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Abstract: Although partial response (PR) equalization employing the linearly constrained 
least-mean-square (LCLMS) algorithm is widely used in recording channels, there is no 
literature on its convergence analysis. Existing analyses of the LMS algorithm assume 
that the input signals are jointly Gaussian, which is an invalid assumption for PR 
equalization with binary input. In this paper, we present a convergence analysis of the 
LCLMS algorithm, without the Gaussian assumption. An approximate expression is 
derived for the misadjustment. It is shown that the step-size range required to guarantee 
stability is larger for binary data compared to Gaussian data.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
There has been considerable research effort to 
combine partial response (PR) equalization with the 
Viterbi detector to minimize noise and distortions in 
recording channels. Conventionally, PR equalization 
shapes the channel response into a predetermined PR 
target with integer-valued coefficients. The Viterbi 
algorithm is then applied to the equalizer output to 
estimate the stored data bits. In recent years, research 
has shown that substantial performance improvement 
can be attained by employing generalized PR (GPR) 
targets with non-integer-valued coefficients (Moon 
and Zeng, 1995). Due to time-varying or unknown 
channel characteristics, it is necessary to employ 
adaptive approaches to design the equalizer and PR 
target, with the linearly constrained least-mean-
square (LCLMS) algorithm being the most widely 
used. Substantial research has been done on the LMS 
algorithm and it is well described in the literature.  
 
The analyses (Farhang-Boroujeny, 2000; Feuer and 
Weinstein, 1985; Frost, 1972; Godara and Cantoni, 
1986) assumed that the input data and desired signal 

are jointly Gaussian. Unfortunately, in PR 
equalization, the joint Gaussian assumption is invalid 
since the input data is binary, even though the 
channel noise is Gaussian. Although Claasen and 
Mecklenbräuker (1981) accommodate binary input, 
the filter input is restricted to a white process. In PR 
equalization, however, the equalizer input is 
correlated due to intersymbol interference. Further, 
because it is necessary to adapt both the equalizer and 
PR target, the analysis must consider two step-size 
parameters, whereas existing analyses consider only a 
single step-size parameter. Thus, existing analyses 
are inappropriate for studying the convergence of the 
LCLMS algorithm in PR equalization. 
 
In this paper, a novel approach is first presented in 
Section 2 to study the convergence behavior of the 
LCLMS algorithm with a single step-size parameter 
for adapting both the equalizer and PR target, without 
making the Gaussian assumption. In Section 3, the 
necessary modifications are given to accommodate 
two step-size parameters. Simulation results, which 
corroborate the theoretical developments, are given in 
Section 4. The paper is concluded in Section 5. 
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Fig. 1. Recording channel model with PR equalizer. 
 
 

2. LCLMS ALGORITHM WITH BINARY DATA 
AND GAUSSIAN NOISE 

 
2.1 System Model 
 

Fig. 1 depicts the recording channel model used in 
this paper. The channel noise kn  is modeled as 
additive white Gaussian with variance 2

nσ  and the 
data bits ka  are chosen to be independent and 
identically distributed random variables taking values 
{–1, +1} with equal probability. An appropriate value 
of the delay 0m  is assumed. The equalizer tap-
weights, equalizer input, PR target tap-weights, and 
PR target input are defined, respectively, as the real-
valued column vectors T

110 ][ −=
wNwww Kw , 

T
11 ][ +−−=

wNkkkk zzz Kz , T
110 ][ −=

pNppp Kp ,  
and T

11 ][
0000 +−−−−−− =

pNmkmkmkmk aaa Ka , where Nw is 
the equalizer length, Np is the PR target length, and 
the superscript ‘T’ denotes the transpose operator. 
 
A trivial solution that minimizes the mean-square 
error (MSE) ][E 2

ke  is w = 0 and p = 0, where E[⋅] 
denotes statistical expectation. This, of course, is 
useless and undesirable since it corresponds to no 
transmission through the channel. Thus, the objective 
is to minimize the MSE, subject to Bp = b, where B 
is a Nc × Np matrix, b is a Nc × 1 vector, and Nc is the 
number of linearly independent constraint(s). 
 
