UNSCENTED KALMAN FILTER FOR FAULT DETECTION
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Abstract: In this paper, the approximation of nonlinear systems using unscented Kalman
filter (UKF) is discussed, and the conditions for the convergence of the UKF are derived.
The detection of faults from residuals generated by the UKF is presented. As fault
detection often reduced to detecting irregularities in the residuals, such as the mean, the
local approach, a powerful statistical technique to detect such changes, is used to detect
fault from the residuals generated from the UKF. The properties of the proposed method
are also presented. To illustrate the performance of the proposed method, it is applied to
detect faultsin the attitude sensors of a satellite.  Copyright © 2005 |FAC
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1. INTRODUCTION

Fault detection for nonlinear system is an important
research area attracting considerable interest. Model-
based fault detection techniques are popular. For
nonlinear systems with additive Gaussian noise, the
extended Kalman filters (EKF) are used to generate
residuals for fault detection (Gobbo, et a., 2001).
However, the EKF suffers from two well-known
drawbacks: 1) it isafirst- order approximation of the
nonlinear system, introducing large errors in the
mean and covariance of the state vector, and even
divergence of the filter, and 2) the derivation of the
Jacobian matrices is nontrivial and can often lead to
significant implementation difficulties.

Unscented Kalman filters (UKF) have been proposed
recently for estimating the state of nonlinear systems.
Another important method in state estimation for
nonlinear systems is presented by (Ravn, etal., 2000).
The UKF is derived using the unscented
transformation (UT) involving a set of carefully
chosen sample points, called the sigma points. It has
shown that the UKF outperforms the EKF (Julier, et
al., 2000), as it is able to approximate the posterior
mean and covariance of the output variable with a
second order accuracy instead of a first order

accuracy in the EKF. Further, asit is not necessary to
compute the Jacobians or Hessians, it is being widely
used in applications, such as target tracking (Julier, et
al., 2000) and multi-sensor fusion (Hall, et al., 2001).

Very few results are available in the literature on the
convergence of the UKF. In this paper, the sufficient
conditions for the convergence of the UKF are
derived based on a new formulation of the unscented
transform. Based on this result, fault detection for
nonlinear systemsis derived using the local approach,
a statistical tool that transforms the fault detection
problem into one that detects changes in the mean of
a Gaussian random variable (Zhang, et al., 1998).
The performance of the proposed technique is
demonstrated by the attitude sensors of a satellite.

The paper is organized as follows. In Section Il, a
brief review of the UT is presented, followed by the
derivation of the UKF, and the conditions for it to
converge. In section 11, the detection of faults from
the residuals generated by the UKF using the local
approach is derived, together with the miss-detection.
In section IV, the performance of the proposed
method is illustrated by applying it to detect attitude
sensor faults of a satellite.
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2. THE UNSCENTED KALMAN FILTER

2.1 The unscented transform

The UT is amethod for calculating the statistics of a
random variable that undergoes a nonlinear
transformation (Hall, et al., 2001). A discrete
distribution composed of a number of samples,
referred to as the sigma points, are computed based
on the known initial mean and covariance of the state
variable. Then the nonlinear transformation is
applied to each sample. As an example, the UT of a
variable with dimension 2 is shown in Fig. 1. The
sample mean and covariance of the transformed
ensemble can then be used to compute the estimate
of the nonlinear transformation of the origina
distribution. The computed mean and covariance is
accurate up to second order (Julier, et a., 2000).
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Fig. 1. The unscented transformation

Consider arandom variable, x € R-. Let

y=f()eR" €
where y is a nonlinear mapping of x, and f(x) is a
known nonlinear function. Denote the mean of x
by X, and the covariance by P, € R™". The statistics
of y are computed from x using the sigma points y =
{x,1=0,1, ..., 2L}, asgiven below.

Xi= X i=0
zi=X+a(lP)¥? =1L (2)
Zi=X-allP)¥2 i=L+1-2L

where a is the spread of the sigma points around X,

and (LP,)¥? isthei™ column of the matrix square
root of LP,. The parameter a is to provide an extra
degree of freedom to "fine tune" the higher order
moments of the approximation, and is usually set to a
smal positive value. The sample mean and
covariance of y are (Wan and Merwe, 2000):

2L 2L
7= Wz P=2 wr-Dx-2" 3
i=0 i=0

W =1—i2 i=0
where 1a
W = i=1--2L
2La?

