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Abstract In this paper, the optimal filtering problem for linear systems with state and
observation delays is treated proceeding from the general expression for the stochastic Ito
differential of the optimal estimate, error variance, and various error covariances. As a result,
the optimal estimate equation similar to the traditional Kalman-Bucy one is derived; however,
the resulting system of equations for determining the filter gain matrix consists, in the general
case, of an infinite set of equations. It is then demonstrated that a finite set of the filtering
equations, whose number is specified by the ratio between the current filtering horizon and
the delay values, can be obtained in the particular case of equal or commensurable delays
in the observation and state equations. In the example, performance of the designed optimal
filter for linear systems with state and observation delays is verified against the best Kalman-
Bucy filter available for linear systems without delays. Copyright c©2005 IFAC.
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1. INTRODUCTION

The optimal filtering problem for linear system states
and observations without delays was solved in 1960s
(Kalman and Bucy, 1961), and this closed form so-
lution is known as the Kalman-Bucy filter. However,
the related optimal filtering problem for linear states
with delay has not been solved in a closed form,
regarding as a closed form solution a closed system
of a finite number of ordinary differential equations
for any finite filtering horizon. The optimal filter-
ing problem for time delay systems itself did not
receive so much attention as its control counterpart,
and most of the research was concentrated on the fil-
tering problems with observation delays (the papers
(Alexander, 1991; Hsiao and Pan, 1996; Larsen et
al., 1998) could be mentioned to make a reference). A
particular case, the optimal filtering problem for linear
systems with multiple observation delays, has recently
been solved in (Basin and Martinez-Zuniga, 2004).
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A review of the bibliography on dual optimal control
problems, as well as robust filtering and control prob-
lems, for time delay systems can be found in (Basin
and Martinez-Zuniga, 2004; Basin et al., 2003; Basin
et al., 2004a). Comprehensive reviews of general the-
ory and algorithms for time delay systems are given in
(Kolmanovskii and Shaikhet, 1996; Kolmanovskii and
Myshkis, 1999; Malek-Zavarei and Jashmidi, 1987;
Mahmoud, 2000; Boukas and Liu, 2002).

In this paper, the optimal filtering problem for lin-
ear systems with state and observation delays is
treated proceeding from the general expression for the
stochastic Ito differential of the optimal estimate, er-
ror variance, and various error covariances (Pugachev
and Sinitsyn, 2001). As a result, the optimal estimate
equation similar to the traditional Kalman-Bucy one is
derived. However, it is impossible to obtain a system
of the filtering equations, that is closed with respect
to the only two variables, the optimal estimate and the
error variance, as in the Kalman-Bucy filter. Thus, the
resulting system of equations for determining the filter
gain matrix consists, in the general case, of an infinite



set of equations. It is however demonstrated that a fi-
nite set of the filtering equations can be obtained in the
particular case of equal or commensurable (τ = qh)
delays in the observation and state equations, where
τ is the observation delay, h is the state one, and q
is a natural number. This finite number of the filter-
ing equations whose number is specified by the ratio
between the current filtering horizon and the delay
values and increases as the filtering horizon tends to
infinity.

The paper is organized as follows. Section 2 and 3
present the filtering problem statement for a linear
system with state and observation delays and its so-
lution, respectively. In Section 4, performance of the
obtained optimal filter for linear systems with state
and observation delays is verified in the illustrative
example against the best filter available for linear
systems without delays. The simulation results show
asymptotic convergence of the estimate given by the
obtained optimal filter for linear systems with state
and observation delays to the real system state as time
tends to infinity, whereas the conventional Kalman-
Bucy estimates calculated without delay adjustment
do not converge.

2. FILTERING PROBLEM FOR LINEAR
SYSTEMS WITH STATE AND OBSERVATION

DELAYS

Let (Ω,F,P) be a complete probability space with
an increasing right-continuous family of σ-algebras
Ft , t ≥ 0, and let (W1(t),Ft , t ≥ 0) and (W2(t),Ft , t ≥
0) be independent Wiener processes. The partially
observed Ft -measurable random process (x(t),y(t))
is described by a delay differential equation for the
system state

dx(t) = (a0(t)+a(t)x(t −h))dt +b(t)dW1(t), (1)

with the initial condition x(s) = φ(s), s ∈ [t0 − h, t0],
and a delay differential equation for the observation
process

