CONVERGENCE ANALYSIS OF CONSTRAINED JOINT
ADAPTATION IN RECORDING CHANNELS

Lim Sze Chieh and George Mathew

Dept. of ECE, National University of Singapore, Singapore 117576
Data Storage Institute, A*STAR, Singapore 117608

Abstract: Although partial response (PR) equalization employing the linearly constrained
least-mean-square (LCLMS) algorithm is widely used in recording channels, there is no
literature on its convergence analysis. Existing analyses of the LMS algorithm assume
that the input signals are jointly Gaussian, which is an invalid assumption for PR
equalization with binary input. In this paper, we present a convergence analysis of the
LCLMS algorithm, without the Gaussian assumption. An approximate expression is
derived for the misadjustment. It is shown that the step-size range required to guarantee
stability is larger for binary data compared to Gaussian data. Copyright © 2005 I[FAC
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1. INTRODUCTION

There has been considerable research effort to
combine partial response (PR) equalization with the
Viterbi detector to minimize noise and distortions in
recording channels. Conventionally, PR equalization
shapes the channel response into a predetermined PR
target with integer-valued coefficients. The Viterbi
algorithm is then applied to the equalizer output to
estimate the stored data bits. In recent years, research
has shown that substantial performance improvement
can be attained by employing generalized PR (GPR)
targets with non-integer-valued coefficients (Moon
and Zeng, 1995). Due to time-varying or unknown
channel characteristics, it is necessary to employ
adaptive approaches to design the equalizer and PR
target, with the linearly constrained least-mean-
square (LCLMS) algorithm being the most widely
used. Substantial research has been done on the LMS
algorithm and it is well described in the literature.

The analyses (Farhang-Boroujeny, 2000; Feuer and
Weinstein, 1985; Frost, 1972; Godara and Cantoni,
1986) assumed that the input data and desired signal

are jointly Gaussian. Unfortunately, in PR
equalization, the joint Gaussian assumption is invalid
since the input data is binary, even though the
channel noise is Gaussian. Although Claasen and
Mecklenbriuker (1981) accommodate binary input,
the filter input is restricted to a white process. In PR
equalization, however, the equalizer input is
correlated due to intersymbol interference. Further,
because it is necessary to adapt both the equalizer and
PR target, the analysis must consider two step-size
parameters, whereas existing analyses consider only a
single step-size parameter. Thus, existing analyses
are inappropriate for studying the convergence of the
LCLMS algorithm in PR equalization.

In this paper, a novel approach is first presented in
Section 2 to study the convergence behavior of the
LCLMS algorithm with a single step-size parameter
for adapting both the equalizer and PR target, without
making the Gaussian assumption. In Section 3, the
necessary modifications are given to accommodate
two step-size parameters. Simulation results, which
corroborate the theoretical developments, are given in
Section 4. The paper is concluded in Section 5.
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Fig. 1. Recording channel model with PR equalizer.

2. LCLMS ALGORITHM WITH BINARY DATA
AND GAUSSIAN NOISE

2.1 System Model

Fig. 1 depicts the recording channel model used in
this paper. The channel noise n, is modeled as
additive white Gaussian with variance o and the
data bits a, are chosen to be independent and
identically distributed random variables taking values
{~1, +1} with equal probability. An appropriate value
of the delay m, is assumed. The equalizer tap-
weights, equalizer input, PR target tap-weights, and
PR target input are defined, respectively, as the real-
valued column vectors w=[w, w, ... wy ,]',
2, =z 2, ... ZkaMl]T» p=[p, P - le,—l]T >
and a,_, =[a,, @, - G, y ] » Where N, is
the equalizer length, N, is the PR target length, and
the superscript ‘T’ denotes the transpose operator.

A trivial solution that minimizes the mean-square
error (MSE) E[e;] is w = 0 and p =0, where E[-]
denotes statistical expectation. This, of course, is
useless and undesirable since it corresponds to no
transmission through the channel. Thus, the objective
is to minimize the MSE, subject to Bp = b, where B
is a N, x N, matrix, b is a N, x 1 vector, and N, is the
number of linearly independent constraint(s).