Let  =f(y) € R, fori=0,1, ..., 2L. The mean and
covariance for y can be approximated by the sample

mean and covariance of y, as given below.
2L 2L B T
y=2Wri; B =2wW@G-nNr-7) @
i=0 i=0
The properties of the UT are (Julier, et al., 2000):

Property 1: The mean and covariance of the set of
sigma points given by (2) are identical to that of x.

Property 2: The approximation of the mean and
covariance of y by y and P, has a second order

accuracy.

2.2 The unscented Kalman filter (UKF)

Consider the nonlinear system:
{x(k) = f (x(k-1)) + w(k) )
y(k) = h(x(k)) + v(k)

where f(.) and h(.) are known nonlinear functions, x(k)
is the state vector, y(K) is the output vector, w(k) and
v(K) are normally distributed white noise with zero
mean and covariance matrices: E[w(kw(K)'] = Q(K)
and E[v(k)\V(k)"] = R(K). It is assumed that the output
can be measured, but not the state. Similar to the
Kaman filter, the UKF is obtained by minimizing
the mean-squared error. The new state of the system
X(k|k-1) , the estimated output (k) and the
corresponding covariance matrices are computed
recursively using the state after applying the UT. The
procedure for implementing the UKF is as follows
(Wan and Merwe, 2000),

Sep 1 Calculate the sigma points from (2),
Zi(k=1)=X(k-1) i=0
iK1 =X(k-D+aLPk-DF?  i=1.-L
A=) =R(k-D-aLP(k-D['] i=L+L-2L
Sep 2 Compute the predicted mean, from (4),

xi(klk=1) = f(z(k-1) (6)
?(klk—1)=ivwmli (klk-1) ()
and the predictedi:;)vari ance from (4),
P(k|k-1)
= izit)mf[zi (klk=D—x(k|k-D][xi(k k-1
;R(k [k —1)] +Q(k) 8

Sep 3 The predicted observation is computed by
2L
71 (K =h(z (kIk=2), ()= w"7 (K)
i=0
the covariance and the cross correlation matrix by,

2L
Pre = %Wic[yi () = §()IL7i () = F(TT + R(K)

2L
Py = _%Nc[li (kTk=1) = %(c | k=D][; () - 901

And the predicted state is computed using the
classical Kalman filter,

{?(k) = X(K|k=1) + Ry P Ty(K) - 9(K)]

P(K) = P(k |k~ — ByP;2R] ©

Sep 4 Repeat steps 1 to 3 for the next sample.
Since the mean and covariance of x(k) are accurate

up to second order, and the same also applied to the
computed mean and covariance of y(k), the UKF can



predict with a second-order accuracy, but without the
need to compute the Jacobian or Hessian matrix. In
contrast, the state vector computed by the EKF is
only a first-order approximation of the nonlinear
system, and hence can only achieve the first-order
accuracy. Further, the computational load of UKF is
only in the same order asthat for the EKF.

2.3 Convergence analysis of the UKF

The convergence analysis of the UKF is derived
using an approach similar to that of the EKF
(Boutayeb, et al., 1997). Denote the error of the
estimated state by

X(K) = x(k) — X(k) (10)
and the prediction error of the state by

X(k | k=1) = x(k) - X(k |k —1) (11)
Assuming that w(k) is neglectable, expanding x(K)
given by (5) by a Taylor Series about X(k—1)
gives,

x(K) = f(R(k-1D)+ f'(X(k —D))X(k 1)

+%f”(>“<(k—1))i(k—1)2+--- (12)
Similarly, X(k|k-1) can be expressed as,
Rk |k-1) = f(f((k—l))+% f(X(k-1)P(k—1)
+ o (13)
hence, X(k|k-1) can be approximated by,

X(k |k 1) ~ Fx(k -1) (14)
where F = f'(X(k —1)). Assuming that v(K) is small,
expanding y(k) and y(k) about X(k | k —1) gives,

y(K) = h(X(k [k =1) + N (x(k |k -D)x(k |k -1)

+%h"(§((k [k —D)X(K |k —1)2 +---

9(k) = h(X(k | k—1)) +%h"(§((k [k-D)P(k|k-12)+---

Similarly, &(k) = y(k) — y(k) can be approximated

by,
e(k) ~ HX(K | k —1) (16)

where H =h'(X(k|k-1)). In general, gK) is not
identically zero, asit is a second order approximation
of X(k|k—1). Hence, (14) and (16) are modified as,
X(k | k-2 = B(K)Fx(k -1 a7
&(k) = a(K)Hx(k | k -1 (18)
where (k) = diag(au(K), (K), ..., an(k)) and
B(K) =diag(B, (k). B, (K),, B (k) are unknown

diagonal matrices. The sufficient condition for the
convergence of the UKF is given below.

