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Abstract: Recent publications have shown that under some conditions continuous linear 
time-invariant systems become strictly positive real with constant feedback. This paper 
expands the applicability of this result to discrete linear systems. The paper shows the 
sufficient conditions that allow a discrete system to become stable and strictly passive via 
static (constant or nonstationary) output feedback.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Although the strict positive-real (SPR) property has 
played a crucial role in guaranteeing stability in 
systems with uncertainty (Steinberg and Coreless, 
1985) and in adaptive control (Sobel et al., 1982; 
Barkana and Kaufman, 1985) of linear time-invariant 
(LTI) systems, most real-world systems are not 
inherently SPR. Therefore, it was important to find 
those systems that can become strictly positive real 
via constant or dynamic output feedback. In 
particular, such systems that need only a constant 
output feedback to become strictly positive real have 
been called “almost strictly positive real (ASPR)” 
(Barkana and Kaufman, 1985) because the ASPR 
property has been shown to be sufficient for stability 
with adaptive controllers. Many works (Fradkov, 
1976; Owens et al., 1987; Teixeira, 1988; Gu, 1990; 
Huang et al., 1999) have contributed to define the 
continuous-time ASPR systems, namely, those 
special systems that not only can be stabilized, but 
also rendered SPR via constant output feedback. 
Simply summarized (Barkana, 2004b), any 
minimum-phase LTI systems {A, B, C} is ASPR if 
the matrical product CB is positive definite 
symmetric.  Recently, Barkana (2004a) managed to 
eliminate the symmetry requirement from the ASPR 

conditions. It may be worth mentioning that only the 
transfer function should rigorously be called SPR, 
while the system should be called strictly passive. 
However, it is customary to use either name in LTI 
systems.  
 
Although attempts at directly using the continuous 
systems results in discrete systems have failed, this 
paper nevertheless manages to extend the previous 
results, and thus to establish some useful relations 
related to the passivity of discrete systems with the 
realization  
 ( 1) ( ) ( )p p p p px t A x t B u t+ = +  (1) 

 ( ) ( ) ( )p p p p py t C x t D u t= +  (2) 

The main result of the paper is the proof that any 
proper minimum-phase discrete linear system with 
positive definite (and not necessarily symmetric) 
input-output gain matrix pD  can be stabilized and 

rendered strictly positive real via constant feedback 
and is therefore ASPR. In addition, the paper will 
show that systems that are not minimum-phase can 
be augmented and can become minimum-phase and 
thus, ASPR, via parallel feedforward. The paper will 
also show the applicability of the result in nonlinear 

     



and adaptive control.   
 

2. ON ZERO DYNAMICS AND PASSIVITY IN 
DISCRETE LINEAR SYSTEMS 

 
The stability properties of an LTI system are strongly 
related to the position of the “poles” of its transfer 
function, that are also the eigenvalues of the plant 
matrix pA . The SPR properties of LTI systems are 
strongly related to both the pole and zero properties 
of the system. The paper will later show that the 
positive definite gain pD  is an integral part of the 
desired ASPR and SPR properties of the plant. One 
can use the output feedback gain eK  in the control 
signal 

  (3) 
( ) ( ) ( ) ( )

         ( ) ( )
p e p p e p p

e p p p

u t K y t v t K C x t

K D u t v t

= − + = −

− +

 
Figure 1. The original system closed via eK  

The algebraic loop in (3) results in 
  (4) ( ) ( ) ( ) ( )e p p e p p pI K D u t K C x t v t+ = − +

Define 
  (5) 1( )ec e p eK I K D K−= +

to get 

  (6) 1( ) ( ) ( ) ( )p ec p p e p pu t K C x t I K D v t−= − + +

Substituting in (1)-(2) gives 

 
( )

1

( 1) ( )

    ( ) ( )

p p p ec p

p e p p

px t A B K C x

B I K D v t−

+ = −

+ +

t

)

1)−

p

 (7) 

  (8) 
1

1

( ) ( ) ( ) ( )

            ( ) ( )
p p p p e p e p p

p e p p

y t C x t D I K D K C x t

D I K D v t

−

−

= − +

+ +

Define 
  (9)

  (10) 

1(pc p e pB B I K D −= +

1 1

1

( ) (

          ( )
pc p e p p e

p e p

D D I K D D K

I D K D

− −

−

= + = +

= +

  (11) 

( )

1

1

1

( )

 ( )

        

pc p p e p e p

p e p e p

p e p

C C D I K D K C

I D I K D K C

I D K C

−

−

−

= − +

⎡ ⎤= − +⎣ ⎦

= +

The closed-loop system is 
 ( 1) ( ) ( )p pc p pcx t A x t B v t+ = +  (12) 