In the subsequent derivations, it is assumed that

= {aq,} and {m} are zero-mean and mutually
independent stationary processes;

= At time £, the tap-weight vectors, w, and p, , are
independent of the input vectors, z, and a,,
(henceforth called the independence assumption).

2.2 LCLMS Algorithm

The LCLMS algorithm is given by (Frost, 1972)
W =W, +21.e2,,

P = A(p, _2ll'lpekak—m0)+B#b (1)
where g, is the equalizer step-size parameter, x, is
the PR target step-size parameter, B’ =B"(BB")™',
A=1-B'B, and ¢, =a; ,p,—z;W,. Also, it can
be easily seen that

€ = azfmogk _szk + € (2)

where g, =p,-p,,, fLi=w,-w,., p, is the
optimum PR target tap-weight vector, w,, is the
optimum  equalizer tap-weight vector, and
Copri = a,f_m”p“p, - ZZWUM is the optimum error.
Substituting (2) into (1), and using Bp,,, =b, yields
fo =1 — Zluwzkzsz + 2:uwzkaz—mogk + 20,82

g, = Ag, _Zﬂpakfmuazfmugk + Zﬂpakfmgzsz
_le’lpeupt,kak—mn) : (3)
With u, =, = u, (3) can be expressed as

Via = \ll[(l_z/'lkaZ)Vk +2/Jeopf,kyk] “4)
_| £ |10 | %
g e e 5]

The matrix A performs orthogonal projection onto a
subspace orthogonal to the row space of the
constraint matrix B (Cowen, 1997). The matrix ¥ is
also a projection matrix. A projection matrix is both
symmetric and idempotent. These two properties are
crucial in subsequent derivations. Let us investigate
the characteristics of W . The constraints can be
expressed as @e=b, where O@=[0 B] and
e’ =[w' p']. Since ¥ performs orthogonal
projection onto a subspace S* orthogonal to the
subspace S spanned by the rows of @ , there exist N,
mutually orthogonal eigenvectors in S with
eigenvalue 0. Similarly, there also exist (N — N.)
mutually orthogonal eigenvectors in S* with
eigenvalue 1, where N=N,, + N,

From (1), it can be easily deduced that E[e,, ,z,]1=0
and E[e,, ;Aa, , ]=0. Consequently, the principle
of orthogonality can be written as

Ele, ¥y, ]1=0. 5)

Note that ¥ is singular if there is at least one linear
constraint. Thus, in general, it cannot be concluded
that E[eopt,k y.1=0.

2.3 Average Tap-Weight Behavior

With the tap-weights initialized such that they satisfy
the constraint(s), it can be inferred that v, =¥ v,. In
addition, since the tap-weights lie on the constraint
hyperplane at every adaptation step, it is observed
that v, = ¥v, , for any positive integer k. Since ¥
is idempotent, it is evident that

v, =¥"v,, neZ k=0,1,2,... (6)
As aresult, with x, =¥y, , (4) can be expressed as
Vk+] = (I _2/’1 kaz)vk + 2lu eopt,kxk . (7)

Under the independence assumption and the principle
of orthogonality in (5), it follows from (7) that
E[v,,]=(I-2uR )E[v,] ®)
with R, =E[x,x; ]=QAQ", where A is a diagonal
matrix consisting of the eigenvalues Ay, A,,...,A,_; of
R, and the columns of Q contain the corresponding
orthonormal eigenvectors. With v/, =Q"v, , (8) can



be rewritten as the vector recursive equation
E[v',]=0-2uA)E[v', ], which can be separated
into the scalar recursive equations

E[v’kﬂ,i ] = (1 - 2,“ }\‘i)E[v'k,i ] (9)

where V', ; is the i-th element of the vector v/, .