dy(t) = (A0(t)+A(t)x(t − τ ))dt +B(t)dW2(t), (2)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rm is the
observation process, φ(s) is a mean square piecewise-
continuous Gaussian stochastic process (see (Pugachev
and Sinitsyn, 2001) for definition) given in the interval
[t0 − h, t0] such that φ(s), W1(t), and W2(t) are inde-
pendent. The system state x(t) dynamics depends on
a delayed state x(t − h) and the observations y(t) are
collected depending on another delayed state x(t − τ ),
which actually make the system state space infinite-
dimensional (see, for example, (Malek-Zavarei and
Jashmidi, 1987)). The vector-valued function a0(t) de-
scribes the effect of system inputs (controls and distur-
bances). It is assumed that A(t) is a nonzero matrix and
B(t)BT (t) is a positive definite matrix. All coefficients
in (1)–(2) are deterministic functions of appropriate
dimensions.

The estimation problem is to find the best estimate
of the system state x(t) based on the observation
process Y (t) = {y(s),0 ≤ s ≤ t}, which minimizes the
Euclidean 2-norm

J = E[(x(t)− x̂(t))T (x(t)− x̂(t)) | FY
t ]

at every time moment t. Here, E[z(t) | FY
t ] means

the conditional expectation of a stochastic process
z(t) = (x(t)− x̂(t))T (x(t)− x̂(t)) with respect to the
σ - algebra FY

t generated by the observation process
Y (t) in the interval [t0, t]. As known (Pugachev and
Sinitsyn, 2001), this optimal estimate is given by the
conditional expectation

x̂(t) = m(t) = E(x(t) | FY
t )

of the system state x(t) with respect to the observation
process Y (t) in the interval [t0, t].

The matrix functions P(t) =

= E[(x(t)−m(t))(x(t)−m(t))T | FY
t ],

that is the estimation error variance, and P(t, t − t1) =

= E[(x(t)−m(t))(x(t − t1)−m(t − t1))
T | FY

t ],

that is the covariance between the estimation error
values at different time moments, P(t, t) = P(t), are
used to obtain a system of filtering equations.

The proposed solution to this optimal filtering prob-
lem is based on the formulas for the Ito differentials
of the conditional expectation m(t) = E(x(t) | FY

t ),
the error variance P(t), and other bilinear functions of
x(t)−m(t) (see (Pugachev and Sinitsyn, 2001)) and
given in the following section.

3. OPTIMAL FILTER FOR LINEAR SYSTEMS
WITH STATE AND OBSERVATION DELAYS

The optimal filtering equations can be obtained using
the formula for the Ito differential of the conditional
expectation m(t) = E(x(t) | FY

t ) ((Pugachev and Sinit-
syn, 2001))

dm(t) = E(ϕ (x) | FY
t )dt+ (3)

E(x[ϕ1(x)−E(ϕ1(x) | FY
t )]T | FY

t )×
(
B(t)BT (t)

)−1(dy(t)−E(ϕ1(x) | FY
t )dt),

where ϕ (x) is the drift term in the state equation equal
to ϕ (x) = a0(t) + a(t)x(t − h) and ϕ1(x) is the drift
term in the observation equation equal to ϕ1(x) =
A0(t)+ A(t)x(t − τ ). Note that the conditional expec-
tation equality E(x(t −h) | FY

t ) = E(x(t −h) | FY
t−h) =

m(t −h) is valid for any h > 0, since, in view of a pos-
itive delay shift h > 0, the treated problem (1),(2) is a
filtering problem, not a smoothing one, and, therefore,
the formula (3) yields the optimal estimate m(s) for
any time s, t0 < s ≤ t, if the observations (2) are ob-
tained until the current moment t (see (Pugachev and
Sinitsyn, 2001; Basin and Martinez-Zuniga, 2004)).
Upon performing substitution of the expressions for ϕ



and ϕ1 into (3) and taking into account the conditional
expectation equality, the estimate equation takes the
form

dm(t) = (a0(t)+a(t)m(t −h))dt+ (4)

E(x(t)[A(t)(x(t − τ )−m(t − τ ))]T | FY
t )×

(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t − τ )dt) =
= (a0(t)+a(t)m(t −h))dt+

E([x(t)−m(t)][x(t − τ )−m(t − τ )]T | FY
t )AT (t)×

(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t − τ )dt) =

(a0(t)+a(t)m(t −h))dt +P(t, t − τ )AT (t)×
(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t − τ )dt)