Theorem 1: Assuming F is a nonsingular matrix, and
PK) satisfies the following condition:

2
zmm(FTFl)T

FRT) (19)

[ (BK))| < {

where U =1+HTa(k)P'Ry + PByPLla(k)H +

HT (P RyPyPra(H, and A ()
maximum eigenval ue of the matrix F, then
lim X(k) =0 (20)

is the

Proof: Let V (k) =x(k)" X(k) . From (9), (11), (17)
and (18),
V(K) -V (k-1 = X(k)" X(k) - X(k-1) " X(k -1)
=[X(K |k —1) + Py Pe(K)] T [X(k | k—1) + By P le(k)] -
X(k-1)" X(k -1)
=X(k-DT[FT BUBK)F —11X(k-1) (21
From the Rayleigh-Ritz theorem (Y u and Shi, 2004),
for any vector z= 0,

Amex U) = max(zTUz/(zT z))
x#0
Ain (FTF ) = min(zT FTF /(L z))
Xx#0
If assumption (19) hold, then
(T E-Te-1,/ T
SJETEL, 1/2> nz%\(z FTFZ/(z"2)
z'Uz B max(zTUz/(sz))
z#0
_|:ﬂ'min(F_TF_l)

lmax (U )
where the subscript j denotes the j*" component of the

diagonal matrix A(K). From (22), the following
inequality is obtained:

I

Y2
:l > | Amax (BK))| = B, (K) (22)

Z'[B;(UB; (k) -F TFYz<0 (23)
Asz= 0, hence
BUBK -F TFE <0 (24)

For X(k-1)=0, it followsthat

X(k=DT[FT BUBK)F - 11X(k-1) <0 (25)
From (25) and (21), V(k)-V(k-1) <0, V(k) is a
decreasing sequence, and hence kIiﬁn;V(k):O. It

followsthat lim X(k)=0. 0
k—0

The unknown diagona matrices (k) and A(k) are
introduced to evaluate the UT of the state variables
that propagates through the nonlinear model. If the
magnitude of the eigenvalue of A(K) is sufficiently
small, the convergence of the UKF is ensured. If the
magnitude of o are small enough, the convergence
of the UKF may be improved in the sense that the
domain of Ana(A(K) will be enlarged. Indeed, the
sufficient conditions (19) mean that if the error
introduced by the UT is small enough, V(K) is a
decreasing sequence. As a(k) and A(K) are unknown
factors, sigma points should be chosen properly to
decrease the error of the UT so that (20) isfulfilled.

3. FAULT DETECTION BY LOCAL APPROACH

The measurgment equation (5) can be rewritten as,
y(K) = h(x(k)) +y (k) + v(k) (26)



where  h(x(k))
y/(k)=h(x(k))—ﬁ(x(k)) is the modelling error.
Consider the predicted observation y(k) obtained

from the UKF. Under normal operating condition,
theresidual of the UKF is,

£(K) = y(K) = §(K) = h(x(K)) + (k) + V(K) — h(X(k))
=y (K) + ¢(K) +v(k) (27)
where (k) = h(X(K)) is the predicted observation
and ¢(k) = h(x(k)) — h(X(k)) is the estimation error.
When thereis a sensor fault, the residua becomes,
&(k) = y(k) + b - ¥(k)
=b¢ +y (k) +g(k) +v(k) (28)
where by = 0 is the output arising from the sensor
fault. However, faults can only be detected if the
term is large compared with the modelling errors and

the system noise. For small faults, it is difficult to
detect by from g(K).

is a measurement mode, and

The local approach is now applied to the residuas
generated by the UKF. In the local approach, the
cumulative sum of the residual D™ is computed for a
window size of m samples (Wang and Chan, 2002),

i Eg(k)

\/—(Zw(k)Jr 2o(K) + ZV(k)j (29)

k=1 k=1

Assuming the model is accurate and y(k) = 0O, then
the residual Dm can now be approximated by

Z¢(k) = \/— ZV(k) (30)

From Theorem 1, l!lm (x(k) - x(k)) =0 holds under
—o

certain conditions. Assuming h(.) is a continuous
function, then

Jim [h(x(K) ~h(x(K)] = Jim g(k)=0 " (31)

Consequently, if the sufficient condition (19) is
satisfied and k is sufficiently large, D™ is Gaussian
distributed with zero mean. If there is a sensor faullt,
(30) becomes,

1 m m m
=— by + » (k) + > v(k) 32
As b isnon-zero, D™ is also non-zero.

