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Abstract:  This paper deals with the application of robust decentralized controller design for power systems 
using linear matrix inequality (LMI) techniques. In the design, the desired stability of the system is 
guaranteed while at the same time the tolerable bounds in the uncertainties due to structural changes, 
nonlinearities and load variations, are maximized. The approach allows the inclusion of additional design 
constraints such as the size and structure of the gain matrices. The paper also presents a decomposition 
procedure using the clustering technique of the states, inputs and outputs structure information to compute 
directly the appropriate diagonal structures of the output gain matrix for practical implementation. The 
algorithms were implemented on a test system and simulation results for power system stabilizer (PSS) design 
are presented. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
The emergence of deregulation and the subsequent 
restructuring of national electric power systems have 
necessitated the use of accurate model descriptions 
and new controller design techniques for 
guaranteeing end-to-end reliable electric service (Ilic 
and Zaborszky, 2000; Kundur, 1994). In such 
environment, in which the number of components of 
the power system grows significantly, the system 
tends to be subjected to severe loading conditions 
and it becomes increasingly difficult to predict the 
system response to disturbances. With such 
conditions it is imperative to develop and design new 
robust control strategies that can guarantee 
satisfactory system performance against a wide range 
of disturbances. 

 
This paper presents a robust decentralized controller 
design  for  power  systems  that  is formulated in the  
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framework of convex optimization involving LMIs. 
An interconnection based modeling approach is 
introduced – an approach which explicitly takes into 
account the interactions among subsystems and the 
effects of nonlinearities within each subsystems. 
  
During the last three decades, decentralized 
controller structure for interconnected power systems 
which conforms to each subsystem is one of the 
predominant subjects in this area (Aoki, 1972; Siljak, 
1978, 1991). A large number of results concerning 
robust decentralized stabilization of interconnected 
power systems in this perspective have been reported 
(Chapman, et al., 1994; Guo, et al., 2000; Jain, et al., 
1997; Xie, et al., 2000). The interesting aspect of 
these approaches is that of finding bounds on the 
gains of the local feedback in conjunction with 
appropriately chosen Lyapunov functions so as to 
guarantee stability over a wide range of operating 
points and disturbances. However, the results from 
these approaches turn out to be conservative and 
need additional simulations to obtain the optimal 
gains for the controllers. Another interesting 
decentralized controller scheme for governor/turbine 
control, based on the approach outlined in the works 



 

of Siljak and Stipanovic (2000), was presented in 
(Siljak, et al., 2002). The remarkable feature of this 
approach is the use of LMIs optimization (Boyd, et 
al., 1994) in addressing the problem of robust 
stability in the presence of interconnection 
uncertainties between subsystems.  
 
In line with this perspective, this paper presents a 
general approach for designing power system 
controllers, whereby the interactions between 
subsystems, changes in operating conditions as well 
as the effects of system nonlinearities can all be 
taken into account. The application of this approach 
to a multimachine power system allows a 
coordinated tuning of controllers that incorporates 
robustness to changes in the system. 
 
This paper is organized as follows. In Section 2, the 
robust decentralized controller design problem is 
formulated in the framework of convex optimization. 
Then in Section 3, simulation results for PSS 
structured controllers together with performance 
indices are given. Finally, the paper is concluded by 
brief remarks in Section 4. The instrumental theorem 
in this paper is placed in Appendix-A. In Appendix-
B, a brief introduction on nonlinear optimization 
based parameter tuning of controllers in 
multimachine systems is presented. 
 