Note that R, =WR ¥, where R, =E[y,y;] is
positive definite. Thus, the eigenvectors of ¥ with
eigenvalue 0 are also eigenvectors of R, with
eigenvalue 0. These eigenvectors lie in the subspace
S and the projection of v, in the directions of these
eigenvectors is zero for all k. Since v, has already
converged in these directions, it does not pose any
problem even if A, =0 in these directions. From (9),
in order for v, to converge in the remaining
directions given by the orthonormal eigenvectors
which lie in the subspace S*, it is imperative that the
remaining eigenvalues are nonzero. Let q # 0 be one
such eigenvector. Then, ¥q =q and
q'Rq=q ¥R ,¥q=q'R >0  (10)
since R is positive definite. Further, since R is at
least poéitive semidefinite (psd), (10) implies that the
eigenvalue corresponding to q must be positive. From
(9), it can be seen that for E[V', ;] to converge to zero
for all 7, it is necessary that |1-2uA, |[<1 for those
positive eigenvalues A,. Thus, it is concluded that
O<pu<l/h,, (11)

where A, is the maximum eigenvalue of R .

max

2.4 MSE Behavior

The convergence of the LCLMS algorithm requires
the convergence of the mean of v, to zero and the
convergence of the variance of the elements of v, to
some limited values (Farhang-Boroujeny, 2000). In
this section, the latter is investigated, without using
the Gaussian assumption.

From (2) and (6), ¢, =€,,,, = V;¥; =€, — V;X; - As
a result, it follows that

& =Ele/]=¢,,, +tr(D;R,) (12)
where & . = E[efp,‘,(] , tr(-) denotes the trace of a

matrix, and D, =E[v,v,]. Further, excess MSE is
defined as &, =tr(D_R ).

From (7), using the independence assumption and the
principle of orthogonality (5), we get
B[V, v, 1= Elv{v,]-4uE[v,E[x,x;]v,]
+ 4ﬂ2E[VZE[XkXZXkXI v, ]
- 8/12E[V£ ]E[kazxkeapt,k] + 4/'12E[e§pt,kx2:xk] .(13)

With u" =[w,, p,,], wegete,,, =—u'y, and

E[x,x;x,x,; ] = WE[x;x,y,y; ¥,
E[ka;crxkeopt,k] ==Y E[szkkaz Ju,

E[ejpz,kxzxk] = “TE[szkkaZ]“ . (14)

Thus, the main task is to simplify the fourth-order

moment E[x;X,y,y,].

Firstly, with z, =n, +h'a,_, it can be shown that
T Ny-1 5 N, -1 T~
X, X, = Zl_:o n,_; +2Z:l_:0 n,_ha,_,
Ny-ly T2 ~T T
+Z,-:0 h ak*iakﬂ'h—’—ak*moAakfmo (15)

where h=[h, h, ... h NFI]T represents the channel
bit response, a, =[a, @, ... a,_y ], and N, is the
channel length. Next, E[x;x,y,y, ] is partitioned as

Y, Y
Bxixall=(y ] e

where Y, =E[x;x,z,z;], Y, =-E[x;x;z,a; ],
Y, =Y, and Y,, = E[xekakfmanme] . Further, the
fourth-order moment of the data bits a, is given by
Ela,a,a,4,]=6,8,,+6,8,+6,0 ;, —25,6,8,. Since
a, and n, are mutually independent, it is possible to
find an exact expression for E[x;x,y,y;] (see
Appendix A). Next, R is also partitioned as
RZ - Rza
Ry :E[ykyZ]:|:_Rza R :|, Rz :E[ZkZZ],
Rza = E[Zkazfma] H Ra = E[akfmﬂa;crfma] s
R.(.j) =078, + 3" hh

nij -0 a ‘ati—j
Rza(ivj):h;n0+j—i’ Ra(i’j)zaij’ (17)
Consequently, it is noted that
E[x;x,]=tr(R,)=tr(R,) + tr(AR,)
N, -1
=N,o,+N, > " hi+tr(A). (18)

wn

a

Upon inspection of the expressions for E[x;x,y,y;]
R, and E[x;x,], it can be deduced that
E[szkykyz]: E[szk ]Ry

_ 0 0 _ H11 le
+2{Ry‘l’Ry R},[O S(A)}Ry (HZI H. (19)
where 9,(A) = A(, /)9, is the (i, /)-th element of
$(A) . Also, H,,, H,, and H,, are given by

N, -1 N, -1 N, -1
T 2 2 2
H22 - dlag hmﬁ—a b th(,-ﬂ—a EAR Z hm¢,+NIJ—l—a H
a=0 a=0 a=0
hmo hmu+l : hmu +N,-1
h
_ my—1 my my+N, -2
H,=~- : : : H,,
hmeNH.n hmowa 2 th+NP—NW

