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Abstract: This paper studies the technique of the composite nonlinear feedback (CNF)
control for a class of cascade nonlinear systems with input saturation. In particular, the
class of systems under consideration consists of two parts, a linear portion and a nonlinear
portion with the output of the linear part connecting to the input of the nonlinear part
and with the input of the given system being saturated. The objective of this paper is to
design a composite nonlinear feedback control law based on the linear portion such that
the output of the system tracks a step input rapidly with small overshoot and at the same
time maintains the stability of the whole cascade system. The result has been successfully
demonstrated by a numerical example. Copyright c�2005 IFAC
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1. INTRODUCTION

The issue of tracking performance of control systems
is practically important to many control applications.
We consider in this paper a nonlinear control tech-
nique that would yield a better tracking performance
for a class of partially linear composite systems with
input saturation. The class of systems under consider-
ation consists of two parts, a linear portion and a non-
linear portion with the output of the linear part con-
necting to the input of the nonlinear part and with the
input of the given system being saturated. Many non-
linear systems can be transformed into partially linear
composite systems via a state-space diffeomorphism
and/or a preliminary feedback transformations (see,
for example, Isidori (1995)). In recent two decades,
the stabilization problems for partially linear compos-
ite systems have been extensively studied by many
researchers such as Byrnes and Isidori (1991), Suss-
mann and Kokotovic (1991), Lin and Saberi (1992),
Lin and Saberi (1993), Teel (1992), Jiang and Mareels
(2001) and Jiang et al. (2003), to name just a few. In
particular, it was shown in Sussmann and Kokotovic

(1991) that a nonlinear system which is zero input
globally asymptotically stable (GAS) will preserve its
GAS property if its input decreases to zero with a very
fast exponential rate. It is not difficult to make the
output of the linear part, which is the input of the non-
linear part, to converge to zero with some exponential
rate. However, the peaking phenomenon in linear sys-
tems may destroy the stability of the nonlinear systems
before the output rapidly decays to zero.

In this paper, we consider a tracking problem (or
an equivalent output regulation) for partially linear
composite systems with input saturation. Particular
attention is paid to improve the transient performance
of the closed-loop system by using a so-called com-
posite nonlinear feedback (CNF) control technique.
The research on nonlinear output regulation problems
has made great progress since 1990s. Related results
have been extensively reported in the literature (see,
for example, Isidori and Byrnes (1990), Byrnes et al.
(1997), Huang (2001) and Huang and Chen (2002)).
However, the transient performance is not considered
in most of these works. We consider in this work



a tracking control problem with a constant (or step)
reference. To improve the tracking performance, Lin
et al. proposed the CNF control technique in their
pioneer work Lin et al. (1998) for a class of second or-
der linear systems. Turner et al. (2000) later extended
the results of Lin et al. (1998) to higher order and
multiple input systems under a restrictive assumption
on the system. However, both Lin et al. (1998) and
Turner et al. (2000) considered only the state feedback
case. Recently, Chen et al. (2003) have developed a
CNF control to a more general class of systems with
measurement feedback, and successfully applied the
technique to solve a hard disk drive servo problem.
The CNF control consists of a linear feedback law
and a nonlinear feedback law without any switching
element. The linear feedback part is designed to yield
a closed-loop system with a small damping ratio for a
quick response, while at the same time not exceeding
the actuator limits for desired command input levels.
The nonlinear feedback law is used to increase the
damping ratio of the closed-loop system as the system
output approaches the target reference to reduce the
overshoot caused by the linear part. This paper aims to
design a CNF control law for partially linear compos-
ite systems with input saturation based on the linear
part of the composite system such that the closed-loop
system has desired performances, e.g., quick response
and small overshoot, and the tracking error decays to
zero with sufficiently large exponential rate to guaran-
tee the stability of the whole system.