 

2. ROBUST DECENTRALIZED CONTROL IN CONVEX 
OPTIMIZATION FRAMEWORK INVOLVING LMIS  

 
 
2.1 Mathematical Model for Large  Scale Systems 

with Interconnection Terms 
 
Consider a large-scale interconnected system S  
composed of N  subsystems iS , Ni ,2,1, K=  described 
by the following equations: 
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where in

i t Rx ∈)(  is the state vector, im
i t Ru ∈)(  is the 

control variable, iq
i t Ry ∈)(  is the output variable of the 

subsystem iS . In general, formulating power system 
model in the form of (1) involves linearizing the 
nonlinear system equations for a particular operating 
condition and then decomposing the corresponding 
system equations as a sum of two sets of equations. 
While the former describes the system as a 
hierarchical interconnection of N  subsystems, the 
latter represents the interactions among the 
subsystems. The matrices iA , iB  , iC  and  ijE  are 
constant matrices of appropriate dimensions 
conformable to each iS . Furthermore, the matrix ijE  
represents the interconnections and/or interactions 
among subsystems. The term )(⋅ij∆E  is intentionally 

included to take into account the effect of any 
deviation from the given operating condition due to 
nonlinearities and structural changes in the system.  
 
The interconnection and uncertainty term in (1) can 
be rewritten in the form of  
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where iG  are constant  matrices of appropriate 
dimensions and assume further that the following 
quadratic constraints hold: 
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where 0>iξ  are parameters related to interconnection 
uncertainties in the system and iH  are matrices that 
reflect the nature of interconnections among 
subsystems. Moreover, assume that the pairs )( ii B,A  
and )( ii C,A  are stabilizable and observable, 
respectively.   
 
With the assumption of no “overlapping” among 

)(tix , the state variable nt Rx ∈)(  of the overall system 
is denoted by TT

N
TTt )]()()([)( ⋅⋅⋅= x,,x,xx K21 . Thus, the 

interconnected system S  can then be written in a 
compact form as 
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where nRx∈  is the state, mRu∈  is the input and qRy∈  
is the output of the overall system S , and all 
matrices are constant matrices of appropriate 
dimensions with }diag{ ND A...,,A,AA 21= , 

}diag{ ND B...,,B,BB 21= , }{diag ND C...,,C,CC 21=  and 
}{diag ND G...,,G,GG 21= .  

 
The interconnection and uncertainty function 

TT
N

TT ][ g...,,g,gg 21=  is bounded as 
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In the following, the feedback control law must 
satisfy decentralized information structure constraints 
conformable to the subsystems, so that each 
subsystem is controlled using only its locally 
available information (Aoki, 1972; Siljak, 1991). 
This critical requirement implies that the thi - 
subsystem is controlled by local control law 
  

)()( 6iiii xKxu =  
 
where iK is an ii nm ×   constant matrix. Thus, the 
control law for the overall system will be 
 

     )()( 7xKxu D=  
 



 

where }diag{ ND K...,,K,KK 21=  is a constant nm×  matrix 
with diagonal blocks compatible with those of DA  
and DB . 
 
The instrumental theorem presented in Appendix-A 
is used in establishing the robust stability of the 
closed-loop interconnected system 
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via a decentralized robust control strategy (6) under 
the constraints (5) on the function ),( xg t . 
In most practical cases, it is not possible to get all the 
state variables ix  of the system. However if only 
linear combinations called output variables iy  are 
used as feedback signals for the system then the 
decentralized output feedback strategies will have the 
following form 

   )(9xCFyFu iiiii ≡=  
 
where iF  is an ii qm ×  constant output controller 
matrix. One way of achieving similar effect with (9) 
as with the local state controllers (6) is to require 

iiiii CFBKB ≡  so that the closed-loop in (8) will be 
unaltered.  By defining the structure of the matrices 

DY   and DL  in Theorem 1 of the Appendix A as 
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where }{diag NU,,U,UU K21=  is a fixed user defined 
block diagonal matrix with blocks iU  of dimension  

ii qn × . Moreover, }{diag )()()( N
OOOO Y,,Y,YY K21=  and 

}{diag )()()( N
CCCC Y,,Y,YY K21=  are symmetric block 

diagonal matrices with blocks )(i
OY  and )(i

CY  of 
dimensions ii nn ×  and ii qq × , respectively.   
 