In the subsequent derivations, it is assumed that  
 }{ ka  and }{ kn  are zero-mean and mutually 

independent stationary processes; 
 At time k, the tap-weight vectors, kw  and kp , are 

independent of the input vectors, kz  and 
0mk−a  

(henceforth called the independence assumption). 
 
 
2.2 LCLMS Algorithm 
 
The LCLMS algorithm is given by (Frost, 1972) 

kkwkk e zww µ21 +=+ ,    

  bBapAp #
1 )2(

0
+−= −+ mkkpkk eµ   (1) 

where wµ  is the equalizer step-size parameter, pµ  is 
the PR target step-size parameter, 1TT# )( −= BBBB , 

BBIA #−= , and kkkmkke wzpa TT
0

−= − . Also, it can 
be easily seen that 
  koptkkkmkk ee ,

TT
0

+−= − fzga  (2) 

where optkk ppg −= , optkk wwf −= , optp  is the 
optimum PR target tap-weight vector, optw  is the 
optimum equalizer tap-weight vector, and 

optkoptmkkopte wzpa TT
, 0

−= −  is the optimum error. 
Substituting (2) into (1), and using bBp =opt , yields 
 kkoptwkmkkwkkkwkk e zgazfzzff ,

TT
1 222

0
µµµ ++−= −+ , 

      kkmkpkmkmkpkk fzagaagAg TT
1 000

22( −−−+ +−= µµ  
  )2

0, mkkoptpe −− aµ . (3) 
With µµµ == pw , (3) can be expressed as 

  ]2)2[( ,
T

1 kkoptkkkk e yvyyIΨv µµ +−=+  (4) 

where 



=

k

k
k g

fv , 



= A0

0IΨ , and 





−=

− 0mk

k
k a

zy . 

 
The matrix A performs orthogonal projection onto a 
subspace orthogonal to the row space of the 
constraint matrix B (Cowen, 1997). The matrix Ψ  is 
also a projection matrix. A projection matrix is both 
symmetric and idempotent. These two properties are 
crucial in subsequent derivations. Let us investigate 
the characteristics of Ψ . The constraints can be 
expressed as beΘ = , where ][ B0Θ =  and 

][ TTT pwe = . Since Ψ  performs orthogonal 
projection onto a subspace S⊥ orthogonal to the 
subspace S spanned by the rows of Θ , there exist Nc 
mutually orthogonal eigenvectors in S with 
eigenvalue 0. Similarly, there also exist (N – Nc) 
mutually orthogonal eigenvectors in S⊥ with 
eigenvalue 1, where N = Nw + Np.  
 
From (1), it can be easily deduced that 0z =][E , kkopte  
and 0Aa =− ][E

0, mkkopte . Consequently, the principle 
of orthogonality can be written as 
  0yΨ =][E , kkopte . (5) 
Note that Ψ  is singular if there is at least one linear 
constraint. Thus, in general, it cannot be concluded 
that 0y =][E , kkopte . 
 
 
2.3 Average Tap-Weight Behavior 
 
With the tap-weights initialized such that they satisfy 
the constraint(s), it can be inferred that 00 vΨv = . In 
addition, since the tap-weights lie on the constraint 
hyperplane at every adaptation step, it is observed 
that kk vΨv = , for any positive integer k. Since Ψ  
is idempotent, it is evident that  
 k

n
k vΨv = ,  n ∈ Z+, k = 0, 1, 2, … (6) 

As a result, with kk yΨx = , (4) can be expressed as 
 kkoptkkkk e xvxxIv ,

T
1 2)2( µµ +−=+ . (7) 

Under the independence assumption and the principle 
of orthogonality in (5), it follows from (7) that  
 ]E[)2(]E[ 1 kxk vIv Rµ−=+  (8) 
with TT ][E QΛQxxR == kkx , where Λ  is a diagonal 
matrix consisting of the eigenvalues 110 λ,...,λ,λ −N  of 

xR  and the columns of Q  contain the corresponding 
orthonormal eigenvectors. With kk' vQv T= , (8) can 
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be rewritten as the vector recursive equation 
]E[)2(]E[ 1 kk '' vΛIv µ−=+ , which can be separated 

into the scalar recursive equations 
 ]'[E)λ21(]'[E ,,1 ikiik vv µ−=+  (9) 
where ikv ,'  is the i-th element of the vector k'v . 
 