To compose a system of the filtering equations, the
equation for the conditional expectation E([x(t) −
m(t)][(x(t−τ )−m(t−τ ))]T | FY

t ) should be obtained.
This can be done using the equation (1) for the state
x(t), the equation (4) for the estimate m(t), and the
formula for the Ito differential of a product of two pro-
cesses satisfying Ito differential equations ((Pugachev
and Sinitsyn, 2001)):

d(z1zT
2 ) = z1dzT

2 +(z2dzT
1 )T + (5)

(1/2)[y1νyT
2 + y2νyT

1 ]dt.

Here, the stochastic process z1 satisfies the equation
dz1 = x1dt + y1dw1, the stochastic process z2 satisfies
the equation dz2 = x2dt + y2dw2, and ν is the covari-
ance intensity matrix of the Wiener vector [w1 w2]

T .

Let us obtain the formula for the Ito differential of the
general expression P(t, t − t1) = E([x(t)−m(t)][x(t −
t1)− m(t − t1)]

T | FY
t ), where t1 > 0 is an arbitrary

delay, not necessarily equal to τ . Upon representing
P(t, t− t1) as P(t, t− t1) = E([x(t)(x(t− t1))

T ] | FY
t )−

m(t)m(t − t1), using first x(t) as z1 and x(t − t1) as z2
and then m(t) as z1 and m(t − t1) as z2 in the formula
(5), taking into account independence of the Wiener
processes W1 and W2 in the equations (1) and (2), and
finally subtracting the second derived equation from
the first one, the following formula is obtained

dP(t, t − t1)/dt = a(t)P(t −h, t − t1) (6)

+P(t, t − t1 −h)aT (t − t1)

+(1/2)[b(t)bT (t − t1)+b(t − t1)b
T (t)

−P(t, t − τ )AT (t)(B(t)BT (t))−1B(t)BT (t − t1)

×(B(t − t1)B
T (t − t1))

−1A(t − t1)P
T (t − t1, t − t1 − τ )

−P(t − t1, t − t1 − τ )AT (t − t1)(B(t − t1)B
T (t − t1))

−1

×B(t − t1)B
T (t)(B(t)BT (t))−1A(t)PT (t, t − τ )].

Analysis of the formula (6) in the case t1 = τ implies
that the equation for P(t, t − τ ) includes variables
P(t, t − τ − h), P(t − h, t − τ ) and the same P(t, t −
τ ) in its right-hand side. Taking into account that
P(t −h, t − τ ) is represented as P(t, t − τ +h) with the
arguments delayed by h, the new variables involved
in the equations for P(t, t − τ ) are P(t, t − τ − h)
and P(t, t − τ + h). This structure is repeated in the
equations for P(t, t − τ −h), P(t, t − τ +h), etc.

Hence, the system of the optimal filtering equations
for the state (1), whose proper dynamics is delayed
by h, over the delayed by τ observations (2) is the
infinite-dimensional system composed by the equa-
tion (4) for the optimal estimate and the equations
(6) for the covariances P(t, t − τ + kh), where k =
. . . ,−2,−1,0,1,2, . . . is an arbitrary integer number.

Using the notation Pk(t) = P(t, t − τ − kh), the equa-
tion (4) can be rewritten as

dm(t) = (a0(t)+a(t)m(t −h))dt +P0(t)A
T (t)× (7)

(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t − τ )dt),

and the system (6) can be represented in the following
form

dPk(t)/dt = a(t)Pk−1(t −h)+Pk+1(t)a
T (t − τ − kh)

(8)
+(1/2)[b(t)bT (t − τ − kh)+b(t − τ − kh)bT (t)

−P0(t)A
T (t)(B(t)BT (t))−1B(t)BT (t − τ − kh)

×(B(t − τ − kh)BT (t − τ − kh))−1A(t − τ − kh)

×PT
0 (t − τ − kh)−P0(t − τ − kh)AT (t − τ − kh)

×(B(t − τ − kh)BT (t − τ − kh))−1

×B(t − τ − kh)BT (t)(B(t)BT (t))−1A(t)PT
0 (t)].