 ( ) ( ) ( )p pc p pc py t C x t D v t= +  (13) 

where the closed-loop system matrix pcA can get any 
one of the forms 

 
             

pc p p ec p p pc e p

p p e pc

A A B K C A B K C

A B K C

= − = −

= −
 (14) 

Figure 2. Equivalent closed-loop system 

The closed-loop system is asymptotically stable if 
and only if there exist two positive definite 

symmetric (PDS) matrices, P and  that satisfy the 
relation 

_
Q

 
_

T
pc pcA PA P Q− = −  (15) 

The zero dynamics is given by those trajectories that 
maintain the output at zero in spite of the presence of 
input commands. One gets from (2) 
 ( ) ( ) ( ) 0p p p p py t C x t D u t= + =  (16) 

that gives 

  (17) 1( ) ( )p p p pu t D C x t−= −

Substituting in (1) gives the zero-dynamics equation 
 ( )1 z p ( )x t A x+ = t

p

 (18) 

where 1
z p p pA A B D C−= −  is the system matrix for 

the zero dynamics.  If the system is minimum-phase, 
there exist two positive definite matrices, and , 
such that 

zP zQ

 T
z z z z zA P A P Q− = −  (19) 

Furthermore, in the system representation the closed-
loop system is strictly passive (Hitz and Anderson, 
1969) and its transfer function is SPR if there exist 
three positive definite symmetric (PDS) matrices of 
appropriate dimensions, P , and   that satisfy 
the relations 

Q 0Q

 T
pc pc

TA PA P Q L L− = − −  (20) 

 T T
pc pc pc

TA PB C L W− =  (21) 

 0
T T T

pc pc pc pcD D W W B PB Q+ = + +  (22) 

     



In this case, because the original open-loop plant is 
separated from strict positive realness only by a 
constant output feedback, it is called “almost strictly 
positive real (ASPR)” (Barkana and H. Kaufman, 
1985; Barkana, 1987). Relations (20)-(22) can also 
be written in a more concise form. From (21) one 
gets 
  (23) ( 1T T T

pc pc pcL A PB C W −= − )

)

Substituting in (20) finally gives 

( )(
( )

1
0

                           

                  

T
pc pc

T T T T
pc pc pc pc pc pc pc

T
pc pc pc

A PA P

A PB C D D B PB Q

B PA C Q

−

− +

− + − −

• − = −

(24) 

3. DISCRETE ASP THEOREM  
 

This section represents the main objective of this 
paper, as it proves the following theorem for discrete 
linear systems: 
Theorem 1: Consider the discrete linear system 

{ }, , ,p p p pA B C D , where ,.n n
pA R∈ , , 

, and . Assume that the system 

is strictly minimum-phase and that  (i.e., 
positive definite but not necessarily symmetric). 
Under these assumptions, the system is ASPR, 
namely, it can be stabilized and made strictly passive 
via static output feedback. 

.,n m
pB R∈

,m n
pC R∈ ,m m

pD R∈

0pD >

 
Proof: We showed that if a positive definite output 
feedback gain  eK  is used, the resulting closed-loop 
system matrix is pc p p ec pA A B K C= − , where ecK  is 
computed in (5) and satisfies  
 

1 1 1( ) ( )ec e p e e p pK I K D K K D D− − −= + = + ≤ 1−

)
) −

 (25) 

Therefore 

( ) ( )
(
(

1 1

1 1

                       T
pc z pc z

T
p p ec p z p p ec p z

T
p p p p p p p p ec p

z p p p p p p p p ec p z

A P A P

A B K C P A B K C P

A B D C B D C B K C

P A B D C B D C B K C P

− −

− −

−

= − − −

= − + −

− + −

 (26) 

After some algebra 

( )
( )( )

( )( ) ( )

1

1

1 1

 

             

T T
pc pc z z z p p ec p

T

p p ec p z z

T

p p ec p z p p ec p

A PA P Q A P B D K C

B D K C P A

B D K C P B D K C

−

−

− −

− = − + −

+ −

+ − −

 (27) 

Define 
  (28) 1 0cc p ecK D K−= − >

  (29) 1

          

T T T
z z z p cc p p cc p z

T T T
p cc p z p cc p

Q Q A P B K C C K B P A

C K B P B K C

= − −

−

T
z

It can be seen that  if the feedback gain1 0Q > eK is 
sufficiently large, and thus ecK is sufficiently large  
and ccK  sufficiently small. Therefore one first gets 

 
( )

( ) 1   0

TT
pc z pc z p p ec p z

p p ec p z

A P A P A B K C P

A B K C P Q

− = −

− − = − <i
 (30) 