Note that ΨRΨR yx = , where ][E T

kky yyR =  is 
positive definite. Thus, the eigenvectors of Ψ  with 
eigenvalue 0 are also eigenvectors of xR  with 
eigenvalue 0. These eigenvectors lie in the subspace 
S and the projection of kv  in the directions of these 
eigenvectors is zero for all k. Since kv  has already 
converged in these directions, it does not pose any 
problem even if 0λ =i  in these directions. From (9), 
in order for kv  to converge in the remaining 
directions given by the orthonormal eigenvectors 
which lie in the subspace S⊥, it is imperative that the 
remaining eigenvalues are nonzero. Let 0q ≠  be one 
such eigenvector. Then, =Ψq q  and  
 0TTT >== qRqqΨRΨqqRq yyx  (10) 
since yR  is positive definite. Further, since xR  is at 
least positive semidefinite (psd), (10) implies that the 
eigenvalue corresponding to q must be positive. From 
(9), it can be seen that for ]'[E ,ikv  to converge to zero 
for all i, it is necessary that 1|λ21| <− iµ  for those 
positive eigenvalues iλ . Thus, it is concluded that   
 maxλ/10 << µ   (11) 
where maxλ  is the maximum eigenvalue of xR . 
 
 
2.4 MSE Behavior 
 
The convergence of the LCLMS algorithm requires 
the convergence of the mean of kv  to zero and the 
convergence of the variance of the elements of kv  to 
some limited values (Farhang-Boroujeny, 2000). In 
this section, the latter is investigated, without using 
the Gaussian assumption.  
 
From (2) and (6), kkkoptkkkoptk eee xvyv T

,
T

, −=−= . As 
a result, it follows that 
 )(trξ][Eξ min

2
xkkk e RD+==  (12) 

where ][Eξ 2
,min kopte= , tr(⋅) denotes the trace of a 

matrix, and ]E[ T
kkk vvD = . Further, excess MSE is 

defined as )(trξ ex xRD∞= . 
  
From (7), using the independence assumption and the 
principle of orthogonality (5), we get  
 ]]E[[E4][E][E TTT

1
T

1 kkkkkkkk vxxvvvvv µ−=++   
 ]]E[[E4 TTT2

kkkkkk vxxxxvµ+  
    ][E4][E][E8 T2

,
2

,
TT2

kkkoptkoptkkkk ee xxxxxv µµ +− .  (13) 
With ][ TTT

optopt pwu = , we get kkopte yuT
, −=  and 

 ΨyyxxΨxxxx ][E]E[ TTTT
kkkkkkkk = ,  

 uyyxxΨxxx ][E][E TT
,

T
kkkkkoptkkk e −= ,  

 uyyxxuxx ][E][E TTTT2
, kkkkkkkopte = . (14) 

Thus, the main task is to simplify the fourth-order 

moment ][E TT
kkkk yyxx .  

 
Firstly, with kkk nz ah ~T+= , it can be shown that  
 ∑∑ −

= −−
−

= − +=
1

0
T1

0
2T ~2 ww N

i ikik
N

i ikkk nn ahxx  

 
00

T1

0
TT ~~

mkmk
N

i ikik
w

−−
−

= −− ++ ∑ Aaahaah  (15) 

where T
110 ][ −=

hNhhh Kh  represents the channel 
bit response, T

11 ][~
+−−=

hNkkkk aaa Ka , and Nh is the 
channel length. Next, ][E TT

kkkk yyxx  is partitioned as  

 





=

2221

1211TT ][E YY
YYyyxx kkkk   (16) 

where ][E TT
11 kkkk zzxxY = , ][E TT

12 0mkkkk −−= azxxY , 
T

1221 YY = , and ][E TT
22 00 mkmkkk −−= aaxxY . Further, the 

fourth-order moment of the data bits ka  is given by 
ilikijjkiljlikklijlkji aaaa δδδ2δδδδδδ][E −++= . Since 

ka  and kn  are mutually independent, it is possible to 
find an exact expression for ][E TT

kkkk yyxx  (see 
Appendix A). Next, yR  is also partitioned as 

 