Thus, the preceding conclusion can be formulated in
the final form: the system of the optimal filtering
equations for the state (1), whose proper dynamics
is delayed by h, over the delayed by τ observations
(2) is the infinite system composed by the equation
(7) for the optimal estimate and the equations (8) for
the covariances Pk(t) = P(t, t − τ − kh), where k =
. . . ,−2,−1,0,1,2, . . . is an arbitrary integer number.

The last step is to establish the initial conditions for
the system of equations (7),(8). The initial conditions
for (7) are stated as

m(s) = E(φ(s)), s ∈ [t0 −h, t0) and

m(t0) = E(φ(t0) | FY
t0

), s = t0, (9)

The initial conditions for matrices Pk(t) = E((x(t)−
m(t))(x(t − τ − kh))T | FY

t ) should be stated as func-
tions in the intervals [max{t0 − h, t0 + τ + (k − 1)h},
max{t0 + τ + kh, t0}], since the equations (8) corre-
sponding to non-negative k depend on coefficients
with arguments delayed by τ + kh, which are not de-
fined for t < t0. Thus, the initial conditions for the
matrices Pk(t) are stated as

Pk(s) = E((x(s)−m(s))(x(s− τ − kh)− (10)

m(s− τ − kh))T | FY
s ), s ∈

[max{t0 −h, t0 + τ +(k−1)h},max{t0 + τ + kh, t0}].
Unfortunately, the system (7),(8) cannot be reduced to
a finite system for any fixed filtering horizon t, as it can
be done in the case of only state delay in the equations
(1),(2) (see (Basin et al., 2004b)), since the infinite
number of the equations (8) for Pk(t) with negative k
are always needed to compose a closed system for any



time t. However, this reduction is possible for some
particular cases, for example, in the case of equal,
τ = h, (or commensurable, τ = qh, q is natural) delays
in the equations (1),(2), which is considered in details
in the next subsection.

3.1 Optimal Filter for Linear Systems with
Commensurable State and Observation Delays

An important and frequently encountered in practical
applications particular case of commensurable delays
in state and observation equations is recovered assum-
ing τ = qh, q = 1,2, . . . is a natural number. In doing
so, the state and observation equations (1),(2) take the
form

dx(t) = (a0(t)+a(t)x(t −h))dt +b(t)dW1(t), (11)

with the initial condition x(s) = φ(s), s ∈ [t0 −h, t0],

dy(t) = (A0(t)+A(t)x(t −qh))dt +B(t)dW2(t).
(12)

Accordingly, the optimal filtering equation (7) for the
optimal estimate m(t) turns to

dm(t) = (a0(t)+a(t)m(t −h))dt +P0(t)A
T (t)×

(13)
(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t −qh)dt),

and the system (8) is given by

dPk(t)/dt = a(t)Pk−1(t −h)+Pk+1(t)a
T (t − (q+k)h)

+(1/2)[b(t)bT (t − (q+ k)h)+b(t − (q+ k)h)bT (t)

−P0(t)A
T (t)(B(t)BT (t))−1B(t)BT (t − (q+ k)h)

×(B(t − (q+ k)h)BT (t − (q+ k)h))−1

×A(t − (q+ k)h)PT
0 (t − (q+ k)h) (14)

−P0(t − (q+ k)h)AT (t − (q+ k)h)

×(B(t − (q+ k)h)BT (t − (q+ k)h))−1

×B(t − (q+ k)h)BT (t)(B(t)BT (t))−1A(t)PT
0 (t)].

Using the equality

P−q−1(t −h) = P(t −h, t − (−q−1)h−qh−h) =

P(t −h, t) = PT (t, t −h) = PT
−q+1(t),

the equation for P−q in (14) can be rewritten as

dP−q(t)/dt = a(t)PT
−q+1(t)+P−q+1(t)a

T (t)+ (15)

b(t)bT (t)−P0(t)A
T (t)(B(t)BT (t)−1A(t)PT

0 (t).

Note that P−q(t) = E((x(t)−m(t))(x(t))T | FY
t ) is the

estimation error variance.

If q = 1,2, . . ., the right-hand side of (15) does not
include variables Pk corresponding to negative k <−q.
Hence, a closed system of the filtering equations is
formed by the equations (13),(15) and the equations
(14) with k ≥ −q only. This enables one to obtain a
finite system of the filtering equations for any fixed
filtering horizon t, as follows.