Toeplitz Matrix

ho hl . hN“,.JrN,,fZ
H, = Cz2C', C= ;1 :0 . 1\]”+:1\//r3 >
h—NwH thﬁz hN,,—l

Toeplitz Matrix

N,-1 N,-1 N,-1
7= diag[ Do X By g, Zh;ﬁNhMJ (20)
a=0 a=0 a=0

where diag(...) denotes a diagonal matrix consisting
of the indicated elements. Note that H,, =R H,,R,
and H,, =—R_H,,R . This inspires us to write



H, H,)_ 0 0 D0
(H o) Rlon, |R* oo

21 22

T
— RzaH22R2$ _RzaH22Ra +|:(D 0:| (21)
_RaHZZRza RaHZZRa 0 0
where @ is some unknown N, x N, matrix to be
found. The matrices Z=diag(Z,,Z,,Z,) and

C=[C, C, C,] are partitioned such that Z, =H,,
and C, =R _,. Asaresult, H,, can be expressed as
H, = ClzlclT + RzaH22RIa +C3Z3C§- (22)
The only requirement for writing (22) is given by
0<my,my+N,-1<N, +N,-2, which is satisfied
in practice. From (21) and (22), it can be seen that
®=C,Z,C| +C,Z,C; . Thus, (19) can be written as
E[x;x,y,y; 1= tr(R))R, +2(R, ¥R -L) (23)

where L=Ry([0 19&‘)} [g H022DR J{((I)) 8}

The matrices A, H,, and ® are clearly psd. Since
the diagonal elements of a psd matrix are
nonnegative, $(A) is also psd. Thus, it is clear that
L is psd. Noting from (5) that E[eopt!k‘l’yk] =
YE[y, (—yZu)] =-¥YR u=0, and substituting (23)
into (14), we get
E[x,x,x,x; |=tr(R,)R +2R?-2¥LY,
E[x,{x{xkeapt‘k] =2%¥YLu,
E[eop, X x| =E&  tr(R)-2u'Lu. 24)
Substituting (24) into (13) yields
E[v;, Vi 1= E[V; v, ]-4uE[V,R v,]
+4°B{v [tr(R )R +2R: -2¥L¥]v,}
—164°E[v; |¥Lu+4.°¢  tr(R,)—8u u"Lu .(25)
If the LCLMS algorithm is convergent, then
E[v;,V,,]=E[v;v,] and E[v,]=0 as k—o.
From (25), with x # 0, it can be shown that
HE i tr(R) =& —ptr(R)E, —2utr(D,R?)
+2utr(D,L)+2uu'Lu. (26)
Since L is psd, tr(D,L)=E[v.Lv_]>0 and
u'Lu>0. Therefore, 2utr(D L)+2xu'Lu and
—2utr(D_R?) would cancel each other partially.
Extensive computer simulations indicate that
tr(D_ R2)—tr(D_L)—u"Lu is at least an order of
magnitude smaller than tr(R )& and thus can be
ignored. Using this in (26) yields the misadjustment

M =&, /Gy = ptr(R)/[1-utr(R )] (27)

If the input data a, were Gaussian distributed with
zero mean and unit variance, then L =0 and the last
two terms of (26) disappear. F urther observe that

tr(D,R2) =tr(D' A%) = Z AD', (i),
tr(R, )gex tr(R )tr(D_R ) = tr(A)tr(D’, A)

N-1N-1

:Zx D', (i,i)+ Y. > Mh,D', (i) (28)

zojog—z——’

where D', =Q'D,Q and D', (i, ) is the (i,/)-th

element of D', . Since A, and D' (i,i) are non-
negative and almost always positive, tr(D,R?) is
expected to be negligible relative to tr(R )E,, .
Extensive computer simulations indicate that
tr(D,R?) is at least an order of magnitude smaller
than tr(R )&, and thus can be ignored. Using this
again yields (27) and therefore it can be concluded
that the misadjustment is approximately the same for
both binary data and Gaussian data.