−

−
==

aza

zaz
kky RR

RRyyR T
T ][E , ][E T

kkz zzR = ,  

 ][E T
0mkkza −= azR , ][E T

00 mkmka −−= aaR ,  
 ∑ −

= −++=
1

0
2δ),( hN

jiijnz hhji
α αασR ,  

 ijmza hji −+=
0

),(R , ija ji δ),( =R .  (17) 
Consequently, it is noted that  
 )(tr)tr()tr(][E z

T
axkk ARRRxx +==  

 )(tr1

0
22 A++= ∑ −

=

hN
wnw hNN

α ασ .  (18) 

Upon inspection of the expressions for ][E TT
kkkk yyxx , 

yR  and ][E T
kk xx , it can be deduced that 

 ykkkkkk Rxxyyxx ][E][E TTT =  

   














−



−+

2221

1211
)(2 HH

HHRA0
00RRΨR yyyy ϑ  (19) 

where ijij ji δ),()( AA =ϑ  is the th-),( ji  element of 
)(Aϑ . Also, 11H , 12H  and 22H  are given by 

 







= ∑∑∑

−

=
−−+

−

=
−+

−

=
−

1

0

2
1

1

0

2
1

1

0

2
22 000

,,,diag
w

p

ww N

Nm

N

m

N

m hhh
α

α
α

α
α

α KH ,  

 22

Matrix Toeplitz

21

21

11

12

000

000

000

HH

444444 3444444 21
L

MOMM

L

L



















−=

−++−+−

−+−

−++

wpww

p

p

NNmNmNm

Nmmm

Nmmm

hhh

hhh
hhh

, 

 T
11 CZCH = , 

44444 344444 21
L

MOMM

L

L

Matrix Toeplitz

121

301

210



















=

−+−+−

−+−

−+

hww

hw

hw

NNN

NN

NN

hhh

hhh
hhh

C ,  

 







= ∑∑∑

−

=
−−+

−

=
−

−

=
−

1

0

2
2

1

0

2
1

1

0

2
0 ,,,diag

w

hw

ww N

NN

NN

hhh
α

α
α

α
α

α KZ  (20) 

where )(diag K  denotes a diagonal matrix consisting 
of the indicated elements. Note that aa RHRH 2222 =  
and aza RHRH 2212 −= . This inspires us to write 
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 



+



=








00
0ΦRH0

00RHH
HH

yy
222221

1211  

 



+








−

−= 00
0Φ

RHRRHR
RHRRHR

aazaa

azazaza

22
T

22

22
T

22  (21) 

where Φ  is some unknown Nw × Nw matrix to be 
found. The matrices ),,diag( 321 ZZZZ =  and 

][ 321 CCCC =  are partitioned such that 222 HZ =  
and zaRC =2 . As a result, 11H  can be expressed as  
 T

333
T

22
T
11111 CZCRHRCZCH ++= zaza . (22) 

The only requirement for writing (22) is given by 
21,0 00 −+≤−+≤ hwp NNNmm , which is satisfied 

in practice. From (21) and (22), it can be seen that 
T
333

T
111 CZCCZCΦ += . Thus, (19) can be written as 

        )(2)(tr][E TT LRΨRRRyyxx −+= yyyxkkkk  (23) 

where 



+












+



= 00

0ΦRH0
00

A0
00RL yy

22)(ϑ . 

 
The matrices A , 22H  and Φ  are clearly psd. Since 
the diagonal elements of a psd matrix are 
nonnegative, )(Aϑ  is also psd. Thus, it is clear that 
L is psd. Noting from (5) that ,E[ ]opt k ke =Ψy  

TE[ ( )]k k y− = − =Ψ y y u ΨR u 0 , and substituting (23) 
into (14), we get  
 ΨLΨRRRxxxx 22)(tr]E[ 2TT −+= xxxkkkk ,  
 uLΨxxx 2][E ,

T =koptkkk e ,  

 2 T T
, minE[ ] ξ tr( ) 2 .opt k k k xe = −x x R u Lu  (24) 

Substituting (24) into (13) yields 
 ][E4][E][E TT

1
T

1 kxkkkkk vRvvvvv µ−=++  
 }]22)(tr[{E4 2T2

kxxxk vΨLΨRRRv −++ µ  
 uLuRuLΨv T2

min
2T2 8)(trξ4][E16 µµµ −+− xk . (25) 