3.1 Fault detection method

The proposed fault detection scheme can be
implemented on-line as follows:

Sep 1 Select m, the window size for computing the
cumulative sum of residual.

Sep 2 Compute the mean of the residual generated
from the UKF. This is necessary, as y(K) is ignored

in the above analysis.
N

B =+ &) 3

k=1

where N is a large positive integer, the subscript i
denotes the i™ component of vector.

Sep 3 At the K" sampling period, the cumulative sum
of residualsis computed from (29) as given below.

1 k
— 2(&1®-b(0) (34)
t=k-m+1
where k > m. Normalizing the cumulative sum of
theresidua by its variance gives,

S™(k) =[DM(K)IA[PL (k - m)] (35)
where P! isthei™ diagonal element P,,.

D™(k) =

Sep 4 If §"(k)< 4, then there is no fault, but a
fault otherwise. AsS™ (k) is y*-distributed, 4 can be
obtained from y*-table for agiven confidence level.

Sep 5 Repeat step 3 and 4.

3.2 Properties of the fault detection method

If there is no fault, gK) is Gaussian distributed: N(O,
P.). From (35), the expectation of gk) and the
covariance matrix of D™ are respectively:

m_ 1 & _
E(D™) = \/Et:k;mligg(t))_o (36)
Cov(D™) == k§C§>V(8(t))=ng (37)
t=Kk—m+

where E(.) and Cov(.) are respectively the
expectation and the covariance. Hence D" is also
Gaussian distributed: N(O, P,,). If there is afault, the
distribution of &Kk) is: N(by, P.,), and the mean and
covariance of D" are:

E(D™) =+/mb; ,Cov(D™) = P,, (38)

The distribution of D™ is: N(J_bf, P.). The

miss-detection of the proposed fault detection
schemeis given in the following theorem. This result
provides a guideline for choosing m and the
probability of the miss-detection. The argument t and
the subscript i are ignored for simplicity.

Theorem 2: Let 4 be obtained for a given confidence
level. A fault is detected, if S™=(DM)?Pt> 1.

The false aarm Pg is independent of m, while the
miss-detection Py, depends on m.

Proof: If there is no fault, the distribution of D™ is
N(O, P,,), and the probability density function (pdf)
of D"is:

p(D™|Ho) =

1 my2
expl- (D 2P 39
T ol-0m?/2r,)) (@9
Let the null hypothesis denoting no fault be Hy. From
(35), S?=(DM?P1, the pdf of S"isgiven by,

&€

2 P
P

p._sm

&

P(S™[Ho) =

1

- e exp(— sm/ 2) (40)




Thefalse darm P is defined by,
P = [ p(S™ [Ho)ds" (4

Since p(S"Ho) is independent of m, Pr is aso
independent of m. If there is a fault, the distribution

of D™ becomes N(v/mbs,P.,.), and the pdf is:

1 (D™ —/mby )
p(D™|Hy = exp - (42)
\/27ZP,95 2P€£
Let H; be the hypothesis that there is a fault. Then
the pdf of S" can be expressed as,

{exp[——(\/S_m JTVPb)?]

p(S™|Hy) =

J—
repl-—(S"+JVRb)Y) (49

From (43), the miss-detection Py, is given by,
A
Ru (m) = [ p(S™ [Hy)dS™

= jO exp[——(x v I’T';/ng bf ) ]

+ exp[—;(x+ VP br)1}dx
= ¢(_ v m/P&s bf + \/z)_ @(_ \ m/P&s bf )
+olfyR, by +/2)-of R ) @
where @ = jxw%exp(— X2/ Z)dx . Therefore Py
depends on m.