Namely, for every fixed t, the number of equations
corresponding to k ≥−q in (14), that should be taken
into account to obtain a closed system of the filtering
equations, is not equal to infinity, since the matrices
a(t), b(t), A(t), and B(t) are not defined for t < t0.
Therefore, if the current time moment t belongs to the
semi-open interval (t0 + (k + q)h, t0 + (k + q + 1)h],
where h is the delay value in the equations (1),(2), the
number of equations in (14) is equal to k +q.

The last step is to establish the initial conditions for the
system of equations (13),(15),(14). The initial condi-
tions for (13) and (15) are stated as

m(s) = E(φ(s)), s ∈ [t0 − τ , t0) and

m(t0) = E(φ(t0) | FY
t0

), s = t0, (16)

and

P(t0) = E[(x(t0)−m(t0)(x(t0)−m(t0))
T | FY

t0
]. (17)

The initial conditions for matrices Pk(t) = E((x(t)−
m(t))(x(t−(q+k)h))T | FY

t ) should be stated as func-
tions in the intervals [t0 +(k + q− 1)h, t0 +(k + q)h],
since the kth of the equations (14) depends on func-
tions with the arguments delayed by (k + q)h and the
definition of Pk(t) itself assumes dependence on x(t −
(k +q)h). Thus, the initial conditions for the matrices
Pk(t) in (14) are stated as

Pk(s) = E((x(s)−m(s))(x(s− (q+ k)h)−
m(s− (q+ k)h))T | FY

s ),

s ∈ [t0 +(q+ k−1)h, t0 +(q+ k)h]. (18)

The obtained system of the filtering equations (13),
(15), (14) with the initial conditions (16)–(18) presents
the optimal solution to the filtering problem for the
linear state with delay (11) over the linear observations
(12). A considerable advantage of the designed filter
is a finite number of the filtering equations for any
fixed filtering horizon, although the state space of the
delayed system (11) is infinite-dimensional.

Remark. The convergence properties of the obtained
optimal estimate (7) are given by the standard conver-
gence theorem (see, for example, (Jazwinski, 1970)):
if in the system (1),(2) the pair (a(t)Ψ(t − h, t),b(t))
is uniformly completely controllable and the pair
(a(t)Ψ(t − h, t), A(t)Ψ(t − τ , t) is uniformly com-
pletely observable, where Ψ(t,τ ) is the state transition
matrix for the equation (1) (see (Malek-Zavarei and
Jashmidi, 1987) for definition of matrix Ψ), then the
error of the obtained optimal filter (7),(8) is uniformly
asymptotically stable. As usual, the uniform complete
controllability condition is required for assuring non-
negativeness of the error variance matrix P−q(t) and
may be omitted, if the matrix P−q(t) is non-negative in
view of its intrinsic properties. The uniform complete
controllability and observability conditions for a linear
system with delay (1) and observations (2) can be
found in (Malek-Zavarei and Jashmidi, 1987).



4. EXAMPLE

This section presents an example of designing the op-
timal filter for linear systems with state and observa-
tion delays and comparing it to the best filter available
for linear systems without delay, that is the Kalman-
Bucy filter (Kalman and Bucy, 1961).

Let the unobserved state x(t) with delay be given by

ẋ(t) = x(t −5), x(s) = φ(s), s ∈ [−5,0], (19)

where φ(s) = N(0,1) for s ≤ 0, and N(0,1) is a
Gaussian random variable with zero mean and unit
variance. The observation process is given by

y(t) = x(t −5)+ψ(t), (20)

where ψ(t) is a white Gaussian noise, which is the
weak mean square derivative of a standard Wiener
process (see (Pugachev and Sinitsyn, 2001)). The
equations (12) and (13) present the conventional form
for the equations (1) and (2), which is actually used in
practice (Åström, 1970). Since the observation delay
is equal to the state one, the system (19),(20) satisfies
the conditions of Subsection 3.1 with q = 1.

The filtering problem is to find the optimal estimate
for the linear state with delay (19), using the linear ob-
servations with delay (20) confused with independent
and identically distributed disturbances modeled as
white Gaussian noises. Let us set the filtering horizon
time to T = 80. Since 80 ∈ (15× 5,16× 5], where 5
is the delay value in the equations (19),(20), the first
15 of the equations (14), along with the equations (13)
and (15), should be employed.