Similarly, by defining the structure of the matrix DL  
as 

       )(11T
CD ULL ≡  

 
where }diag{ )()()( N

CCCC L,,L,LL K21=  is a block diagonal 
matrix with blocks of )(i

CL  dimension ii qm × . With 
this, the matrix DK  can be computed by using matrix 
inversion lemma as: 
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Using relation (12) together with the general form of 
(9) for output-decentralized system and moreover by 
requiring DO

T CYU =−1  as an additional constraint within 
the LMI optimization framework, it is possible to 
compute directly the matrix DF  as  
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T

CO
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2.2 Robust decentralized controller  design 
formulation 

 
Using Theorem 1 together with (10) and (11) of the 
preceding subsection, the decentralized controller 
design problem for the interconnected system, with 
uncertainties vector ξ , has been reduced to that of 
finding symmetric block diagonal matrices OY , CY  
and a block diagonal matrix CL . The basic idea, 
motivated by the work of Siljak and Stipanovic 
(2000) on maximizing the class of perturbations that 
can be tolerated by the closed loop system, is as 
follows. By applying repeatedly the Schur 
complement to (A.1) (see Appendix A) and using the 
structure of matrices (10) and (11), the robust 
decentralized controller design can be formulated as 
convex optimization involving the LMIs. This 
formulation guarantees the solvability of OY , CY  and 

CL  by maximizing at the same time the 
interconnection uncertainty bounds, and 
consequently, solving the robust output decentralized 
controller for the interconnected system. To make the 
problem more practical, the sum of 2

iξ1/  which is 
related to the uncertainties in the system can be 
minimized while at the same time ensuring a 
prescribed upper uncertainty bound on the individual 
interconnection terms. Furthermore, by limiting the 
norm of the individual gains of the controller the 
optimization problem can be formulated as 
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D

T
DDD

T
DDDDD BLLBAYYAQ +++= , 2

ii ξγ 1/= ; and DY  
and DL  are given according to (10) and (11), 
respectively. Moreover, 

i
KY  and 

i
KL are constraints 

on the magnitudes of decentralized gains, satisfying 
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Based on (14) and (15), the algorithm for 
determining the robust output decentralized 
controller and the associated class of perturbations 
that can be tolerated by the interconnected system is 
given as follows:  
 
Algorithm: 
Step 1: Select the degree of exponential stability 0α>  

(see Remark 1 in Appendix A). 
Step 2: Check the feasibility of the convex 

optimization problem (14) subject to (15). If it is 
infeasible, then go to Step 1 and modify the 



 

required degree of exponential stability, else 
proceed to the next step.  

 Step 3: Solve the optimization problem in (14) and 
(15) so as to determine OY , CY  and CL  while at the 
same time maximizing the degree of 
interconnection bounds. 

Step 4: Determine the decentralized output feedback 
control matrix DF  using (13). 

 
3. CASE STUDY 

 
The robust decentralized controller design approach 
presented in the previous section of this paper is now 
applied on a test system. This system, which is 
shown in Fig. 1, has been specifically designed to 
study the fundamental behaviour of large 
interconnected power systems including inter-area 
oscillations in power systems (Klein, et al., 1991). 
The system has four machines and each machine is 
equipped with IEEE standard exciter and governor 
controllers. In the design, speed signals from each 
generator are used for robust decentralized PSS 
control through the excitation systems. Fig. 2 shows 
the PSS block structure for the thi  - machine 
including the values for iwT , 1iT  and 2iT  that are used 
in the design. While the washout filter and a first 
order phase-lead block parameters are chosen 
according to conventional PSS design methods, the 
gain iK  were estimated based on the technique 
described in the previous section. After augmenting 
the washout filter and phase-lead block in the system, 
the design problem is formulated as a convex 
optimization problem involving LMIs so as to 
determine the optimal gain iK  for each controller. 
Moreover, issues such as upper bounds on the gains 
of the controllers that guarantee prescribed 
uncertainty bounds and robust stability are included 
in the formulation while designing the optimal gain 

iK  for each PSS. 
 