Next, the stability of the LCLMS algorithm is
investigated by expressing (25) as
E[V], V;.]=E[vIFv,]-16,°E[v] ¥ Lu
+44°E  tr(R)—8u’u'Lu (29)
where F=1-4uR_+44°[tr(R )R +2R} -2¥LY].
To determine the range of u that guarantees the
convergence of E[v,v,], the term E[v;]¥Lu is
examined. A necessary condition is that the range of
4 must guarantee the convergence of E[v,] and this
is given by (11). Since F is psd, it is deduced that
O0<E[v,Fv <A (F)E[v,v,], where A_ (F) is
the maximum eigenvalue of F (Bertsekas, 1999).

max

Thus, from (29), it is also required that A, (F)<1.
Let F=E+G, where E=-8'¥YL¥ and
G=1-4uR_+4,°[tr(R )R _+2R2]. If A,(G)

denotes the i-th smallest eigenvalue of G, then

Mwin (B) + 1, (G) <A, (F) <A (B)+2,(G) (30)
for all £ (Golub and Van Loan, 1989). Since F is psd
and E is negative semidefinite, choosing x to make
the eigenvalues of G less than 1 will also ensure that
the eigenvalues of F are less than 1. It can be shown

that to guarantee stability, it is necessary that

O<pu<1/[tr(R)+2A,, ]. Since A <tr(R), a
conservative and convenient range is
0<u<l/[3tr(R))]. 3D

If the input data a, were Gaussian distributed with
zero mean and unit variance, then L=E=0 and
F =G . Clearly, this implies that binary data provides
greater stability range than Gaussian data. This is
verified by simulations, presented in Section 4.

3. LCLMS ALGORITHM WITH TWO STEP-SIZES

Section 2 assumed that x, = u, = 4. In this section,
the assumption is discarded and (4) is rewritten as
Vi = YI(I-2Qy,y,)V, +2¢,,,2y,] (32)
where Q =diag(x,1,,4,1,), 1, and I are identity
matrices of sizes N, and N, respectively, and
>4, > 0. Since ¥YQ =QW¥, (32) is rewritten as

Vg = (I—2kaxz)vk +2ertk Qx,
= Vi, =0- 2kak Vit zeopt k (33)
where v, =Q"?v, and X, =Q"’x,. Comparing

(33) with (7) shows that the derivations that follow
would be very similar to the case where
4, =, =u. The correlation matrix of importance



~ ~T

in the analysis of Vv, is R; =E[X,X,]. Note that
R, =Q"7YR YQ"? =¥YQ"’R Q"’¥,  where
Q"R Q" is positive definite since 4,4, > 0.

Using similar steps as before yields misadjustment as
_ & Ry R+, tr(A) (34)
G 1R [, r(R )+ 41, r(A)]

and the sufficient conditions to guarantee stability as

Lot >0, tr(Ry)=p tr(R))+ 2, tr(A) <1/3 . (35)

When u,=u,=p, tr(Ry)=utr(R,). This shows

that (34) and (35) are consistent with (27) and (31),

respectively. Lastly, the expression tr(R.)=

w,tr(R_)+ u,tr(A) is convenient for practical use
since tr(R,) is the sum of the powers of the signal
samples at the equalizer input and tr(A)=N, - N, is

a known constant.

4. SIMULATION RESULTS

In this section, simulation results are presented to
support the theoretical analyses in the previous
sections. In the simulations, the perpendicular
magnetic recording channel is used. Its bit response
h,i=0,1,...,(N,—1),is givenby h,=h_ —h,,
where &, = h, (¢)|t:(i_A)T, h,(t) = Atanh[(In3)/T,,],
T is the bit duration, 4 is half the signal amplitude,
T,, is the time that 4 () takes to rise from —4/2 to
+A4/2,and A is a shift index. Parameters are set as
A=05,T=1, T,,=2T, A=19, N,=40, N,,= 15,
N,=5, and m, =25, unless stated otherwise. In the
design, the first tap-weight of the PR target is
constrained to unity, i.e. ‘monic constraint’ (Moon
and Zeng, 1995). The remaining tap-weights are
initialized to zero. Lastly, the signal-to-noise ratio is
setto SNR(dB) = 10log,, (3" "h? /) =20dB.