The filtering equations (13),(15), and the first 15 of
the equations (14) take the following particular form
for the system (19),(20)

ṁ(t) = m(t −5)+P0(t)[y(t)−m(t −5)], (21)

with the initial condition m(s) = E(φ(s)) = 0, s ∈
[−5,0) and m(0) = E(φ(0) | y(0)) = m0, s = 0;

Ṗi(t) = Pi−1(t −5)+Pi+1(t)−P0(t)P0(t −5(i+1)),
(22)

with the initial condition Pi(0)= E((x(s)−m(s))(x(s−
5(i + 1))− m(s − 5(i + 1))) | FY

s ), s ∈ [5i,5(i + 1)],
i = 0, . . . ,14; and

Ṗ−1(t) = 2P0(t)−P2
0 (t), (23)

with the initial condition P−1(0) = E((x(s)−m(s))2 |
y(0)) = R0; note that P−1(t) is the error variance. The
particular forms of the equations (19) and (21) and
the initial condition for x(t) imply that Pi(s) = R0,
i = 0, . . . ,15, for s ∈ [5i,5(i+1)].

The estimates obtained upon solving the equations
(21)–(23) are compared to the conventional Kalman-
Bucy estimates satisfying the following filtering equa-
tions for the linear state with delay (19) over linear
observations with delay (20), where the variance equa-
tion is a Riccati one and the equation for matrix P0(t)
is not employed:

ṁK(t) = mK(t −5)+PK(t)[y(t)−mK(t −5)], (24)

with the initial condition mK(s) = E(φ(s)) = 0, s ∈
[−5,0) and mK(0) = E(φ(0) | y(0)) = m0, s = 0;

ṖK(t) = 2PK(t)−P2
K(t), (25)

with the initial condition PK(0) = E((x(0)−m(0))2 |
y(0)) = R0.

Numerical simulation results are obtained solving the
systems of filtering equations (21)–(23) and (24)–(25).
The obtained values of the estimates m(t) and mK(t)
satisfying (21) and (24) respectively are compared to
the real values of the state variable x(t) in (19).

For each of the two filters (21)–(23) and (24)–(25) and
the reference system (19) involved in simulation, the
following initial values are assigned: x0 = 1, m0 = 10,
R0 = 100. Gaussian disturbance ψ(t) in (20) is real-
ized using the built-in MatLab white noise function.

The following graphs are obtained: graphs of the ref-
erence state variable x(t) for the system (19); graphs
of the Kalman-Bucy filter estimate mK(t) satisfying
the equations (24)–(25); graphs of the optimal filter
estimate for linear systems with state and observation
delays m(t) satisfying the equations (21)–(23). The
graphs of all those variables are shown on the entire
simulation interval from T = 0 to T = 80 (Fig. 1), and
around the reference time points: T = 40 (Fig. 2), T =
60 (Fig. 3), and T = 80 (Fig. 4). The following values
of the reference state variable x(t) and the estimates
m(t) and mK(t) are obtained at the reference time
points: for T = 40, x(40) = 12.55, m(40) = 12.62,
mK(40) = 12.75; for T = 60, x(60) = 51.56, m(60) =
51.50, mK(60) = 52.12; for T = 80, x(80) = 211.92,
m(80) = 211.96, mK(80) = 214.08.

Thus, it can be concluded that the obtained optimal
filter for a linear systems with state delay and over
linear observations with delay (21)–(23) yield better
estimates than the conventional Kalman-Bucy filter.
Moreover, it can be seen that the estimate produced
by the optimal filter for a linear state with delay over
linear observations asymptotically converges to the
real values of the reference variable as time tends
to infinity, although the reference system (19) itself
is unstable. On the contrary, the conventionally de-
signed (non-optimal) Kalman-Bucy estimates do not
converge to the real values. This significant improve-
ment in the estimate behavior is obtained due to the
more careful selection of the filter gain matrix using
the multi-equational system (21)–(23), which com-
pensates for unstable dynamics of the reference sys-
tem, as it should be in the optimal filter.
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Figure 1. Graphs of the reference state variable x(t)
and the estimates mK(t) and m(t) on the entire
simulation interval [0,80].
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Figure 2. Graphs of the reference state variable x(t)
and the estimates mK(t) and m(t) around the
reference time point T = 40.
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Figure 3. Graphs of the reference state variable x(t)
and the estimates mK(t) and m(t) around the
reference time point T = 60.
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Figure 4. Graphs of the reference state variable x(t)
and the estimates mK(t) and m(t) around the
reference time point T = 80.