2. PROBLEM DESCRIPTION AND
PRELIMINARIES

Consider a partially linear composite systems with
input saturation characterized by

�� � ���� ��� ���� � �� (1)

������� ������� ���� � �� (2)

���� (3)

where ��� �� � �
� � �

� is the state, � � � the
control input, and � � � the output of the system,
� is a smooth (i.e., ��) function, �, � and � are
appropriate dimensional constant matrices, and ��� 	
� � � represents the actuator saturation defined as

������ � �
�����
������� ���� (4)

with ���� being the saturation level of the input. We
aim to design a CNF control law for (1)–(3) such
that the resulting closed-loop system is stable and the
output of the closed-loop system will track a step
reference input 	 rapidly without experiencing large
overshoot. To this end, we assume that

A1: ����� is controllable;

A2: ������� is invertible and has no invariant zeros
at 
 � �; and

A3: There exists a �� positive definite function �����
and class�� functions 
� and 
� such that


������ � ����� � 
������� (5)

������

��
���� 	� � �� (6)

for all � � �� .

Lemma 2.1. Consider the nonlinear control system of
the form

�� � ���� 	 � ������ (7)

which satisfies Assumption A3. Given any � � � and
� � �, there exists a scalar � � � such that for any

������ � ������ � 	 �� (8)

the solution ���� of (7) exists and is bounded for all
� 	 � provided that ���� � �� 	� �� 	 ��� � ��.
For such an �, we say that � is good for ��� ��.

Proof. The proof of this Lemma follows the lines
of reasoning as in Theorem 4.1 of Sussmann and
Kokotovic (1991). Noting that ����� is a �� positive
definite function, we let

� � ��������� 	 � � ��� (9)

for any given � � �. Since ����� is �� and ���� ��
smooth, there exists a constant � � � such that, for all
� � �� and ��� � �,������������

���� 	 � ��

���� � �� (10)

Let � � �
� . Then for every solution ���� of (7) under

any admissible input such that ������ � � and ���� �
�� ,

�������� � �� �� � � � � �� (11)

By the continuousness of ������
�� ���� 	� and (6), there

exists an 
 � � such that

������

��
���� 	 � �� � � (12)

when � � ����� � �� � and ��� � 
.

Next, we choose � such that

����	 � 
� (13)

If � is an input satisfying (8), and ���� is the solution
of (7) with ���� � �� , we claim that

�������� � �� �� � 	 �� (14)



In fact, we have proved that �������� � � � � for
� � � � � . For � � � , (8) and (13) implies ������ � 
,
and then by (12), we have

������

��
���� 	 � �� � �� (15)

Thus,

�������� � �������� � �� �� � � �� (16)

Moreover, ���� is bounded by

������ � 
��� ������� � 

��
� ��� ��� (17)

This completes the proof of Lemma 2.1.

Remark 2.1. Assumption A3 can be relaxed to be
satisfied locally, e.g., in��� . In this case, it is clear that,
from the proof of Lemma 2.1, by selecting � � � � ��,
and � � � such that

�� 	 ����� � �� �� 
 ��� � (18)

then there exists an � � � which is good for ��� ��.

3. DESIGN OF THE COMPOSITE NONLINEAR
FEEDBACK CONTROL LAW

In this section, we proceed to design a CNF control
law for the system (1)–(3). We assume that the given
system (1)–(3) satisfies Assumptions A1 to A3, and
all the states of the linear system (2) are available for
feedback. The CNF control law can be constructed by
the following step-by-step procedure.

STEP S.1. Select appropriate scalars � � �, � � �
and � � � such that � is good for ��� ��.

STEP S.2. Design a linear feedback law

�L � ����	 (19)

where 	 is a step command input and � is chosen
such that

1. � � �� is Hurwitz and the output of the
following system,

�� � ����� ��� � � ��� (20)

has ������ � ����� for some � � �; and
2. The closed-loop system ��
� ����� ����

has certain desired properties, e.g., having a
small damping ratio.

The existence of such an � is guaranteed by
Assumption A1, i.e., ����� is controllable. In fact,
it can be designed using methods such as the � and
 � optimization approaches, as well as the robust
and perfect tracking technique. � is a scalar given
by

� � �������� �������� (21)

Note that� is well defined since���� is Hurwitz
and the triple ������� is invertible and has no
invariant zeros at 
 � �. We also let

 	� ��� � ����� ������ (22)

and

�	 	� �		 	� ������ �����	� (23)

STEP S.3. Given a positive-define matrix! � ���� ,
solve the Lyapunov equation

����� ��" � " ����� � � �! (24)

for" � �. Note that such a" exists since���� is
asymptotically stable. Then, the nonlinear feedback
control law �N��� is given by

�N � #�	� ����" ��� �	� (25)

where #�	� �� is any non-positive function locally
Lipschitz in �. This nonlinear control law is used to
change the system closed-loop damping ratio as the
output approaches the step command input.

