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1. FORMULATION OF THE PROBLEM

Consider the following problem:

min max f(z,y),

T yeYy
s.t. g(z) =0, (1)
z >0,

where Y is a compact subset of R™, x € R",
f(z,y) is continuous in z and y, twice continu-
ously differentiable in z, and g : R® — RF is
continuous and twice differentiable in z.

Such problems arise in numerous disciplines, in-
cluding n—person games (Rosen, 1965), finance
(Rustem and Howe, 2001), economics (Zakovic et
al., 2002) and others. In general, they are used
by the decision maker to assess the worst—case
strategy of the opponent and compute the optimal
response. The opponent can also be interpreted as
nature choosing the worst—case value of the un-
certainty, and the solution would be the strategy
which ensures the optimal response to the worst—
case. Neither the decision maker nor the opponent
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would benefit by deviating unilaterally from this
strategy. The solution of (1) can be characterized
as a saddle point when f(z,-) is convex in z and
f(-,y) is concave in y.

In this paper we consider an algorithm in which
f(z,y) is not necessarily convex in z and concave
in y. Previous attempts to solve this problem
have mostly focused on unconstrained problems
(Kiwiel (Kiwiel, 1987), Demyanov and Pevnyi
(Demyanov and Pevnyi, 1972), Rustem and Howe
(Rustem and Howe, 2001)), with notable excep-
tions such as Breton and El Achem who use pro-
jected subgradient and bundle methods (Breton
and Hachem, 1995). In the present paper we con-
sider an algorithm for solving the constrained
problem by extending the approach of Rustem
and Howe (Rustem and Howe, 2001). An earlier
attempt to solve a similar problem, with decou-
pled constraints, was made by Sasai (Sasai, 1974),
but our approach differs in the choice of the
barrier function, the merit function and the in-
terior point search direction. A survey of algo-
rithms for computing saddle points can be found
in (Demyanov and Pevnyi, 1972), (Rustem and
Howe, 2001).



The penalty formulation to ensure feasibility re-
garding the inequality constraints on the slack
variable is realized using a barrier function such
as — log(z;). The framework for solving the prob-
lem is closely related to the interior point litera-
ture (e.g. (Akrotirianakis and Rustem, 2005), (El-
Bakry et al., 1996)). The transformed min-max
problem is given by:

T yey

s.t. g(z) =0, (2)
z > 0.

n
minmax f(z,y) — u Z log(z;),
i=1

We define the merit function ¥(z;c¢, 1) as:

U(z;c,p) = max (z,y;c,p) 3)
yEY (z1)

= max{/(z,y) + 5ll9@)[l3 Y log(a:)}.

Now, (1) can be approximated with:

min U(z; ¢, u)
s.t. g(z) =0. (4)

The algorithm discussed below solves problem
(1) and is based on a sequence of optimization
problems characterized by a penalty ¢ > 0 and a
barrier p > 0 parameters. To establish first order
necessary conditions for the solution of (1), we
define the following set of maximizers at x:

Y()={ y | yzargrnneagw(x,n;c,u)}-

Given the maximizers y € Y (z) and using the fact
that the maximum over a set of scalars is equal to
the maximum over their convex hull, (3) can be
equivalently expressed as:

- Y .
minmax >, ("(w,yie ),
y€Y ()
s.t. g(x) =0,

where

B={¢"|) ¢v=1, ¢*>0}
Yy

In this paper, we discuss an interior point algo-
rithm to solve (4). Interior point methods allow
for a direction of descent Aw, which can be used
to determine the multipliers ¢ in terms of the
subgradient of v (z,-; ¢, u). The main features of
the algorithm are the generation of a descent
direction based on a subgradient of ¥)(z, -; ¢, ), an
approximate Hessian, in the presence of possible
multiple maximizers of (3) and a stepsize strategy
to ensure sufficient progress at each iteration.

2. AUGMENTED LAGRANGIAN AND BASIC
ITERATION

The Lagrangian associated with (3) is given by:

Liz,y, X, 1) = (@) + 5ll9(@)l3
=) _log(:) = ATg()},

where ®(z) = maxycy f(2,y).

The first order optimality condition for the prob-
lem (3) and the associated Lagrangian, after in-
voking the nonlinear transformation z = uX le
(we use X to denote the diagonal matrix with di-
agonal x and employ analogous notation for other
quantities) are the following system of nonlinear
equations

Va®(z) — 2 = Vog " (2)A
F=|g(x) =0, (¥
XZe — pe

and F = F(z,\, z;¢,1), e € R™ is a vector of all
ones.

For p fixed, system (5) is solved using the quasi—
Newton method. Therefore, the first order change
to the system needs to be found. The k — th
Newton iteration for solving (5) can be written
as:

VFkAwk = —Fk,

where F = F(mk,/\k,zk;c,u), W = (mk,/\k,zk)
and Awk = (Axk,A)\k,Azk)

At the k — th iteration the system can also be
written as:

Hk —ng,{ -1 A:L'k
Vegr 0 0 Adg | = =F,  (6)
Zk 0 Xk Azk

where Hj, is a positive definite approximation of
the Hessian of the augmented Lagrangian of the
equality constrained problem:

LeC(xaya)‘;c) = <I)(;L') - )‘Tg(x)

The Hessian Hj, is computed using the updating
formula suggested by Powell (Powell, 1978).