The relation between Py, and m is shown in Fig. 2,
where the shaded part of the curve is Py. Clearly, if
m islarge, the miss-detection from (44) is small,
lim Py, (m=0 (45)
m—o0

However, if m is large, a longer time is required
before faults are detected (Wang and Chan, 2002). If
the false alarm and the miss-detection are chosen to
be small, 2 and m can be determined from (41) and
(44), asillustrated in the example presented below.
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Fig. 2 Therelation between P, and m

4. SIMULATION EXAMPLE
4.1 Satellite attitude determination system
The satellite attitude determination system consists

of the sun sensor, the earth sensor and the gyroscope,
described by the following eguation (Y ang, 2002):

7] r ][ ox ]
4 o @)y + @
f// 4 D)z
bx | [ A1 —las —laa] bix 0
by =033 Oza O3z |by|+| O [+W
b, | Oz Oss Asz | by 0
dIx dIx 0
dyy dyy 0

_dlz_ _dlz L 0 i

_—WSQ+SS+7S§)_

. ~/50+S0
m, |= ‘9?9—7’?}”5% +V (46)
h S HYSy - 65;

_Hh_ —t//SQJrSSJr;/SQ

Y
L 9 .

where

[0 0 o,
A=l 0 0 0}

—oo 0 O

Y7, 0 0
A33: 0 _]/le 0

L 0 0 _]/le

I3 is the identity matrix, Os.s, the zero matrix, 7, €
and w are the roll, the pitch and the heading of
satellite, ay is orbit angle velocity, ay, my, @, are
the measurement from gyroscope, by, by, by, di, dy,
d,, are the drifting errors of the gyroscope, 7, 4y, 7,

are the first order Markov time constant, SY, SS, s?

are the projections of sun vector onto the coordinate
of the spacecraft, m,, my, m,, are measurements of sun
sensor, i, 6, are measurements of earth sensor, W
and V are zero mean Gaussian white noise.

4.2 Smulation results

It is assumed in the simulation that the satellite is
being stabilized relative to the earth. The initia
values of 6, y and  are set to zero. For a sampling
interval of 0.1 second, the satellite given by (46) is
simulated for 50 seconds. The drifting error of the
parameters of the gyroscope is 10°/h, the
measurement noises of sun sensor and earth sensor
are zero-mean, uncorrelated noises with covariance
given by constants R' = 0.012, fori = 1, ..., 5. The
proposed fault detection scheme is applied to detect
the following fault in sun sensor, which occurred
separately at 30s.
Y¢1(K) = y1(k) +0.02 ,for k>300;

where the constant by = 0.02 represents a sensor fault
is being added to the observation m,, and from (46)
and (32), there is a drift in &(K). Following the
procedure described in section 2.2, residuals are



obtained from the UKF. The false dlarm is set to: Pr
= 0.1%, and the miss-detection Py, is expected to be
not larger than 6%. From (41), 4; obtained from the
Z-table for a 0.1% false alarm is; 4 = 10.8. When
the fault occurs, by = 0.02, the miss-detection rate can
be computed by (44). For m = 6, Py ~ 6% from
statistical table on Gaussian distribution as PX is
set to 0.01°. So the requirement on miss-detection
can be satisfied. If m =1, the miss-detection is about
90%, and hence the requirement on the
miss-detection is not satisfied. In this case, it is
necessary to increase mto reduce the miss-detection.

When the fault occurs, the residuas &(k) and (k)
are shown in Fig. 3, showing a small step change in

the mean of &(k), for k > 300. For m =6, S"(k)
and S;"(k) are shown in Fig. 4. As only S"(Kk) is

greater than the threshold for k > 302, a fault is
detected in the component of the sun sensor, which

corresponds to S{"(k) . This result agrees with the

properties of the fault detection method presented in
section 3.2, illustrating the ability of the loca
approach in detecting faults.
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5. CONCLUSION

In this paper, a fault detection scheme for nonlinear
systems is derived based on the UKF and the local

approach. Since the UKF can approximate the mean
and the covariance of a Gaussian random variable up
to asecond order accuracy, it is used here to generate
residuals for detecting faults. The sufficient condition
for the convergence of the UKF is presented. The
local approach is applied to detect faults from the
residuals, and properties of this method are derived.
These properties are then used to devise guidelines
for choosing the window size in the statistical test.
The proposed method has been applied successfully
to detect faults in the satellite attitude determination
system.
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