STEP S.4. The CNF control law is given by combin-
ing the linear and nonlinear feedback law derived in
the previous steps,

�� �L � �N

� ����	 � #�	� ����" ��� �	�� (26)

Theorem 3.1. Consider the given system (1)–(3) satis-
fies Assumptions A1 to A3. Let scalars � � �, � � �
and � � � be selected such that � is good for ��� ��,
and let

� 	�

�
� � �� 	 ��� �

�

�

�
$�
��" �

$����" �

�
� (27)

For any Æ � ��� ��, let �Æ � � be the largest positive
scalar satisfying the following condition:

���� � ������� Æ� (28)

for all � � �Æ , where

�Æ 	� �� 	 ��"� � �Æ� � � �� � (29)

Then for any non-positive function #�	� ��, locally
Lipschitz in �, the state trajectory of the closed-loop
system comprising the given system (1)–(3) and the
CNF control law (26) is bounded for all � 	 �, pro-
vided that the initial states �� and ��, and amplitude
of step input 	 satisfy �� � �� , and

��� 	� ��� � �	� � �Æ � � 	� � ����� (30)

Moreover, the system output � tracks asymptotically
the step command input of amplitude 	.

Proof. The closed-loop system system comprising the
given plant (1)-(3) and the CNF control law (26) is
given by



�� � ���� �� (31)

���������������	 � #��" ��� �	��(32)

���� (33)

Let �� � �� �	. The closed-loop system system (31)-
(33) can be expressed as

�� � ���� 	 � ���� (34)
���� ����� �����% (35)

where

%� ����� ��� 	 � #��" ���� � ��� 	� (36)

Define a Lyapunov function � ���� � �� �" ��, then we
have

$�
��" �����
� � ��
���� � $����" ����� (37)

where $�
��" � and $����" � are the minimal and
maximal eigenvalues of " respectively. Then,

�� ���� �
�� ����

���
������ �����%�

�����! ���
�� ����

���
�%�

It have been shown in (Chen et al., 2003) that,

�� ����

���
�% � ����"�% � �

for all �� � �Æ and � 	� � Æ����. Thus

�� ���� � ����! ��� �� � �Æ (38)

i.e.,�Æ is an invariant set of the system (35). Thus the
solution of (35) exists and is bounded for all � 	 �
and ��� � �Æ . Noting that � � �	 � ��, � exists and is
bounded for all � 	 � and �� satisfies (30).

To show the existence and boundedness of the solution
� of (34), it suffices to show that ���� 	� ����� �
�����. To this end, consider the solution of the fol-
lowing system

���� ����� �����%� ����� � �Æ �

Since �� ��
�
��
 �% � �, we have

�� ����

���
������ ��� ��%� �

�� ����

���
����� ����

Noting that � is chosen such that

��&����� ��&���������

where &��� is the solution of

�& � ����� �&� &��� � �Æ

it is clear that

������� �

�
$����" �

$�
��" �

����

�&����

for ����� � &��� � �Æ. Thus

������� � ������

�
$����" �

$�
��" �

����

��&����

� �

�
$����" �

$�
��" �

����

�&��������

� ������ ����� � &��� � �Æ �

By Lemma 2.1, the solution of (34) exists and is
bounded for all � 	 � and �� � �� .

Moreover, noting that ! � �, all trajectories of (35)
starting from�Æ will converge to the origin. Thus,

�
�
���

���� � �	

for all initial state �� and the step command input of
amplitude 	 that satisfy (30). Therefore,

�
�
���

���� � ��	 � ������� �����	 � 	�

This completes the proof of Theorem 3.1.

Remark 3.1. The CNF control law (26) is reduced to
the linear feedback control law (19) when the func-
tion #�	� �� � �. Thus, Theorem 3.1 shows that the
additional nonlinear feedback control law (25) does
not affect the ability of the closed-loop system to
track the command input. Any command input that
can be asymptotically tracked by the linear control
law (19) can also be asymptotically tracked by the
CNF control law (26). However, this additional term
�N in the CNF control law can be used to improve the
performance of the overall closed-loop system. This
is the key property of the control technique studied in
this manuscript.

