
system. In the system description we make use of the 
notations and definitions accepted in the classic 
mechanics, see, for example (Arnold, 1989). 
 
The equation of motion for the Lagrangian system 
with dissipation is written in the form 
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where L(q, ) is the Lagrangian of the system,   
q, ∈ G ⊂ R

q&
q& 2n,  G is an open admissible domain with  

  



  
boundary Γ, w(t) ∈ Rr is standard Wiener process, σ 
is a symmetric non-degenerate square matrix. We 
suppose that the matrix A = σ′σ is positive definite 
and the dimensionalities of the matrices B and σ are 
compatible. The parameter ε << 1 is the small 
parameter of the system.  
 
The Lagrangian L(q, ) takes the form q&
 

L(q, ) = T(q, ) – Π(q)                 (12) q& q&
 

where T(q, ) =q&
2
1 q′& M(q) and Π(q) are kinetic and 

potential energy of the system, respectively.  

q&

 
The matrices M(q) and B are symmetric positive 
definite square matrix. The point q = 0 is assumed to 
be a unique minimum of the function Π(q) in G such 
that Π(0) = 0, ∂Π/∂qi > 0 for all components qi of the 
vector q. Under these assumptions, the point q =  = 
0 is the asymptotically stable equilibrium position of 
the unperturbed system (σ = 0). The domain of 
attraction of the equilibrium point is denoted as G

q&

a, 
an admissible region is G ⊆ Ga . 
 
We reduce system (11) to the form (2a). Using the 
Routh transform, we define the impulse 

 

p = 
q
L
&∂

∂                                    (13) 

 
and construct the Hamiltonian function 
 

H(q, p) = ( , p) − L(q, )                     (14) q& q&
 
where, in view of (12), (13),  
 

H(q, p) = T(q, ) + Π(q) q&
                  

     (q, p) = M q& −1(q)p                           (15) 
 
Substituting relations (13), (14) into Eq. (11), we 
obtain the system  
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We suppose that function (12) and the coefficients in 
the right hand-side of system (15) are smooth 
enough, and the assumptions of Section 2 hold.   
 
Using the notations X1 = q, X2 = p, f1(X) = ∂H/∂p, 
f2(X) = − ∂H/∂q − B∂H/∂p, we reduce system (16) to 
the form (2a). This implies the Hamilton Jacobi 
equation in the form 

[H,S] − (B
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with the initial condition S(0,0) = 0. Here [H, S] 
denotes the Poisson bracket, that is 

 

[H, S] =  (
p
H

∂
∂ ,

q
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∂
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It follows from relations (17), (18) that Eq (17) is 
satisfied if  

q
S

∂
∂  = K

q
H

∂
∂ ,  

p
S

∂
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p
H

∂
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where the matrices K = 2A−1B and A = σ′σ.  
 
Substitution of relations (14), (15) into Eqs (19) 
yields 

 

p
S

∂
∂  = KM−1(q)p 

 
S(q, p) = (p, KM−1(q)p) + Q(q)             (20) 

 
Inserting function (20) into Eqs (19) and considering 
definition (15) we find that the function Q(q) 
satisfies the conditions  
 

q
Q

∂
∂

 = K
q∂

∂Π , Q(0) = 0                    (21) 

 
Equations (20) and (21) determine the solution of Eq 
(17) and, therefore, estimate (9). 
 
Consider some special cases allowing the precise 
solution.  
 
1. The matrix K = kIn, where In is the identity matrix 
of the n-th order, k is a scalar. Thus we obtain 
 

S(q,p) = kH(q,p)                      (22) 
 
2. The matrix M(q) = M  = Const, the matrix K is 
represented as K = diag{k1,…,kn} = Ink, where the 
vector k = (k1,…,kn). Let the potential function allow 
decomposition 
 

Π(q) = , f∑
=

n

i
iqif

1
)( i(0) = 0                   (23) 

 
Thus we have  
 

Q(q) =  k∑
=

n

i 1
ifi(qi) = (k, f(q))                 (24) 

 

  



  
where the vector f = (f1,…, fn). It follows from 
relations (20), (21) and (24) that 
 

S(q,p) =  (p, KM−1p) + (k, f(q))             (25) 
 
Remarks. An asymptotic estimate, similar to formula 
(9), can be obtained if the matrix B = εβ.  In this case 
the estimate of the mean escape time takes the form  
 

0
lim
→ε

ε ln (ET 
ε) =

Γ∈X
min S(X)               (26) 

 
 

4. EXAMPLES 
 

1. Motion of a mass point in the plane. There arise a 
number of problems where a system should be kept 
in a given domain G until some particular job is 
finished. For example, in the problem of pointing a 
telescope on a satellite, the domain G and the 
duration of the process are determined by the object 
to be photographed and the time required. Meerkov 
(1988) considered the pointing problem assuming the 
system to be nondegenerate and the boundary 
conditions to be fixed for all variables. Akulenko and 
Kovaleva (2003) discussed a problem of the 
controlled pointing for a system in the plane. The 
system was presumed to be degenerate and weakly 
dissipated, and the boundary conditions allowed 
separation. These assumptions allowed reduction of a 
four-dimensional system to a pair of the single-
degree of freedom systems. The averaging approach 
was used to simplify the equations of motion and the 
solution. We obtain the solution of the mean escape 
time problem without the simplifying assumptions.  
 