To demonstrate the advantages along with the 
robustness of the proposed method, comparisons 
were made with simulation results obtained from a 
nonlinear based optimization (NBO) for tuning 
power system controllers. A short description of the 
NBO technique can be found in Appendix B. 
 

 
 
Fig. 1. One-line diagram of four machine two area 

system. 
 

 
 
Fig. 2. General structure of the thi - generator 

together with the PSS structured controller in the 
multimachine power system. 

 
A three-phase fault with different fault durations was 
applied at different locations to verify the 
performance of the proposed LMI based approach as 
well as that of NBO approach. The NBO design 
approach was carried out for a fault duration of     
150 ms applied to the bus near to generator G2 in 
Area-A for the base loading condition of 

Mvar]150QMW,1600[P L1L1 ==   and 
Mvar]120QMW,2400[P L2L2 == . For the LMI based 

controller design, the system was linearized for the 
same operating condition and the corresponding 
system equations were decomposed as a sum of two 
sets of equations. While the former describes the 
system as a hierarchical interconnection of N  
subsystems, the latter represents the interactions 
among the subsystems. The damping characteristics 
of the system with and without PSS controllers for 
both approaches are shown in Fig.3. The computed 
PSS gains are also given in Table 1. The PSSs 
designed through NBO approach were focused on 
minimizing the quadratic deviation of generator 
power following a short circuit. Therefore, it is 
obvious that these PSSs provide slightly better 
damping for the considered operating condition. It is 
also observed that the damping achieved from the 
LMI controllers is quite good and acceptable. 
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Fig. 3. Transient responses of Generator G2 to a 

short circuit at node F in Area A 
 
To further assess the effectiveness of the proposed 
approach regarding robustness, the transient 
performance indices were computed for different 

F 
PL1, QL1 PL2, QL2 

Load - 1 
PL1 = 1600 MW 
QL1 = 150 Mvar

G1 

G2 G3 

G425 km 10 km 110 km 25 km 10 km 110 km 

Area - A Area - B 

Load - 2 
  PL2 = 2400 MW 
 QL2 = 120 Mvar 



 

loading conditions at node 1 ]Q,[P L1L1  and node 2 
]Q,[P L2L2  while keeping constant total load in the 

system. The transient performance indices for 
generator powers iGP , generator terminal voltages itV  
and excitation voltages ifdE  following a short circuit 
of 150 ms duration at node F in Area-A are 
computed using the following equations, 
respectively. 
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These transient performance indices, which are used 
as a qualitative measure of the post-disturbance 
behaviour of the system for any fault and/or sudden 
load changes, are then normalized to the transient 
performance indices of the base loading condition 
(without PSSs) for which the design has been 
carried-out for both approaches. The normalized 
transient performance indices and the ratios of the 
normalized transient performance indices are shown 
in Fig. 4 for the proposed and the NBO approaches. 
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Fig. 4. Plot of the normalized transient performances 

for LMI with degree of stability α = 0.15 and 
NBO approaches. 

It can be seen from these results that, for GPI  
performance index, the NBO approach performs 
better near or in the vicinity of the base loading 
condition, i.e. Mvar]150QMW,1600[P L1L1 ==  and 

Mvar]120QMW,2400[P L2L2 ==  corresponding to 
60%] %,[40  in Fig. 4. This is due to the fact that the 

NBO approach aimed only to improve the damping 
behaviour of the system by minimizing the transient 
responses of the generator output powers. However, 
as the loading conditions vary over wide ranges, the 
robustness of the controllers designed by the convex 
optimization involving LMI outperform that of NBO 
approach as can be seen from the results shown in 
Fig. 4. Though the approach proposed in this paper 
seems computationally more involved and needs a 
relatively long computation time for large problems, 
its performances in all cases are adequate as 
compared with the NBO approach for PSSs tuning.  
 

Table 1  Gains computed for LMI approach with 
degree of stability α = 0.15 and NBO approach.  