We first investigate the validity of approximation
(34), which can be rewritten as

tr(R;) = g, tr(R,) + 1, tr(A) =M/ (M +1). (36)
The step-sizes u, and u, are chosen according to
(36) for M = 10%. The value of x,/u, is varied to
investigate its effect on the transient and steady-state
behavior of the algorithm.

Fig. 2 shows the learning curves for various values of
4,/ u, . Each plot is based on an ensemble average
of 10,000 independent simulation runs. Observe that
the steady-state behavior is roughly the same for the
three cases, and there is a close match between the
learning curves at steady-state and the theoretical
value of & . +&,, , thus validating (34). Further, the
use of distinct step-sizes provides faster convergence
for a given misadjustment. It is of interest to
investigate the various parameters that relate the
value of g,/ u, to the convergence rate.
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Fig. 2. Learning curves for M = 10% and different
values of /4, . Inset: Steady-state behavior.
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Fig. 3. Theoretical approximate learning curves.

Firstly, an approximate learning curve is derived by
noting from (12) that &, =&, + tr(lN)kR;) ,_where
D, =E[V,V;]. With R, =QAQ" where A is a
diagonal matrix consisting of the eigenvalues
Ags Apsees by, Of R and the columns of Q contain
the corresponding orthonormal eigenvectors, it can be
shown that & =&, + . LE[(V,,)*], where 7", ,
is the i-th element of V', =Q'V, . When the step-size
parameter is small, the following approximation

& % G+ B+ 20 B (1= 20 (BT, ) (BT)
applies (Farhang-Boroujeny, 2000).

Fig. 3 shows the theoretical approximate learning
curves based on (37) for various values of 4,/ u, .
Figs. 2 and 3 show that the convergence behavior of
the simulated learning curves are predicted correctly
by the theoretical ones. In fact, extensive simulations
indicate that the theoretical and simulated learning
curves agree in all cases.

For a given misadjustment M, (36) shows that s,
and u, are constrained such that an increase in 4,
results in a decrease in u,, and vice versa. Since
large step-sizes result in fast convergence, the fastest
overall convergence can be achieved when the
equalizer and PR target converge at the same speed.
With the monic constraint, the LCLMS algorithm
amounts to constraining the first PR target coefficient
to unity and adapting the remaining coefficients using
the standard unconstrained LMS algorithm. Based on
the principle of the normalized LMS algorithm,
which provides fast convergence, it is seen from (1)
that the normalized step-sizes are given by
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Fig. 5. Comparison of MSE curves with binary data
and Gaussian data for M = 70%.

H, =1, Nz2) . w, =1,/ Ta,_, ) (38)
where T is an identity matrix with the first diagonal
element set to zero. Clearly, z,z, ~ tr(R.) when the
equalizer is long enough. Also a,_ oy Iak - =tr(I).
The terms z, and u, control the convergence rates
of the equalizer and PR target, respectively (Farhang-
Boroujeny, 2000). Thus, setting z, =pu, makes
them converge at the same speed. This leads to
putr(R)) = ,uptr(f) , which can be written as

u,=Lpu, with I=(N,-N)/tr(R,). (39)

Fig. 4 shows the theoretical learning curves for
various values of g, /u,. Observe that the step-size
ratio given by (39) results in the fastest convergence.

Lastly, the stability ranges for binary data and
Gaussian data (with zero mean and unit variance) at
the channel input are investigated. Fig. 5 shows the
corresponding MSE curves, with each plot based on
an ensemble average of 10,000 independent
simulation runs. From (36), with x, = u, = u, the
step-size u is calculated for M = 70%. Observe that
the step-size range required to guarantee the stability
of the LCLMS algorithm is larger for binary data
compared to Gaussian data. This corroborates the
conjecture made at the end of Section 2.

5. CONCLUSION

In this paper, a novel approach is proposed to carry
out convergence analysis of the LCLMS algorithm
with a single step-size parameter. An approximate
expression for misadjustment is derived. It is also
shown that the step-size range required to guarantee
stability is larger for binary data compared to
Gaussian data. The analysis is extended to
accommodate distinct step-sizes for equalizer and PR

target. A rule of thumb is established for choosing the
optimal step-size ratio to achieve fast convergence.
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APPENDIX A

Noting that E[n;]=30c", the various expressions in

(16) can be expanded and simplified to
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