We specify an admissible domain of motion in the 
plane (q1, q2) as a circle of radius γ 2   
 

Gq: {q1
2 + q2

2 < γ 
2}                        (27) 

 
The periphery of the circle is  
 

Γq: {q1
2 + q2

2 = γ 
2}                        (28) 

 
Thus the boundary condition depends on the 
coordinates q but is independent of the velocities . 
There are no particular restrictions to the velocities p

q&

i 
= q& i. However, the boundedness of the admissible 
domain G is presumed. This implies the admissible  
domain in the four-dimensional phase space as G : 
Gq × P2, with the boundary Γ : Γq × P2, where P 

2 = 
{p1

2 + p2
2 = p 

2 < ∞}. 
 
The angle between the vector of perturbation and the 
axe q1 is assumed uniformly distributed within the 
interval [0, 2π]. This makes the projections of the 
perturbation force to the axes q1, q2 non-correlated.  
 

The linear regulator is used to increase the time until 
escape from the admissible domain. Following 
Akulenko and Kovaleva (2003), we reduce the 
equations of motion to the form 

 

iq&&  + b  + iq&
iq
qqU

∂
∂ ),( 21 = εσ(t) , i = 1, 2   )(tw&

 

U(q1,q2) = 
2
1 c(q1

2 + q2
2)                     (29) 

 
The equations are independent and identical but the 
variables q1, q2 are interconnected through the 
boundary condition (28).  
 
Define the vector p =  and write the Hamiltonian 
function 

q&

 

H(q1, q2,  p1, p2) = 2
1 [p1

2 + p2
2 + c(q1

2 + q2
2)]      (30) 

  
Thus we have  
 

S(q, p) = 
2
k [ p1

2 +  p2
2 + c(q1

2 + q2
2)]        (31) 

 
where the coefficient k  = 2b/σ 2.                               

 
Substitution of formula (31) into relation (9) yields 
the estimate 
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2
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It follows from the last equality that the stiffness and 
the dissipation coefficients of the regulator play an 
identical role in the increase of the mean escape time 
but dissipation in the system is requisite to make the 
fixed point q = p = 0 asymptotically stable. 
 
2. Motion of the particle in the Henon-Heiles 
potential. The Henon-Heiles potential was 
introduced to describe the motion of a star in a 
gravitational potential of a galaxy. Since the angular 
momentum of the star is constant, the motion is 
equivalent to the motion in a plane, and the potential 
is two-dimensional.  
 
It has been shown (Lichtenberg and Lieberman, 
1983, Alligood et al., 1997) that the system with the 
Henon-Heiles potential is an example of a 
conservative system with chaotic behaviour. The 
passage through the potential barrier is associated 
with the passage from regular to irregular motion. 
From this viewpoint, estimation of the mean escape 

  



  
time can be interpreted as estimation of lifetime of 
the system.  
 
The equations of motion take the form (29) with the 
potential  
 

U(q1, q2) = 2
1 (q1

2 + q2
2 + 2q1

2q2 − 3
2  q2

3)        (33) 
 
Potential (33) has the equipotential curves U(q1, q2) = 
const < 1/6, the equality U(q1, q2) = 1/6 corresponds 
to the separatrix (Lichtenberg and Lieberman, 1983). 
The passage through the separatrix is associated with 
the occurrence of chaos and should be avoided. This 
implies the admissible in the form 
 

Gq: {U(q1, q2) < 1/6}, Γq: {U(q1, q2) = 1/6}       (34) 
 

Arguing as above, we find 
  

0
lim
→ε

ε 2 ln (E εT ) = ),(min 21 qqU
q

κ
Γ

= 26σ
bc      (35) 

 
Let the admissible domain be the circle (27) with 
boundary (28) provided U(q1, q2) < 1/6, q1, q2 ∈ Γq. 
In this case we obtain  

 

qΓ
min kU(q1, q2) = 2σ

b γ 2(1 + 5
2

15
14 γ)     (36) 

 
 

CONCLUSIONS 
 

Theory of large deviations is applied to the problem 
of escape from the reference domain for a weekly-
perturbed Lagrangian system. Formally, the system is 
interpreted as a nonlinear degenerate diffusion. The 
use of the large deviation theory allows reduction of 
the mean escape problem to the deterministic 
variational problem for a relevant action functional. 
It is shown that, under non-restrictive assumptions, 
the solution of the variational problem can be found 
in an analytic form, and the mean escape time can be 
expressed explicitly through the kinetic and potential 
energy and the dissipation parameters of the systems. 
Several applied examples are considered. In 
particular, the problem of escape through the 
potential barrier and the passage from regular to 
irregular dynamics are discussed. The results are of 
potential use in related problems of the asymptotic 
analysis and control of Lagrangian systems.  
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