If the LCLMS algorithm is convergent, then 
][E][E T

1
T

1 kkkk vvvv =++  and 0v =][E k  as ∞→k . 
From (25), with 0≠µ , it can be shown that 
 )(tr2ξ)(trξ)(trξ 2

exexmin xxx RDRR ∞−−= µµµ  
 LuuLD T2)(tr2 µµ ++ ∞ . (26) 
Since L is psd, 0][E)(tr T ≥= ∞∞∞ LvvLD  and 

0T ≥uLu . Therefore, uLuLD T2)(tr2 µµ +∞  and 
)(tr2 2

xRD∞− µ  would cancel each other partially. 
Extensive computer simulations indicate that 

LuuLDRD T2 )(tr)(tr −− ∞∞ x  is at least an order of 
magnitude smaller than exξ)(tr xR  and thus can be 
ignored. Using this in (26) yields the misadjustment  
 )](tr1[/)(trξ/ξ minex xx RR µµ −≈=Μ . (27) 
 
If the input data ka  were Gaussian distributed with 
zero mean and unit variance, then 0L =  and the last 
two terms of (26) disappear. Further, observe that 
 ∑ −

= ∞∞∞ ==
1

0
222 ),('λ)(tr)(tr N

i ix iiD' ΛDRD , 

 )(tr)(tr)(tr)(trξ)(tr ex ΛDΛRDRR ∞∞ == 'xxx  

 ∑∑∑
−

=

−

=
≠

∞

−

=
∞ +=

1

0

1

0

1

0

2 ),('λλ),('λ
N

i

N

j
ji

ji

N

i
i iiDiiD

4434421
 (28) 

where QDQD kk'
T=  and ),(' jiD k  is the th-),( ji  

element of k'D . Since iλ  and ),(' iiD ∞  are non-
negative and almost always positive, )(tr 2

xRD∞  is 
expected to be negligible relative to exξ)(tr xR . 
Extensive computer simulations indicate that 

)(tr 2
xRD∞  is at least an order of magnitude smaller 

than exξ)(tr xR  and thus can be ignored. Using this 
again yields (27) and therefore it can be concluded 
that the misadjustment is approximately the same for 
both binary data and Gaussian data.  
 
Next, the stability of the LCLMS algorithm is 
investigated by expressing (25) as  
 LuΨvFvvvv ][E16][E][E T2T

1
T

1 kkkkk µ−=++  
 uLuR T2

min
2 8)(trξ4 µµ −+ x  (29) 

where ].22)(tr[44 22 ΨLΨRRRRIF −++−= xxxx µµ  
To determine the range of µ that guarantees the 
convergence of ][E T

kk vv , the term uLΨv ][E T
k  is 

examined. A necessary condition is that the range of 
µ must guarantee the convergence of ][E kv  and this 
is given by (11). Since F  is psd, it is deduced that 

][E)(λ][E0 T
max

T
kkkk vvFFvv ≤≤ , where )(λmax F  is 

the maximum eigenvalue of F  (Bertsekas, 1999). 
Thus, from (29), it is also required that 1)(λmax <F . 
Let GEF += , where ΨLΨE 28µ−=  and 

]2)([tr44 22
xxxx RRRRIG ++−= µµ . If )(λ Gi  

denotes the i-th smallest eigenvalue of G , then  
      )(λ)(λ)(λ)(λ)(λ maxmin GEFGE kkk +≤≤+  (30) 
for all k (Golub and Van Loan, 1989). Since F  is psd 
and E is negative semidefinite, choosing µ to make 
the eigenvalues of G  less than 1 will also ensure that 
the eigenvalues of F  are less than 1. It can be shown 
that to guarantee stability, it is necessary that 

]λ2)(tr[/10 max+<< xRµ . Since )(trλmax xR< , a 
conservative and convenient range is   
 )](tr3[/10 xR<< µ . (31) 
If the input data ka  were Gaussian distributed with 
zero mean and unit variance, then 0EL ==  and 

GF = . Clearly, this implies that binary data provides 
greater stability range than Gaussian data. This is 
verified by simulations, presented in Section 4. 
 