Equation (30) implies that a discrete minimum-phase 
system can be stabilized via positive definite constant 
output feedback. Furthermore, if ccK  is sufficiently 
small -- possibly smaller than the value needed for 
(30) -- one can also write 

 
( ) ( )

( )
1

          0

TT T T
pc z pc pc cc cc

T T
pc z pc pc

Q Q A P B C K K

A P B C

= − − +

− >i
 (31) 

( ) ( )
( )           0

TT T T T
pc z pc z pc z pc pc cc cc

T T
pc z pc pc

A P A P A P B C K K

A P B C Q

− + − +

− = − <i
 (32) 

This is equivalent with the SPR condition (24) if one 
replaces T

cc ccK K+  by 0
T T
pc pc pc pcD D B PB Q+ − − . 

Therefore, under the assumptions of the theorem, the 
closed loop system is SPR and the original open-loop 
system is ASPR. 
 

4. PARALLEL FEEDFORWARD  
OR 

DUALITY OF STABILIZABILITY AND 
“PASSIVABILITY” 

The previous sections showed that a minimum-phase 
plant { }, , ,p p p pA B C D with  is ASPR, or it 

can be rendered SPR via some constant output 
feedback. Yet, this result may not look too 
encouraging, as practical plant may be strictly proper 

 and not necessarily minimum-phase. 
How can such a plant be made ASPR? The results of 
this paper allow a solid theoretical basis to the use  of 
parallel feedforward in discrete systems (Barkana, 
1983; Barkana, 1989). This section will show that 
stabilizability and “passivability” are dual, as 
formulated in the following theorem. 

0pD >

(i. e., 0)pD >

Theorem 2: Consider the strictly proper discrete 
linear plant { }: , , ,0p p pG A B C , where ,.n n

pA R∈ , 

, and . Assume that there exists 
a proper, static or dynamic, stabilizing feedback 
configuration 

.,n m
pB R∈ ,m n

pC R∈

{ }: , , ,f f f fH A B C D  such that the 

closed-loop system is asymptotically stable. In this 
case the augmented system  is proper 
and strictly minimum-phase and is therefore ASPR. 

1
aG G H −= +

 

     



A simple example could be useful to illustrate the 
parallel feedforward idea. Assume that the SISO 
transfer function  can be 
stabilized by the constant feedback . Therefore, the 
closed-loop plant with the transfer function 

( ) ( )( ) /G z B z A z=

k

( ) ( ) ( )(( ) /G z B z A z kB z= + )  is asymptotically 
stable. It is then easy to see that the augmented 
system ( ) ( )1 / 1aG G H B z A z k−= + = + /  , namely, 

( ) ( )( ) ( )(/aG A z kB z kA z= + )  is strictly minimum-
phase.  
 
In the general SISO case, let the stabilizing 
configuration be ( ) ( ) ( )/H z N z M z= . Assume that 
the  closed-loop plant with the transfer function 

( ) ( ) ( )(( ) / 1cG z G z H z G z= + )

)

, namely, 

 is 
asymptotically stable. It is then easy to see that the 
augmented system 

 or 

 is 
strictly minimum-phase. 

( ) ( ) ( ) ( ) ( )( )( ) /cG z B z A z M z B z N z= +

( ) ( ) ( ) ( )1 / /aG G H B z A z M z N z−= + = +

( ) ( ) ( ) ( )( ) ( ) ( )(/aG A z M z B z N z A z N z= +

 
Now, one can proceed with the general proof: 
Proof: Given the system G with representation (1)-
(2) stabilized by the feedback controller H with the   
representation 
 ( 1) ( ) ( )fb fb fb fb px t A x t B y+ = + t  (33) 

  (34) ( ) ( ) ( )fb fb fb fb py t C x t D y t= +

The control signal is 
  (35) ( ) ( )p fbu t y t= −

The stabilized closed loop system is 
 ( 1) ( )x t Ax+ = t  (36) 

where 

 
( )

( )
( )

p

fb

x t
x t

x t
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (37) 

  (38) 
p p fb p p fb

fb p fb

A B D C B C
A

B C A

− −⎡
= ⎢
⎢ ⎥⎣ ⎦

⎤
⎥

The matrix A is Hurwitz, as it represents the 
asymptotically stable closed loop system. Now one 
inverts the proper feedback controller to get 
 ( 1) ( ) ( )ff ff ff ff ffx t A x t B y+ = + t  (39) 

  (40) ( ) ( ) ( )ff ff ff ff ffy t C x t D u t= +

Here 
 1

ff fb fb fb fbA A B D C−= −  (41) 