 
Approaches Gains Gains upper bounds 

K1 = 0.6544 
K2 = 4.8921 
K3 = 4.3837 

LMI  

K4 = 0.2458 

KLi < 4 
KYi < 5 

(i = 1, 2, 3, 4) 
10022 =< YiLii KKK ||||  

K1 = 9.15 
K2 = 0.0 
K3 = 0.0 

NBO  

K4 = 0.0 

10022 =< |||||||| max ii KK  

 
Moreover, the approach has the merit of 
incorporating additional design constraints such as 
the size and the structure of the gain matrices, the 
degree of exponential stability and delays. While the 
NBO approach is straightforward for designing 
controllers for even large sized problems without 
encountering any computational difficulties, due to 
the nature of the problem the optimal solutions 
depend on the initial values of the controller 
parameters, fault duration and fault locations used for 
determining the solution of the problem.  

 
4. CONCLUSION 

 
A framework for a robust decentralized PSS 
controllers design for power systems that explicitly 
takes into account the interactions between 
subsystems, changes in operating conditions and 
effects of system nonlinearities has been 
investigated. The applicability of the approach has 
been demonstrated through designing robust PSS in a 
four-machine test system. This design problem 
formulated as a convex optimization problem 
involving LMIs, which is computationally efficient 
and guarantees the existence of solution in 
polynomial time. Moreover the approach is flexible 
enough to allow the inclusion of additional design 
parameters such as the size and structure of the gain 
matrices, the degree of exponential stability and 



 

delays so as to maximize the class of perturbations 
that can be tolerated by the interconnected system. 
An additional benefit of this approach, besides 
computational issues, is the fact that all the 
controllers are linear and use minimum local 
feedback information. Thus their implementation is 
straightforward and cost effective. 
 
APPENDIX-A 
 
Theorem 1: The interconnected system (1) is 
robustly stabilized by the decentralized control 
strategy of (6) with uncertainty degree vector 

T
Nξξξ ]...,,,[ 21=ξ  if and only if there exist a symmetric 

positive definite matrix }{diag )()()( N
DDDD Y,,Y,YY K21=  with 

blocks )(i
DY  of  dimensions ii nn ×  and a block 

diagonal matrix }{diag )()()( N
DDDD Y,,L,LL K21=  with blocks 

)(i
DL  of dimensions ii nm ×  satisfying the following 

matrix inequality: 
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Moreover, the controller matrix DK  is computed as 
     ).A( 21−≡ DDD YLK  
Proof: This theorem can be proved via a quadratic 
Lyapunov function of the form xPxxV D

T=)(  that 
ensures the negative definiteness of the derivative of 

)(xV , i.e. 0<dtd /)(xV , under the constraint of (5) for 
all trajectories of (8). Then with change of variables 

1−= DD PY τ   and DDD YKL = , the expression in (A.1) can 
be obtained. 
 
Remark 1: In proving the above theorem, it is 
possible to establish an α  - degree of stability for the 
system by finding a quadratic Lyapunov function that 
proving )(2α/)( xVxV −=dtd  for some positive α .  
 
APPENDIX-B 
 
The objective of the nonlinear based optimization 
(NBO) for tuning power system controllers is to 
force the system to have a better damping behaviour 
and as well as a post-disturbance stable operating 
point within short time (Cai and Erlich, 2003). The 
formulation of NBO problem can be expressed 
within the generalized cost function of the form as: 

    )B.1(}βα{Min ft
0t

2
fdi

ft
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where  
iα  and iβ  are weighting factors for iPg  and iVt , 

respectively. 
iPg -  the generator real power for the thi - generator. 
iVt - the generator terminal voltage for the thi - 

generator. 
iEef - the exciter field voltage for the thi - generator. 

λ -  the gains for PSS structured controllers. 
 
Solving problem (B.1) can be carried out using 
gradient-based methods from IMSL mathematic 

library routines (IMSL Math/Library, 1997). 
However, due to the nonlinear nature of the problem, 
the solutions of the optimization problem depend on 
the initial values of the controller parameters, fault 
locations and fault durations in the system. 
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