 
3. LCLMS ALGORITHM WITH TWO STEP-SIZES 

 
Section 2 assumed that µµµ == pw . In this section, 
the assumption is discarded and (4) is rewritten as 
 ]2)2[( ,

T
1 kkoptkkkk e yΩvyyΩIΨv +−=+  (32) 

where ),(diag ppww IIΩ µµ= , wI  and pI  are identity 
matrices of sizes Nw and Np, respectively, and 

0, >pw µµ . Since ΩΨΨΩ = , (32) is rewritten as 
 kkoptkkkk e xΩvxxΩIv ,

T
1 2)2( +−=+   

 ⇒ kkoptkkkk e xvxxIv ~2~)~~2(~
,

T
1 +−=+  (33) 

where kk vΩv 2/1~ −=  and kk xΩx 2/1~ = . Comparing 
(33) with (7) shows that the derivations that follow 
would be very similar to the case where 

µµµ == pw . The correlation matrix of importance 
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in the analysis of kv~  is ]~~[E T
~ kkx xxR = . Note that 

ΨΩRΩΨΩΨRΨΩR 21212121
~

/
y

//
y

/
x == , where 

2121 /
y

/ ΩRΩ  is positive definite since 0, >pw µµ .  
 
Using similar steps as before yields misadjustment as  

  
)](tr)(tr[1

)(tr)(tr
)(tr1

)(tr
ξ
ξ

~

~

min

ex

AR
AR

R
R

pzw

pzw

x

x

µµ
µµ
+−

+
=

−
≈=Μ  (34) 

and the sufficient conditions to guarantee stability as  
  ,0, >pw µµ  3/1)(tr)(tr)(tr ~ <+= ARR pzwx µµ .  (35) 
When µµµ == pw , )(tr)(tr ~ xx RR µ= . This shows 
that (34) and (35) are consistent with (27) and (31), 
respectively. Lastly, the expression tr( )x =R %  

tr( ) tr( )w z pµ µ+R A  is convenient for practical use 
since )(tr zR  is the sum of the powers of the signal 
samples at the equalizer input and cp NN −=)(tr A  is 
a known constant.  
 
 

4. SIMULATION RESULTS 
 
In this section, simulation results are presented to 
support the theoretical analyses in the previous 
sections. In the simulations, the perpendicular 
magnetic recording channel is used. Its bit response 

ih , i = 0, 1, …, (Nh – 1), is given by 1,, −−= isisi hhh , 
where 

Titsis thh
)(, )(

∆−=
= ,  ]/)3tanh[(ln)( 50TtAths = , 

T is the bit duration, A is half the signal amplitude, 
50T  is the time that )(ths  takes to rise from 2/A−  to 

2/A+ , and ∆  is a shift index. Parameters are set as 
5.0=A , 1=T , TT 250 = , 19=∆ , Nh = 40, Nw = 15, 

Np = 5, and 250 =m , unless stated otherwise. In the 
design, the first tap-weight of the PR target is 
constrained to unity, i.e. ‘monic constraint’ (Moon 
and Zeng, 1995). The remaining tap-weights are 
initialized to zero. Lastly, the signal-to-noise ratio is 
set to dB20)/(log10)dB(SNR 1

0
22

10 == ∑ −

=

hN

i nih σ . 
 
We first investigate the validity of approximation 
(34), which can be rewritten as  
        ).1(/)(tr)(tr)(tr ~ +ΜΜ=+= ARR pzwx µµ  (36) 
The step-sizes wµ  and pµ  are chosen according to 
(36) for M = 10%. The value of pw µµ /  is varied to 
investigate its effect on the transient and steady-state 
behavior of the algorithm. 
 
Fig. 2 shows the learning curves for various values of 

pw µµ / . Each plot is based on an ensemble average 
of 10,000 independent simulation runs. Observe that 
the steady-state behavior is roughly the same for the 
three cases, and there is a close match between the 
learning curves at steady-state and the theoretical 
value of exmin ξξ + , thus validating (34). Further, the 
use of distinct step-sizes provides faster convergence 
for a given misadjustment. It is of interest to 
investigate the various parameters that relate the 
value of pw µµ /  to the convergence rate. 

0 0.5 1 1.5 2 2.5 3 3.5
x 104

10-1

100

Number of Iterations

M
SE

ξmin+ ξex 
ξmin 

µw
 = µp

 

µw
 = 2µp

  

µw
 = 0.5µp

  

 
Fig. 2. Learning curves for M = 10% and different 

values of pw µµ / . Inset: Steady-state behavior. 
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Fig. 3. Theoretical approximate learning curves. 
 