 1
ff fbB B D−= − fb  (42) 

 1
ff fbC D C−= − fb  (43) 

 1
ffD D−= fb

a

 (44) 

The augmented system is 
 ( 1) ( ) ( )a a a ax t A x t B y t+ = +  (45) 

 ( ) ( ) ( )a a a a ay t C x t D u t= +  (46) 

Here 

 
( )

( )
( )

p
a

ff

x t
x t

x t
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (47) 

 1

0

0
p

a
fb fb fb fb

A
A

A B D C−

⎡ ⎤
⎢ ⎥=

−⎢ ⎥⎣ ⎦
 (48) 

 1

p
a

fb fb

B
B

B D−

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 (49) 

 1
a p fb fbC C D C−⎡ ⎤= −⎣ ⎦  (50) 

  (51) 1
a ff fD D D−= = b

The zero dynamics system matrix of the augmented 
system is given by 1

az a a a aA A B D C−= − . Substituting 
the appropriate matrices, finally gives 

 
p p fb p p fb

az
fb p fb

A B D C B C
A A

B C A

− −⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
 (52) 

In a recent application of a non-minimum phase 
UAV, Barkana (2004b) showed how the use of 
usually available basic knowledge on plant 
stabilizability can not only guarantee stability of the 
adaptive control system in uncertain environments, 
but also achieve high performance with nonlinear 
adaptive controller in some of the most difficult real-
world plants.  

5. NONLINEAR CONTROL OF ASPR 
SYSTEMS: 

While strictly proper continuous systems (with 
0pD = )  can be SPR, in discrete systems the direct 

input-output gain pcD  appears as an integral part of 
the SPR relations (20)-(22). To illustrate its 
significance, assume that the plant  
 ( 1) ( ) ( )p pc p pc px t A x t B u t+ = +  (53) 

 1( ) ( )p pc py t C x t=  (54) 

 1( ) ( )p p pc py t y D u t= +  (55) 

is SPR. The SPR system is asymptotically stable and 
we expect it to remain stable for any positive-definite 
gain, either constant or nonstationary. First, attempt 
to ignore the direct input output component of  
and use the nonlinear control signal 

( )py t

1( ) ( , ) ( ) ( , ) ( )p p p p pcu t K x t y t K x t C x tp= − = −  (56) 

     



Here, ( , )K x t  is uniformly positive definite. The 
closed-loop system is  
 (( 1) ( , ) ( )p pc pc p pc ) px t A B K x t C x+ = − t  (57) 

Select the Lyapunov function  
  (58) ( ) ( ) ( )T

p pV t x t Px t=

The Lyapunov difference function is  
  (59) ( ) ( 1) ( 1) ( ) ( )T T

p p p pV t x t Px t x t Px t∆ = + + −

 
( )

( )
  ( ) ( ) ( , )

( , ) ( ) ( ) ( )

TT
p pc pc p pc

T
pc pc p pc p p p

V t x t A B K x t C P

A B K x t C x t x t Px t

∆ = −

− −i
 (60) 

From (60) one gets (Appendix B) 

 

0

           ( ) ( ) ( )

( ) ( , ) ( , ) ( )

      ( ) ( , )

        ( , ) ( )

( ) ( , )

         ( , ) ( )

T
p p

T T T
p pc p p pc p

TT
p p pc

p pc p

T T T T
p pc p pc pc

p pc p

V t x t Qx t

x t C K x t K x t C x t

x t L WK x t C

L WK x t C x t

x t C K x t D D Q

K x t C x t

∆ = −

⎡ ⎤− +⎣ ⎦

⎡ ⎤− −⎣ ⎦
⎡ ⎤−⎣ ⎦

⎡ ⎤+ +⎣ ⎦

i

i

−

 (61) 

Because of the last (positive semidefinite) term in 
(61), the Lyapunov difference may not be negative 
definite if ( , )pK x t  becomes very large, and 
therefore high-gain stability of the closed-loop 
system cannot be guaranteed. 
 