Remark 3.2. The main purpose of adding the nonlin-
ear part to the CNF control law is to speed up the
settling time, or equivalently to contribute a significant
value to the control input when the tracking error,
	 � �, is small. The nonlinear part, in general, will be
in action when the control signal is far away from its
saturation level and, thus, it will not cause the control
input to hit its limits. Under such a circumstance, it is
straightforward to verify that the closed-loop system
comprising (2) and (26) can be expressed as

��� � ����� ���� #�	� �����" ��� (39)

It is clear that eigenvalues of the closed-loop system
(39) can be changed by the function #�	� ��. In fact,
define the auxiliary system ��
��
� as

��
��
� 	���
��
� ���
��
����
�

	���" �
� ����� �����



Then, the system (39) can be expressed as Figure 1.
Using the well-known classical root-locus theory. The
poles of the closed-loop system (39) approach the lo-
cation of the invariant zeros of��
��
� as �#� becomes
larger and larger.

� � ��
�

�� OUTPUT

��
��
��#
�

Fig. 1. Interpretation of the nonlinear function #�	� ��.

Remark 3.3. We usually choose #�	� �� as a function
of the tracking error 	 � �, which in most practical
situations is known and available for feedback, such
that #�	� �� has the following two properties, 1) when
the output � is far away from the final set point,
�#�	� ��� is small and thus the effect of the nonlinear
part on the overall system is very limited; and 2)
when the output approaches the set point, �#�	� ���
becomes larger and larger, and the nonlinear control
law will become effective. Of course, the choice of
#�	� �� is non-unique. The following choice is one of
the suitable candidates,

#�	� �� � ���
��������
������ � �����
��������� � (40)

where �� � � and 
� � � are tuning parameters.

4. AN ILLUSTRATIVE EXAMPLE

Consider a partially linear composite system (see Lin
and Saberi (1993)) characterized by

�� ��� � ���� (41)

���

�
�����

� � � � �
�� � � � �
� � � � �
� � �� � �
� � � � �

	




���

�
�����
�
�
�
�
�

	




� ������ (42)

��
�
� � � � �



� (43)

with ���� � �. We will design a CNF controller
for the system (41)–(43) such that the output of the
closed-loop system tracks a step reference 	 � ���. It
is simple to verify that the triple ������� is control-
lable and has a relative degree of � and four invariant
zeros at �'��'� '��'�. Thus, Assumptions A1 and A2
are satisfied. Let � � � and � � �, then it can be
shown that any � � � is good for ��� ��. To design the
CNF control law, we use the linear feedback control
law � � �� with

� ��������� ������ ����� ���� ���� � (44)

as reported in Lin and Saberi (1993). Next, we select
! � �� and solve the following Lyapunov equation

����� ��" � " ����� � � �!� (45)

which yields a solution

" �

�
�����

����� ����� ����� ������ �����
����� ����� ����� ���� ����
����� ����� ����� ����� ����
������ ���� ����� ����� ����
����� ���� ���� ���� ����

	




� � ��

The nonlinear function #�	� �� is chosen as

#�	� �� � ������������
��� � ������
�������� (46)

Finally, the CNF control law is given by

� � ����	 � #�	� ����" ��� �	� (47)

where � � ������ and �	 � ���� � ��� � �����.
The simulation result is shown in Figure 2 where the
transient performance is compared between the linear
control law and the CNF control law under the same
initial conditions ���� � ���� and ���� � �. Clearly,
the CNF control has outperformed the linear coun-
terpart significantly. Comparing Figure 2.(a) and Fig-
ure 2.(b), we can see that all the states of the closed-
loop system under the CNF control convergence to the
steady state quickly, and their transient amplitudes are
much smaller than the ones under the linear control
law. Figure 2.(c) and Figure 2.(d) show the system
output of the closed-loop system and the control inputs
applied on the system under the linear control and the
CNF control. The overshoot under the linear control
is ������, but under the CNF control, there is no
overshoot at all.

5. CONCLUSIONS

The composite nonlinear feedback control technique
is extended to the partially linear composite system
with input saturation. Simulation result shows that
the nonlinear control law greatly improved the perfor-
mance of the closed-loop system. It should be noted
that, in this paper, we have assumed that the linear part
of the composite system is SISO, and all the states
of the linear part are available to feedback. It should
not be too difficult to extend the result of this paper to
MIMO systems with measurement feedback using the
result reported in He et al. (2003).
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