Starting from an initial point wy, the algorithm
generates a sequence {wy, }

Wet1 = w + apAwg, k=0,1,2, ...

In order to keep wy41 feasible, we need to ensure
that the new iterates xy41 and zpy1 are strictly
greater than 0. Different strategies have been
proposed starting from (Zhang et al., 1990), where



a single step size for different variables is used, to
(Yamashita and Yabe, 1996) where a number of
different strategies are suggested. The algorithm
presented in this paper uses different step—sizes
for the primal and dual variables. Hence, o) =
(az,, Qs , 0z, ) Where o, and a,, are the step—
lengths for the primal variables z and the pair of
dual variables A and z respectively.

The algorithm moves from one inner iteration to
another (with g fixed) by minimizing the max
of merit function ¥(z;c¢, u) which is achieved by
appropriately selecting the penalty parameter c
at each inner iteration. The monotonic decrease
of (3) and the rules for determining the primal
and dual step—sizes ensure that the inner iterates
converge to the solution of (3) for fixed value of y.
By reducing g and {g} — 0 the optimum of the
initial problem (4) is obtained. Full convergence
analysis of the proposed method can be found in
(Rustem and Zakovic, 2005).

3. COMPUTING THE GRADIENT OF &(X)

The subdifferential of the merit function can be
expressed as:

0U(z;c,p) = conv{Varh(z,ysc,p1) | y€Y(x)}.

For non—unique maximizers y¢ € Y(z),i =

1, ..., Nynae by Caratheodory’s theorem (Rockafellar,
1970) a vector V¥ (x;c,u) € 0¥(x;c,pu) can

be characterized by at most (n + 1) vectors

Vz¢(xay;ca M) € 6‘11('7:707/1’) so that

Vo U(zie,p) = Y (UVath(z,yip)
yeY(z)

= ) BVuf(2,y) +cVag g — pX e (7)
y€EY(2)

In this paper the quasi—-Newton descent direction
is based on an approximation of ¥(x) and yg4+1
which ensures descent of the merit function. The
direction Az is a descent direction for ¥, at the
current point zy, if

1
max (AziV,U(zk,y;cr, 1) + §||Amk||§1k <0.(8)

yeY (zx)

The motivation for this choice is the selection
of worst—case descent direction among possible
maximizers. Hence, for such yi41 we have:

Yr+1 = argmax{ ¥ (Azy)} (9)
yey

=arg max {Azi (Vf(zk,y) — puX, ‘e)
yEY (k)

1
— cxllgrll3 + §||A$k||%1k}-

When there is more than one maximizer, then the
new direction Aw(f) is computed:

Aw(B) = -VF'F},

where F; kB is the following non-linear system:

3 BV (@h,y) = Vagi A
yeY (1)
9k

Xy Zre — ue

and
BY = arg glgg{zﬁ: B (Azy)}

_argg?%c{Amk( e; )ﬂvf(mkay) pXy e
YEY (21

1
+ S 1Az, b, (10)

because gi(z) is not a function of 3y .

When the unique maximizer yyy; is chosen, 8 can
be set to 1, corresponding to the given y1 so that

et Vaf @k, Yrs1) = 2k = Vagi A
Fki = | 9k
Xy Zie — ue

Therefore, we define two possible directions Aw(ygy1)

and Aw(f), depending on the gradient V,®(x)
used. The direction Aw(yx+1) is easier to com-
pute, as it does not entail the solution of the
quadratic programming problem (10). The two
possible derivatives of V,®(xy), together with the
corresponding direction Awy, are shown in Table
1 below.

Table 1. Two choices for V,®(zy).

Va®(zk) Awg,

Vol @k Yrt1) | Awg(yp1) = —VE, 'FP=!

(BY)T Vo f(w,y) Awy(B) = ~VF'F]

Let ¢, > 0 be a finite precision to which the
equality constraints are satisfied. Thus, for merit
function (3), we have a worst case feasibility
precision

lg(@)II* > €. (11)
It can be shown that descent is always guaranteed

if (11) holds or g(z) = 0 and the penalty param-
eter ¢, = cp(€ey) remains finite.



Assume that at, some inner iteration k, 0 <
llg(zx)||*> < €, and the descent condition (8) is
not satisfied. In such circumstances a switch to a
different merit function:

|F(z,y, A 256,013 (12)

is made for all consecutive inner iterations. Once
the convergence of the inner iteration is achieved,
the algorithm returns to minimizing merit func-
tion (3). This is a variation of the so called “watch-
dog” technique, which was first suggested by
Chamberlain et al. in (Chamberlain et al., 1982).
In the context of interior point methods it was
also used by Gay et al. in (Gay et al., 1997).
The convergence criteria for (12) has been well
established (El-Bakry et al., 1996), (Zakovic et
al., 2000).