Firstly, an approximate learning curve is derived by 
noting from (12) that )~(trξξ ~min xkk RD+= , where 

]~~E[~ T
kkk vvD = . With T

~
~~~ QΛQR =x  where Λ~  is a 

diagonal matrix consisting of the eigenvalues 
110 λ

~
,...,λ

~
,λ

~
−N  of x~R  and the columns of Q~  contain 

the corresponding orthonormal eigenvectors, it can be 
shown that ∑ −

=
+=

1

0
2

,min ])'~[(Eλ
~

ξξ N

i ikik v , where ikv ,'~  
is the i-th element of kk' vQv ~~~ T= . When the step-size 
parameter is small, the following approximation  
      ∑ −

=
−++≈

1

0
2

,0
2

exmin ])'~[E()λ
~

21(λ
~

ξξξ N

i i
k

iik v  (37) 

applies (Farhang-Boroujeny, 2000). 
 
Fig. 3 shows the theoretical approximate learning 
curves based on (37) for various values of pw µµ / . 
Figs. 2 and 3 show that the convergence behavior of 
the simulated learning curves are predicted correctly 
by the theoretical ones. In fact, extensive simulations 
indicate that the theoretical and simulated learning 
curves agree in all cases. 
 
For a given misadjustment M, (36) shows that wµ  
and pµ  are constrained such that an increase in wµ  
results in a decrease in pµ , and vice versa. Since 
large step-sizes result in fast convergence, the fastest 
overall convergence can be achieved when the 
equalizer and PR target converge at the same speed. 
With the monic constraint, the LCLMS algorithm 
amounts to constraining the first PR target coefficient 
to unity and adapting the remaining coefficients using 
the standard unconstrained LMS algorithm. Based on 
the principle of the normalized LMS algorithm, 
which provides fast convergence, it is seen from (1) 
that the normalized step-sizes are given by  
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Fig. 4. Learning curves with A = 2. 
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Fig. 5. Comparison of MSE curves with binary data 

and Gaussian data for M = 70%. 
 

 )/( T
kkww zzµµ = , )~/(

00

T
mkmkpp −−= aIaµµ  (38) 

where I~  is an identity matrix with the first diagonal 
element set to zero. Clearly, )(trT

zkk Rzz ≈  when the 
equalizer is long enough. Also, )~(tr~

00

T IaIa =−− mkmk . 
The terms wµ  and pµ  control the convergence rates 
of the equalizer and PR target, respectively (Farhang-
Boroujeny, 2000). Thus, setting pw µµ =  makes 
them converge at the same speed. This leads to 

)~(tr)(tr IR pzw µµ = , which can be written as 
     pw µµ 1Γ=  with )(tr/)(1 zcp NN R−=Γ . (39) 
Fig. 4 shows the theoretical learning curves for 
various values of pw µµ / . Observe that the step-size 
ratio given by (39) results in the fastest convergence.  
 
Lastly, the stability ranges for binary data and 
Gaussian data (with zero mean and unit variance) at 
the channel input are investigated. Fig. 5 shows the 
corresponding MSE curves, with each plot  based on 
an ensemble average of 10,000 independent 
simulation runs. From (36), with µµµ == pw , the 
step-size µ is calculated for M = 70%. Observe that 
the step-size range required to guarantee the stability 
of the LCLMS algorithm is larger for binary data 
compared to Gaussian data. This corroborates the 
conjecture made at the end of Section 2. 
 
 

5. CONCLUSION 
 

In this paper, a novel approach is proposed to carry 
out convergence analysis of the LCLMS algorithm 
with a single step-size parameter. An approximate 
expression for misadjustment is derived. It is also 
shown that the step-size range required to guarantee 
stability is larger for binary data compared to 
Gaussian data. The analysis is extended to 
accommodate distinct step-sizes for equalizer and PR 

target. A rule of thumb is established for choosing the 
optimal step-size ratio to achieve fast convergence.  
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APPENDIX A 
 

Noting that 44 3][E nkn σ= , the various expressions in 
(16) can be expanded and simplified to  
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