Now, try the same nonlinear gain with the output 
signal  ( )py t

  (62) 
( ) ( , ) ( ) ( , ) ( )

                ( , ) ( )
p p p p pc

p pc p

u t K x t y t K x t C x t

K x t D u t

= − = −

−
p

Define 

 ( ) 1
( , ) ( , ) ( , )D p p pc pK x t I K x t D K x t

−
= − +  (63) 

to get from (62) 

  (64) ( ) ( , ) ( )p D p pc pu t K x t C x t= −

The closed-loop system is now 
 (( 1) ( , ) ( )p pc pc D p pc ) px t A B K x t C x+ = − t  (65) 

Select again the Lyapunov function (58). The 
Lyapunov difference function (59) gives  (Appendix 
C) 

( )
( )

( ) ( ) ( ) ( ) ( , )

( , ) ( ) ( ) ( )

TT T T
p p p D p pc

T T T
D p pc p p pc DD pc p

V t x t Qx t x t L WK x t C

L WK x t C x t x t C K C x t

∆ = − − −

− −i
 (66) 

where 

  (67) 
( )0

        ( , ) ( , )

( , ) ( , )

T
DD D p D p

T T
D p pc pc D p

K K x t K x t

K x t D D Q K x t

= +

− + −

Equation (66) looks similar to (61), and may 
apparently imply that the last term could still  
become positive and adversely affect the stability of 
the system. We will show that this is not the case and 
that now the last term in (66) is negative 
semidefinite. To this end, substitute ( , )D pK x t  in (67) 
and get by using the inverse matrix lemma and after 
some algebra  

 
1

0

 ( , ) ( , )

    ( , ) ( , )

     ( , ) ( , ) 0    

T
DD p p D p

T
D p p p

T
D p D p

K I D K x t K x t

K x t I D K x t

K x t Q K x t

−

−

⎡ ⎤= +⎣ ⎦

⎡ ⎤+ +⎣ ⎦

+ >

 (68) 

Using (68), one finally gets 
 ( ) ( ) ( ) 0 0T

p p pV t x t Qx t x∆ < − < ∀ >  (69) 

 
10. CONCLUSIONS 

 
This paper extends the strict passivity results of LTI 
systems to discrete systems. In particular, it is shown 
that any proper but not strictly proper, minimum-
phase, system with D >0 becomes strictly passive via 
positive output feedback. This result has been further 
extended, showing that if the controller H stabilized 
the system G, then the augmented system 

1
aG G H −= +  is minimum-phase.  This way, basic 

stabilizability properties of systems can be used to 
implement ASP configurations, thus extending the 
feasibility of adaptive and nonlinear control to real-
world systems that are not necessarily minimum-
phase.  

 
APPENDIX A. THE LYAPUNOV DIFFERENCE FUNCTION 

FOR THE STRICTLY PROPER SYSTEM 
 

From (59) one gets 

 

( ) ( ) ( ) ( )

( ) ( , ) ( )

( ) ( , ) ( )

( ) ( , ) ( , )

                  ( )

T T
p pc pc p

T T
p pc pc p pc pc

T T T T
p pc p pc pc p

T T T T
p pc p pc pc p

pc p

V t x t A PA P x t

x t A PB K x t C x t

x t C K x t B PA x t

x t C K x t B PB K x t

C x t

∆ = −

−

−

+

i

 (A.1) 

and after some algebra 

                ( ) ( ) ( )

( ) ( , ) ( , ) ( )

      ( ) ( , )

                  ( , ) ( )

( ) ( , )

                   

T
p p

T T T
p pc p p pc p

TT
p p pc

p pc p

T T T T T
p pc p pc pc

V t x t Qx t

x t C K x t K x t C x t

x t L WK x t C

L WK x t C x t

x t C K x t W W B PB

∆ = −

⎡ ⎤− +⎣ ⎦

⎡ ⎤− −⎣ ⎦
⎡ ⎤−⎣ ⎦

⎡ ⎤+ +⎣ ⎦

i

( , ) ( )p pc pK x t C x ti

 (A.2) 

From (A.2) one finally gets (61). 

     



 
 APPENDIX B. THE LYAPUNOV DIFFERENCE 
FUNCTION IN  STRICTLY PROPER SYSTEMS  

Using (65) with (59) gives 

(
( )

( ) ( ) ( , )

( , ) ( ) ( ) ( )

TT
p pc pc D p pc

T
pc pc D p pc p p p

V t x t A B K x t C P)
A B K x t C x t x t Px t

∆ = −

• − −
 (B.1) 

Substituting ( , )D pK x t  in (B.1) and using the SPR 
relations (20)-(22) leads after some algebra to 

( )
( )

( )
( )0

                ( ) ( ) ( )

( ) ( , ) ( , ) ( )

         ( ) ( , )

          ( , ) ( )

( ) ( , )

              ( , ) ( )

T
p p

T T T
p pc D p D p pc p

TT T
p D p pc

T
D p pc p

T T T T
p pc D p pc pc

D p pc p

V t x t Qx t

x t C K x t K x t C x t

x t L WK x t C

L WK x t C x t

x t C K x t D D Q

K x t C x t

∆ = −

− +

− −

−

+ +

i

i

i

i

−

 (B.2) 

From (B.2) one finally gets (66). 
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