Interior Point Minimax Algorithm

(1) choose z°, 50, A% 2% 0 > 0;
(2) set Il =0,k = 0;

of these models, the ease at which this can be
accomplished not only depends on the parame-
terization of the model (i.e., the mathematical
form of the model), but also on “where” in the
experiment space the data have been collected.
The main questions that arise when designing op-
timally informative experiments are — how should
we adjust time—varying controls, initial conditions
or the duration of the experiment to generate the
maximum amount of information for parameter
identification?

The predicted amount of information contained
within a set of experimental data can be used to
design future experiments that are optimally rich
in information for parameter estimation purposes.
To quantify this, an information matrix for dy-
namic experiment design is defined as:

M M
Mi(8,9) =)D 61°Qr Qs (13)

r=1 s=1

(3) WHILE ||F (2!, y', X, 2'; ¢, ) |2/ 1+ |0, wi, Mo, 2 |[BPEFE ¢ is a vector of experiment decision vari-

€0
(4)  (xk, g, 2z) = (28, N, 2
(5)  WHILE ||F(zk, yk, Mk, 2k3 ¢, p)|[2 > np
(6) compute Awy,
(7 compute ay = (ag,, 0z, , Az, )
(8) Wht1 = Wi + apAwg
9) k=k+1
(10) END WHILE
(11)  compute p!*!
(12) ($l+1ayl+laAl+17zl+1) = (mkaykaAkazk)
(13) I=1+1
(14) END WHILE

4. NUMERICAL RESULTS AND
APPLICATIONS

The algorithm defined in this paper has been
implemented and the experience with numerical
examples has been reported in (Rustem and Za-
kovic, 2005). A number of examples, both with
convex—concave functions (i.e. f(z,y) convex in x
and concave in y) and convex—convex functions,
where multiple maximizers are present, and we
examine the behavior of the algorithm in pres-
ence of such points. A comparison with the semi—
infinite algorithm has been presented in (Zakovic
and Rustem, 2003).

4.1 Robust Optimal Design of Dynamic Experiments

To obtain predictive models of processing systems,
we are faced with the problem of having to esti-
mate several freely-varying parameters within the
model from collected experimental data in order
to validate the model. Due to the nonlinearity

ables (i.e., sampling times of response variables to
be predicted by the model, time—varying controls
to be applied to the process, etc.) and 6 is the
vector of model parameters to be estimated from
data. The (ns, x p) matrix @, is the matrix of
first—order dynamic sensitivity coefficients of the
rth response variable in the model computed at
each of ng, sampling points (the number of which
is chosen a priori):

6yr(07 ¢7 tl) ay?‘(ea ¢7 tl)
26, T~ o6,
Q= (14)
6yr(9; b, tnsp) 0y, (07 o, tnsp)
56, " o9,

To design future experiments in the face of uncer-
tainty in the parameters, §, we solve the following
max-min optimization problem:

ér = argmax{min{det(M:(6,0)}},  (15)

where, ® C R™ and © C R™ represent feasible
regions (upper and lower bounds on each element
of ¢ and 6, respectively), and thus there are no
functional constraints on the variables.

A typical example is presented to illustrate the ap-
plication of the robust optimal experiment design.
Consider a fed-batch reactor in which the fermen-
tation of baker’s yeast is carried out. To model
this process the following model is proposed:

Ml(oa u, t)

d

G = w =0y

d r

2 T (us — ) (16)

dt 05



_ 013/2
0 +yo

Within this process, there are two time-varying
controls (u1,u2) and two measured concentrations

(y1,92)-

Here, we have ® C R?? — one varying initial con-
dition, ten sampling times, and two time—varying
inputs parameterized by piecewise constant tra-
jectories, each delineated by five time intervals
(representing 18 variables); and © C R* as there
are four model parameters to be estimated from
experimental data. In table 2 we show the solution
to (15) for the model describing the semi-batch
fermentation of baker’s yeast (Asprey and Mac-
chietto, 2000), using two algorithms - the min—
max algorithm (MMZX)presented in this paper
and the semi-infinite algorithm (SIP) presented
in (Zakovic and Rustem, 2003).As can be seen,
algorithm SIP required two more iterations than
the algorithm MMX to converge. However, solv-
ing the maz problem is much more expensive,
reflected in the CPU times needed to solve the
problem with the two different algorithms.

Table 2. Iterations of MMX and SIP
when solving problem (15).

MMX SIP
iteration results

I max  39.38954 39.38954
11 max  4.57472 11.362926
111 max 4.48416 11.325922
v max  4.47273 10.034939
A\ max - 10.033279

VI max - 4.4723
time 7622.21s  13318.36s

5. CONCLUSIONS

In this paper, we have extended the algorithm
for unconstrained continuous minimax problems
presented in Rustem & Howe (Rustem and Howe,
2001) to include constraints on the minimizing
variable . The interior point approach is used to
ensure feasibility of the variables. The algorithm
uses quasi—-Newton search direction, conditional
on approximate maximizers.

To illustrate the applicability of the algorithm, a
problem from engineering was presented, namely
an example of robust optimal design of dynamic
experiments. The problem was solved successfully,
and the complexity of the optimal design example
was illustrated in the computational time used to
solve it — approximately two hours.
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